
Introduction to Coding Theory
Error-correcting codes constitute one of the key ingredients in achieving the high
degree of reliability required in modern data transmission and storage systems. This
book introduces the reader to the theoretical foundations of error-correcting codes,
with an emphasis on Reed–Solomon codes and their derivative codes.

After reviewing linear codes and finite fields, the author describes Reed–Solomon
codes and various decoding algorithms. Cyclic codes are presented, as are MDS
codes, graph codes, and codes in the Lee metric. Concatenated, trellis, and convo-
lutional codes are also discussed in detail. Homework exercises introduce additional
concepts such as Reed–Muller codes, and burst error correction. The end-of-chapter
notes often deal with algorithmic issues, such as the time complexity of computa-
tional problems.

While mathematical rigor is maintained, the text is designed to be accessible to
a broad readership, including students of computer science, electrical engineering,
and mathematics, from senior-undergraduate to graduate level.

This book contains over 100 worked examples and over 340 exercises—many
with hints.

Ron M. Roth joined the faculty of Technion—Israel Institute of Technology
(Haifa, Israel) in 1988, where he is a Professor of Computer Science and holds
the General Yaakov Dori Chair in Engineering. He also held visiting positions at
IBM Research Division (San Jose, California) and, since 1993, at Hewlett–Packard
Laboratories (Palo Alto, California). He is a Fellow of the Institute of Electrical
and Electronics Engineers (IEEE).

Introduction to Coding Theory

Ron M. Roth
Technion—Israel Institute of Technology
Haifa, Israel

Cambridge University Press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press

York

www.cambridge.org
Information on this title: www.cambridge.org/9780521845045

c© Cambridge University Press 2006

and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

First published 2006

Published in the United States of America by Cambridge University Press, New

The Edinburgh Building, Cambridge CB2 8RU, UK

This publication is in copyright. Subject to statutory exception

2007

Library of Congress Cataloging in Publication Data

A catalog record for this publication is available from the British Library

Printed in the United Kingdom at the University Press, Cambridge

Reprinted with corrections

the written permission of Cambridge University Press.

ISBN 978-0-521-84504-5 hardback

Cambridge University Press has no responsibility for the persistence or accuracy
of URLs for external or third-party internet websites referred to in this publication,

accurate or appropriate.
and does not guarantee that any content on such websites is, or will remain,

Contents

Preface page ix

1 Introduction 1
1.1 Communication systems 1
1.2 Channel coding 3
1.3 Block codes 5
1.4 Decoding 7
1.5 Levels of error handling 11
Problems 17
Notes 22

2 Linear Codes 26
2.1 Definition 26
2.2 Encoding of linear codes 28
2.3 Parity-check matrix 29
2.4 Decoding of linear codes 32
Problems 36
Notes 47

3 Introduction to Finite Fields 50
3.1 Prime fields 50
3.2 Polynomials 51
3.3 Extension fields 56
3.4 Roots of polynomials 59
3.5 Primitive elements 60
3.6 Field characteristic 62
3.7 Splitting field 64
3.8 Application: double error-correcting codes 66
Problems 70
Notes 90

v

vi Contents

4 Bounds on the Parameters of Codes 93
4.1 The Singleton bound 94
4.2 The sphere-packing bound 95
4.3 The Gilbert–Varshamov bound 97
4.4 MacWilliams’ identities 99
4.5 Asymptotic bounds 104
4.6 Converse Coding Theorem 110
4.7 Coding Theorem 115
Problems 119
Notes 136

5 Reed–Solomon and Related Codes 147
5.1 Generalized Reed–Solomon codes 148
5.2 Conventional Reed–Solomon codes 151
5.3 Encoding of RS codes 152
5.4 Concatenated codes 154
5.5 Alternant codes 157
5.6 BCH codes 162
Problems 163
Notes 177

6 Decoding of Reed–Solomon Codes 183
6.1 Introduction 183
6.2 Syndrome computation 184
6.3 Key equation of GRS decoding 185
6.4 Solving the key equation by Euclid’s algorithm 191
6.5 Finding the error values 194
6.6 Summary of the GRS decoding algorithm 195
6.7 The Berlekamp–Massey algorithm 197
Problems 204
Notes 215

7 Structure of Finite Fields 218
7.1 Minimal polynomials 218
7.2 Enumeration of irreducible polynomials 224
7.3 Isomorphism of finite fields 227
7.4 Primitive polynomials 227
7.5 Cyclotomic cosets 229
Problems 232
Notes 240

Contents vii

8 Cyclic Codes 242
8.1 Definition 242
8.2 Generator polynomial and check polynomial 244
8.3 Roots of a cyclic code 247
8.4 BCH codes as cyclic codes 250
8.5 The BCH bound 253
Problems 256
Notes 265

9 List Decoding of Reed–Solomon Codes 266
9.1 List decoding 267
9.2 Bivariate polynomials 268
9.3 GRS decoding through bivariate polynomials 269
9.4 Sudan’s algorithm 271
9.5 The Guruswami–Sudan algorithm 276
9.6 List decoding of alternant codes 280
9.7 Finding linear bivariate factors 284
9.8 Bounds on the decoding radius 289
Problems 291
Notes 295

10 Codes in the Lee Metric 298
10.1 Lee weight and Lee distance 298
10.2 Newton’s identities 300
10.3 Lee-metric alternant codes and GRS codes 302
10.4 Decoding alternant codes in the Lee metric 306
10.5 Decoding GRS codes in the Lee metric 312
10.6 Berlekamp codes 314
10.7 Bounds for codes in the Lee metric 316
Problems 321
Notes 327

11 MDS Codes 333
11.1 Definition revisited 333
11.2 GRS codes and their extensions 335
11.3 Bounds on the length of linear MDS codes 338
11.4 GRS codes and the MDS conjecture 342
11.5 Uniqueness of certain MDS codes 347
Problems 351
Notes 361

viii Contents

12 Concatenated Codes 365
12.1 Definition revisited 366
12.2 Decoding of concatenated codes 367
12.3 The Zyablov bound 371
12.4 Justesen codes 374
12.5 Concatenated codes that attain capacity 378
Problems 381
Notes 392

13 Graph Codes 395
13.1 Basic concepts from graph theory 396
13.2 Regular graphs 401
13.3 Graph expansion 402
13.4 Expanders from codes 406
13.5 Ramanujan graphs 409
13.6 Codes from expanders 411
13.7 Iterative decoding of graph codes 414
13.8 Graph codes in concatenated schemes 420
Problems 426
Notes 445

14 Trellis and Convolutional Codes 452
14.1 Labeled directed graphs 453
14.2 Trellis codes 460
14.3 Decoding of trellis codes 466
14.4 Linear finite-state machines 471
14.5 Convolutional codes 477
14.6 Encoding of convolutional codes 479
14.7 Decoding of convolutional codes 485
14.8 Non-catastrophic generator matrices 495
Problems 501
Notes 518

Appendix: Basics in Modern Algebra 521
Problems 522

Bibliography 527

List of Symbols 553

Index 559

Preface

Do ye imagine to reprove words?
Job 6:26

This book has evolved from lecture notes that I have been using for an in-
troductory course on coding theory in the Computer Science Department at
Technion. The course deals with the basics of the theory of error-correcting
codes, and is intended for students in the graduate and upper-undergraduate
levels from Computer Science, Electrical Engineering, and Mathematics.
The material of this course is covered by the first eight chapters of this
book, excluding Sections 4.4–4.7 and 6.7. Prior knowledge in probability,
linear algebra, modern algebra, and discrete mathematics is assumed. On
the other hand, all the required material on finite fields is an integral part of
the course. The remaining parts of this book can form the basis of a second,
advanced-level course.

There are many textbooks on the subject of error-correcting codes, some
of which are listed next: Berlekamp [36], Blahut [46], Blake and Mullin [49],
Lin and Costello [230], MacWilliams and Sloane [249], McEliece [259], Pe-
terson and Weldon [278], and Pless [280]. These are excellent sources, which
served as very useful references when compiling this book. The two volumes
of the Handbook of Coding Theory [281] form an extensive encyclopedic col-
lection of what is known in the area of coding theory.

One feature that probably distinguishes this book from most other clas-
sical textbooks on coding theory is that generalized Reed–Solomon (GRS)
codes are treated before BCH codes—and even before cyclic codes. The
purpose of this was to bring the reader to see, as early as possible, families
of codes that cover a wide range of minimum distances. In fact, the cyclic
properties of (conventional) Reed–Solomon codes are immaterial for their
distance properties and may only obscure the underlying principles of the
decoding algorithms of these codes. Furthermore, bit-error-correcting codes,
such as binary BCH codes, are found primarily in spatial communication
applications, while readers are now increasingly exposed to temporal com-

ix

x Preface

munication platforms, such as magnetic and optical storage media. And in
those applications—including domestic CD and DVD—the use of GRS codes
prevails.

Therefore, the treatment of finite fields in this book is split, where the
first batch of properties (in Chapter 3) is aimed at laying the basic back-
ground on finite fields that is sufficient to define GRS codes and understand
their decoding algorithm. A second batch of properties of finite fields is
provided in Chapter 7, prior to discussing cyclic codes, and only then is the
reader presented with the notions of minimal polynomials and cyclotomic
cosets.

Combinatorial bounds on the parameters of codes are treated mainly in
Chapter 4. In an introductory course, it would suffice to include only the
Singleton and sphere-packing bounds (and possibly the non-asymptotic ver-
sion of the Gilbert–Varshamov bound). The remaining parts of this chapter
contain the asymptotic versions of the combinatorial bounds, yet also cover
the information-theoretic bounds, namely, the Shannon Coding Theorem
and Converse Coding Theorem for the q-ary symmetric channel. The latter
topics may be deferred to an advanced-level course.

GRS codes and alternant codes constitute the center pillar of this book,
and a great portion of the text is devoted to their study. These codes are
formally introduced in Chapter 5, following brief previews in Sections 3.8
and 4.1. Classical methods for GRS decoding are described in Chapter 6,
whereas Chapter 9 is devoted to the list decoding of GRS codes and alternant
codes. The performance of these codes as Lee-metric codes is then the main
topic of Chapter 10. GRS codes play a significant role also in Chapter 11,
which deals with MDS codes.

The last three chapters of the book focus on compound constructions of
codes. Concatenated codes and expander-based codes (which are, in a way,
two related topics) are presented in Chapters 12 and 13, and an introduction
to trellis codes and convolutional codes is given in Chapter 14. This last
chapter was included in this book for the sake of an attempt for completeness:
knowing that the scope of the book could not possibly allow it to touch all the
aspects of trellis codes and convolutional codes, the model of state-dependent
coding, which these codes represent, was still too important to be omitted.

Each chapter ends with problems and notes, which occupy on average
a significant portion of the chapter. Many of the problems introduce ad-
ditional concepts that are not covered in text; these include Reed–Muller
codes, product codes and array codes, burst error correction, interleaving,
the implementation of arithmetic in finite fields, or certain bounds—e.g., the
Griesmer and Plotkin bounds. The notes provide pointers to references and
further reading. Since the text is intended also for readers who are computer
scientists, the notes often contain algorithmic issues, such as the time com-

Preface xi

plexity of certain computational problems that are related to the discussion
in the text.

Finally, the Appendix (including the problems therein) contains a short
summary of several terms from modern algebra and discrete mathematics, as
these terms are frequently used in the book. This appendix is meant merely
to recapitulate material, which the reader is assumed to be rather familiar
with from prior studies.

I would like to thank the many students and colleagues, whose input on
earlier versions of this book greatly helped in improving the presentation.
Special thanks are due to Shirley Halevy, Ronny Lempel, Gitit Ruckenstein,
and Ido Tal, who taught the course with me at Technion and offered a
wide variety of useful ideas while the book was being written. Ido was
particularly helpful in detecting and correcting many of the errors in earlier
drafts of the text (obviously, the responsibility for all remaining errors is
totally mine). I owe thanks to Brian Marcus and Gadiel Seroussi for the good
advice that they provided along the way, and to Gadiel, Vitaly Skachek, and
the anonymous reviewers for the constructive comments and suggestions.
Part of the book was written while I was visiting the Information Theory
Research Group at Hewlett–Packard Laboratories in Palo Alto, California.
I wish to thank the Labs for their kind hospitality, and the group members
in particular for offering a very encouraging and stimulating environment.

Chapter 1

Introduction

In this chapter, we introduce the model of a communication system, as orig-
inally proposed by Claude E. Shannon in 1948. We will then focus on the
channel portion of the system and define the concept of a probabilistic chan-
nel, along with models of an encoder and a decoder for the channel. As our
primary example of a probabilistic channel—here, as well as in subsequent
chapters—we will introduce the memoryless q-ary symmetric channel, with
the binary case as the prevailing instance used in many practical applica-
tions. For q = 2 (the binary case), we quote two key results in information
theory. The first result is a coding theorem, which states that information
through the channel can be transmitted with an arbitrarily small probabil-
ity of decoding error, as long as the transmission rate is below a quantity
referred to as the capacity of the channel. The second result is a converse
coding theorem, which states that operating at rates above the capacity
necessarily implies unreliable transmission.

In the remaining part of the chapter, we shift to a combinatorial setting
and characterize error events that can occur in channels such as the q-ary
symmetric channel, and can always be corrected by suitably selected en-
coders and decoders. We exhibit the trade-off between error correction and
error detection: while an error-detecting decoder provides less information
to the receiver, it allows us to handle twice as many errors. In this context,
we will become acquainted with the erasure channel, in which the decoder
has access to partial information about the error events, namely, the loca-
tion of the symbols that might be in error. We demonstrate that—here as
well—such information allows us to double the number of correctable errors.

1.1 Communication systems

Figure 1.1 shows a communication system for transmitting information from
a source to a destination through a channel . The communication can be

1

2 1. Introduction

Source � Source
Encoder

� Channel
Encoder

�

Channel

�Channel
Decoder

�Source
Decoder

�Destination

Figure 1.1. Communication system.

either in the space domain (i.e., from one location to another) or in the time
domain (i.e., by storing data at one point in time and retrieving it some time
later).

The role of source coding is twofold. First, it serves as a translator
between the output of the source and the input to the channel. For example,
the information that is transmitted from the source to the destination may
consist of analog signals, while the channel may expect to receive digital
input; in such a case, an analog-to-digital conversion will be required at
the encoding stage, and then a back conversion is required at the decoding
stage. Secondly, the source encoder may compress the output of the source
for the purpose of economizing on the length of the transmission; at the
other end, the source decoder decompresses the received signal or sequence.
Some applications require that the decoder restore the data so that it is
identical to the original, in which case we say that the compression is lossless.
Other applications, such as most audio and image transmissions, allow some
(controlled) difference—or distortion—between the original and the restored
data, and this flexibility is exploited to achieve higher compression; the
compression is then called lossy.

Due to physical and engineering limitations, channels are not perfect:
their output may differ from their input because of noise or manufacturing
defects. Furthermore, sometimes the design requires that the format of the
data at the output of the channel (e.g., the set of signals that can be read
at the output) should differ from the input format. In addition, there are
applications, such as magnetic and optical mass storage media, where cer-
tain patterns are not allowed to appear in the recorded (i.e., transmitted)
bit stream. The main role of channel coding is to overcome such limitations
and to make the channel as transparent as possible from the source and
destination points of view. The task of signal translation, which was men-
tioned earlier in the context of source coding, may be undertaken partially
(or wholly) also by the channel encoder and decoder.

1.2. Channel coding 3

1.2 Channel coding

We will concentrate on the channel coding part of Figure 1.1, as shown in
Figure 1.2.

�
u

Channel
Encoder

�
c Channel �

y
Channel
Decoder

�
ĉ, û

Figure 1.2. Channel coding.

Our model of the channel will be that of the (discrete) probabilistic chan-
nel : a probabilistic channel S is defined as a triple (F, Φ, Prob), where F is a
finite input alphabet , Φ is a finite output alphabet, and Prob is a conditional
probability distribution

Prob{y received | x transmitted }

defined for every pair (x,y) ∈ Fm × Φm, where m ranges over all positive
integers and Fm (respectively, Φm) denotes the set of all words of length
m over F (respectively, over Φ). (We assume here that the channel neither
deletes nor inserts symbols; that is, the length of an output word y always
equals the length of the respective input word x.)

The input to the channel encoder is an information word (or message) u
out of M possible information words (see Figure 1.2). The channel encoder
generates a codeword c ∈ Fn that is input to the channel. The resulting
output of the channel is a received word y ∈ Φn, which is fed into the
channel decoder. The decoder, in turn, produces a decoded codeword ĉ and
a decoded information word û, with the aim of having c = ĉ and u = û.
This implies that the channel encoder needs to be such that the mapping
u�→ c is one-to-one.

The rate of the channel encoder is defined as

R =
log|F | M

n
.

If all information words have the same length over F , then this length is
given by the numerator, log|F | M , in the expression for R (strictly speaking,
we need to round up the numerator in order to obtain that length; however,
this integer effect phases out once we aggregate over a sequence of � →
∞ transmissions, in which case the number of possible information words
becomes M � and the codeword length is � · n). Since the mapping of the
encoder is one-to-one, we have R ≤ 1.

The encoder and decoder parts in Figure 1.2 will be the subject of Sec-
tions 1.3 and 1.4, respectively. We next present two (related) examples of

4 1. Introduction

probabilistic channels, which are very frequently found in practical applica-
tions.

Example 1.1 The memoryless binary symmetric channel (in short,
BSC) is defined as follows. The input and output alphabets are F = Φ =
{0, 1}, and for every two binary words x = x1x2 . . . xm and y = y1y2 . . . ym

of a given length m,

Prob{y received | x transmitted }

=
m∏

j=1

Prob{ yj received | xj transmitted } , (1.1)

where, for every x, y ∈ F ,

Prob{ y was received | x was transmitted } =
{

1− p if y = x
p if y �= x

.

The parameter p is a real number in the range 0 ≤ p ≤ 1 and is called the
crossover probability of the channel.

The action of the BSC can be described as flipping each input bit with
probability p, independently of the past or the future (the adjective “memo-
ryless” reflects this independence). The channel is called “symmetric” since
the probability of the flip is the same regardless of whether the input is 0 or
1. The BSC is commonly represented by a diagram as shown in Figure 1.3.
The possible input values appear to the left and the possible output values
are shown to the right. The label of a given edge from input x to output y
is the conditional probability of receiving the output y given that the input
is x.

1

0

1

0

�
1− p

�1− p

�
p�

p

Figure 1.3. Binary symmetric channel.

The cases p = 0 and p = 1 correspond to reliable communication, whereas
p = 1

2 stands for the case where the output of the channel is statistically
independent of its input.

Example 1.2 The memoryless q-ary symmetric channel with crossover
probability p is a generalization of the BSC to alphabets F = Φ of size q. The

1.3. Block codes 5

conditional probability (1.1) now holds for every two words x = x1x2 . . . xm

and y = y1y2 . . . ym over F , where

Prob{ y was received | x was transmitted } =
{

1− p if y = x
p/(q−1) if y �= x

.

(While the term “crossover” is fully justified only in the binary case, we will
nevertheless use it for the general q-ary case as well.)

In the case where the input alphabet F has the same (finite) size as the
output alphabet Φ, it will be convenient to assume that F = Φ and that the
elements of F form a finite Abelian group (indeed, for every positive integer q
there is an Abelian group of size q, e.g., the ring Zq of integer residues modulo
q; see Problem A.21 in the Appendix). We then say that the channel is an
additive channel . Given an additive channel, let x and y be input and output
words, respectively, both in Fm. The error word is defined as the difference
y−x, where the subtraction is taken component by component. The action of
the channel can be described as adding (component by component) an error
word e ∈ Fm to the input word x to produce the output word y = x + e,
as shown in Figure 1.4. In general, the distribution of the error word e may
depend on the input x. The q-ary symmetric channel is an example of a
channel where e is statistically independent of x (in such cases, the term
additive noise is sometimes used for the error word e).

+x � � y = x + e
�

e

Figure 1.4. Additive channel.

When F is an Abelian group, it contains the zero (or unit) element. The
error locations are the indexes of the nonzero entries in the error word e.
Those entries are referred to as the error values.

1.3 Block codes

An (n, M) (block) code over a finite alphabet F is a nonempty subset C of
size M of Fn. The parameter n is called the code length and M is the code
size. The dimension (or information length) of C is defined by k = log|F | M ,
and the rate of C is R = k/n. The range of the mapping defined by the
channel encoder in Figure 1.2 forms an (n,M) code, and this is the context
in which the term (n,M) code will be used. The elements of a code are
called codewords.

6 1. Introduction

In addition to the length and the size of a code, we will be interested
in the sequel also in quantifying how much the codewords in the code differ
from one another. To this end, we will make use of the following definitions.

Let F be an alphabet. The Hamming distance between two words x,y ∈
Fn is the number of coordinates on which x and y differ. We denote the
Hamming distance by d(x,y).

It is easy to verify that the Hamming distance satisfies the following
properties of a metric for every three words x,y, z ∈ Fn:

• d(x,y) ≥ 0, with equality if and only if x = y.

• Symmetry: d(x,y) = d(y,x).

• The triangle inequality: d(x,y) ≤ d(x, z) + d(z,y).

Let F be an Abelian group. The Hamming weight of e ∈ Fn is the
number of nonzero entries in e. We denote the Hamming weight by w(e).
Notice that for every two words x,y ∈ Fn,

d(x,y) = w(y − x) .

Turning now back to block codes, let C be an (n, M) code over F with
M > 1. The minimum distance of C is the minimum Hamming distance
between any two distinct codewords of C; that is, the minimum distance d
is given by

d = min
c1,c2∈C : c1 �=c2

d(c1, c2) .

An (n,M) code with minimum distance d is called an (n,M, d) code (when
we specify the minimum distance d of an (n, M) code, we implicitly indicate
that M > 1). We will sometimes use the notation d(C) for the minimum
distance of a given code C.

Example 1.3 The binary (3, 2, 3) repetition code is the code

{000, 111}

over F = {0, 1}. The dimension of the code is log2 2 = 1 and its rate
is 1/3.

Example 1.4 The binary (3, 4, 2) parity code is the code

{000, 011, 101, 110}

over F = {0, 1}. The dimension is log2 4 = 2 and the code rate is 2/3.

1.4. Decoding 7

1.4 Decoding

1.4.1 Definition of decoders

Let C be an (n,M, d) code over an alphabet F and let S be a channel
defined by the triple (F, Φ, Prob). A decoder for the code C with respect to
the channel S is a function

D : Φn → C .

The decoding error probability Perr of D is defined by

Perr = max
c∈C

Perr(c) ,

where

Perr(c) =
∑

y :D(y)�=c

Prob{y received | c transmitted } .

Note that Perr(c) is the probability that the codeword c will be decoded
erroneously, given that c was transmitted.

Our goal is to have decoders with small Perr.

Example 1.5 Let C be the binary (3, 2, 3) repetition code and let S be
the BSC with crossover probability p.

Define a decoder D : {0, 1}3 → C as follows:

D(000) = D(001) = D(010) = D(100) = 000

and

D(011) = D(101) = D(110) = D(111) = 111 .

The probability Perr equals the probability of having two or more errors:

Perr = Perr(000) = Perr(111) =
(
3
2

)
p2(1− p) +

(
3
3

)
p3

= 3p2 − 3p3 + p3

= p(2p− 1)(1− p) + p .

So, Perr is smaller than p when p < 1/2, which means that coding has im-
proved the probability of error per message, compared to uncoded transmis-
sion. The price, however, is reflected in the rate: three bits are transmitted
for every information bit (a rate of (log2 M)/n = 1/3).

8 1. Introduction

1.4.2 Maximum-likelihood decoding

We next consider particular decoding strategies for codes and channels.
Given an (n,M, d) code C over F and a channel S = (F, Φ, Prob), a
maximum-likelihood decoder (MLD) for C with respect to S is the function
DMLD : Φn → C defined as follows: for every y ∈ Φn, the value DMLD(y)
equals the codeword c ∈ C that maximizes the probability

Prob{y received | c transmitted } .

In the case of a tie between two (or more) codewords, we choose one of the
tying codewords arbitrarily (say, the first according to some lexicographic
ordering on C). Hence, DMLD is well-defined for the code C and the channel S.

A maximum a posteriori decoder for C with respect to a channel S =
(F, Φ, Prob) is defined similarly, except that now the codeword c maximizes
the probability

Prob{ c transmitted | y received } .

In order to compute such a probability, however, we also need to know the
a priori probability of transmitting c. So, unlike an MLD, a maximum a
posteriori decoder assumes some distribution on the codewords of C. Since

Prob{ c transmitted | y received }

= Prob{y received | c transmitted } · Prob{ c transmitted }
Prob{y received } ,

the terms maximum a posteriori decoder and MLD coincide when the a
priori probabilities Prob{ c transmitted } are the same for all c ∈ C; namely,
they are all equal to 1/M .

Example 1.6 We compute an MLD for an (n,M, d) code C with respect
to the BSC with crossover probability p < 1. Let c = c1c2 . . . cn be a
codeword in C and y = y1y2 . . . yn be a word in {0, 1}n. Then

Prob{y received | c transmitted }

=
n∏

j=1

Prob{ yj received | cj transmitted } ,

where

Prob{ yj received | cj transmitted } =
{

1− p if yj = cj

p otherwise
.

Therefore,

Prob{y received | c transmitted } = pd(y,c)(1− p)n−d(y,c)

= (1− p)n ·
(

p

1− p

)d(y,c)

,

1.4. Decoding 9

where d(y, c) is the Hamming distance between y and c. Observing that
p/(1 − p) < 1 when p < 1/2, it follows that—with respect to the BSC
with crossover probability p < 1/2—for every (n,M, d) code C and every
word y ∈ {0, 1}n, the value DMLD(y) is a closest codeword in C to y. In
fact, this holds also for the q-ary symmetric channel whenever the crossover
probability is less than 1− (1/q) (Problem 1.7).

A nearest-codeword decoder for an (n,M) code C over F is a function
Fn → C whose value for every word y ∈ Fn is a closest codeword in C
to y, where the term “closest” is with respect to the Hamming distance. A
nearest-codeword decoder for C is a decoder for C with respect to any additive
channel whose input and output alphabets are F . From Example 1.6 we get
that with respect to the BSC with crossover probability p < 1/2, the terms
MLD and nearest-codeword decoder coincide.

1.4.3 Capacity of the binary symmetric channel

We have seen in Example 1.5 that coding allows us to reduce the decoding
error probability Perr, at the expense of transmitting at lower rates. We next
see that we can, in fact, achieve arbitrarily small values of Perr, while still
transmitting at rates that are bounded away from 0.

Define the binary entropy function H : [0, 1]→ [0, 1] by

H(x) = −x log2 x− (1− x) log2(1− x) ,

where H(0) = H(1) = 0. The binary entropy function is shown in Figure 1.5.
It is symmetric with respect to x = 1/2 and takes its maximum at that point
(H(1/2) = 1). It is ∩-concave and has an infinite derivative at x = 0 and
x = 1 (a real function f is ∩-concave over a given interval if for every two
points x1 and x2 in that interval, the line segment that connects the points
(x1, f(x1)) and (x2, f(x2)) lies entirely on or below the function curve in the
real plane; the function f is called ∪-convex if −f is ∩-concave).

�

�
H(x)

0

1

1/2 1
x

Figure 1.5. Binary entropy function.

10 1. Introduction

Let S be the BSC with crossover probability p. The capacity of S is
given by

cap(S) = 1− H(p) .

The capacity is shown in Figure 1.6 as a function of p. Notice that cap(S) = 1
when p ∈ {0, 1} and cap(S) = 0 when p = 1/2.

�

�
cap(S)

0

1

1/2 1
p

Figure 1.6. Capacity of the BSC.

The next two theorems are special cases of fundamental results in in-
formation theory. These results state that the capacity of a channel is the
largest rate at which information can be transmitted reliably through that
channel.

Theorem 1.1 (Shannon Coding Theorem for the BSC) Let S be the
memoryless binary symmetric channel with crossover probability p and let R
be a real in the range 0 ≤ R < cap(S). There exists an infinite sequence of
(ni,Mi) block codes over F = {0, 1}, i = 1, 2, 3, · · ·, such that (log2 Mi)/ni ≥
R and, for maximum-likelihood decoding for those codes (with respect to S),
the decoding error probability Perr approaches 0 as i→∞.

Theorem 1.2 (Shannon Converse Coding Theorem for the BSC) Let S
be the memoryless binary symmetric channel with crossover probability p and
let R be a real greater than cap(S). Consider any infinite sequence of (ni,Mi)
block codes over F = {0, 1}, i = 1, 2, 3, · · ·, such that (log2 Mi)/ni ≥ R
and n1 < n2 < · · · < ni < · · ·. Then, for any decoding scheme for those
codes (with respect to S), the decoding error probability Perr approaches 1 as
i→∞.

The proofs of these theorems will be given in Chapter 4. In particular,
we will show there that Perr in Theorem 1.1 can be guaranteed to decrease
exponentially with the code length ni. On the other hand, our proof in that
chapter will only establish the existence of codes with the property that is
stated in the theorem, without exhibiting an efficient algorithm for producing
them. The constructive part will be filled in later on in Section 12.5. At

1.5. Levels of error handling 11

this point, we will just provide an intuition for why the rate cannot exceed
cap(S) if Perr → 0.

Upon correct decoding of a received word y ∈ Fn, the receiver recon-
structs the following two pieces of information:

• The correct transmitted codeword c out of M possible codewords; this
is equivalent to log2 M information bits.

• The error word e = y − c (the subtraction here is taken modulo 2,
component by component).

By the definition of the BSC, those two pieces of information are statis-
tically independent. Note that the information conveyed by the error word
is “forced” on the receiver: even though that word was not part of the infor-
mation transmitted by the source, correct decoding implies that, in addition
to the correct codeword, the receiver will know the (correct) error word as
well. Such forced knowledge has a price, which will be reflected in the rate.

We now estimate the amount of information conveyed by the error word.
Although there are 2n possible error words, most of them are unlikely to
occur. By the Law of Large Numbers, the error words will most likely have
Hamming weight within the range n(p ± δ) for small δ. A word whose
Hamming weight lies in that range will be called typical. If e is a typical
word, then the probability of having e as an error word is

pw(e)(1− p)n−w(e) = 2−n(H(p)+ε) ,

where, by continuity, ε→ 0 when δ → 0. So, each of the typical error words
has probability “approximately” 2−nH(p) to occur (we neglect multiplying
factors that grow or decay more slowly than exponential terms in n). This
means that there are approximately 2nH(p) typical error words, all with ap-
proximately the same probability. So, the information conveyed by the error
word is equivalent to nH(p) bits.

We conclude that upon correct decoding, the receiver reconstructs al-
together (log2 M) + nH(p) bits. On the other hand, the received word y
contains n bits. So, we must have

(log2 M) + nH(p) ≤ n

or
log2 M

n
≤ 1− H(p) = cap(S) .

1.5 Levels of error handling

While the setting in the previous sections was probabilistic, we turn now to
identifying error words that are generated by an additive channel and are

12 1. Introduction

always recoverable, as long as the transmitted codewords are taken from a
block code whose minimum distance is sufficiently large. Our results will
be combinatorial in the sense that they do not depend on the particular
conditional probability of the channel.

In our discussion herein, we will distinguish between three levels of han-
dling errors: error correction, error detection, and erasure correction. The
difference between the first two terms lies in the model of the decoder used,
whereas the third level introduces a new family of channels.

1.5.1 Error correction

We consider channels S = (F, Φ,Prob) with Φ = F .
Given an (n,M, d) code C over F , let c ∈ C be the transmitted codeword

and y ∈ Fn be the received word. By an error we mean the event of changing
an entry in the codeword c. The number of errors equals d(y, c), and the
error locations are the indexes of the entries in which c and y differ.

The task of error correction is recovering the error locations and the error
values. In the next proposition we show that errors are always recoverable,
as long as their number does not exceed a certain threshold (which depends
on the code C).

Proposition 1.3 Let C be an (n,M, d) code over F . There is a decoder
D : Fn → C that recovers correctly every pattern of up to �(d−1)/2 errors
for every channel S = (F, F,Prob).

Proof. Let D be a nearest-codeword decoder, namely, D(y) is a closest
(with respect to the Hamming distance) codeword in C to y. Let c and
y be the transmitted codeword and the received word, respectively, where
d(y, c) ≤ (d−1)/2. Suppose to the contrary that c′ = D(y) �= c. By the
way D is defined,

d(y, c′) ≤ d(y, c) ≤ (d−1)/2 .

So, by the triangle inequality,

d ≤ d(c, c′) ≤ d(y, c) + d(y, c′) ≤ d−1 ,

which is a contradiction.

We next provide a geometric interpretation of the proof of Proposi-
tion 1.3. Let F be an alphabet and let t be a nonnegative integer. The
set of all words in Fn at Hamming distance t or less from a given word x
in Fn is called a (Hamming) sphere of radius t in Fn centered at x. Given
an (n,M, d) code C over F , it follows from the proof of Proposition 1.3 that
spheres of radius τ = �(d−1)/2 that are centered at distinct codewords

1.5. Levels of error handling 13

of C must be disjoint (i.e., their intersection is the empty set). Figure 1.7
depicts two such spheres (represented as circles) that are centered at code-
words c and c′. Let y ∈ Fn be a word that is contained in a sphere of radius
τ = �(d−1)/2 centered at a codeword c. A nearest-codeword decoder, when
applied to y, will return the center c as the decoded codeword. That center
is the transmitted codeword if the number of errors is τ or less.

�
�τ

c

�
�τ

c′

y

Figure 1.7. Spheres of radius τ = �(d−1)/2 centered at distinct codewords c and c′.

Example 1.7 The binary (n, 2, n) repetition code consists of the code-
words 00 . . . 0 and 11 . . . 1. A nearest-codeword decoder for the repetition
code corrects any pattern of up to �(n−1)/2 errors.

Proposition 1.3 is tight in the following sense: for every (n, M, d) code C
over F and for every decoder D : Fn → C there is a codeword c ∈ C and a
word y ∈ Fn such that d(y, c) ≤ �(d+1)/2 and D(y) �= c (Problem 1.10).

Example 1.8 Consider the binary (3, 4, 2) parity code. Suppose that
the received word is 001 and that one error has occurred. The correct code-
word could be either 000, 011, or 101.

Observe that while the result of Proposition 1.3 does not depend on the
conditional probability distribution Prob of the channel S, an application of
this proposition to the design of an encoding–decoding scheme for S does
typically take that distribution into account. Specifically, based on Prob, the
designer first computes an integer parameter τ such that the probability of
having more than τ errors does not exceed a prescribed requirement of the
transmission. The (n,M, d) code C is then selected so that d ≥ 2τ + 1.

1.5.2 Error detection

Error detection means an indication by the decoder that errors have oc-
curred, without attempting to correct them. To this end, we generalize the

14 1. Introduction

definition of a decoder for a code C so that its range is C ∪ {“e”}, where “e”
is the indication that errors have been detected.

As shown in the next proposition, limiting the decoder to only detecting
errors (rather than attempting to correct them) allows us to handle more
errors than guaranteed by Proposition 1.3.

Proposition 1.4 Let C be an (n,M, d) code over F . There is a decoder
D : Fn → C∪{“e”} that detects (correctly) every pattern of up to d−1 errors.

Proof. Let D be defined by

D(y) =
{

y if y ∈ C
“e” otherwise

.

Detection will fail if and only if the received word y is a codeword other
than the transmitted codeword. This occurs only if the number of errors is
at least d.

Example 1.9 The binary parity code of length n consists of all words
in {0, 1}n with even number of 1’s. This is an (n, 2n−1, 2) code with which
we can detect one error.

The next result combines Propositions 1.3 and 1.4.

Proposition 1.5 Let C be an (n,M, d) code over F and let τ and σ be
nonnegative integers such that

2τ + σ ≤ d−1 .

There is a decoder D : Fn → C ∪ {“e”} with the following properties:

• If the number of errors is τ or less, then the errors will be recovered
correctly.

• Otherwise, if the number of errors is τ + σ or less, then they will be
detected.

Proof. Consider the following decoder D : Fn → C ∪ {“e”}:

D(y) =
{

c if there is c ∈ C such that d(y, c) ≤ τ
“e” otherwise

.

(Referring to Figure 1.7, the value of τ may now be smaller than �(d−1)/2.
If y is contained in a sphere of radius τ centered at a codeword c, then c is

1.5. Levels of error handling 15

the return value of D; otherwise, y is in the space between spheres and the
return value is “e”.)

Suppose that c is the transmitted codeword and y is the received word
and d(y, c) ≤ σ + τ . Decoding will fail if y is contained in a sphere of radius
τ that is centered at a codeword c′ �= c. However, this would mean that

d ≤ d(c, c′) ≤ d(y, c) + d(y, c′) ≤ (τ + σ) + τ ≤ d−1 ,

which is a contradiction.

1.5.3 Erasure correction

An erasure is a concealment of an entry in a codeword; as such, an erasure
can be viewed as an error event whose location is known (while the correct
entry at that location still needs to be recovered).

Example 1.10 The diagram in Figure 1.8 represents the memoryless
binary erasure channel where the input alphabet is {0, 1} and the output
alphabet is {0, 1, ?}, with “?” standing for an erasure. An input symbol is
erased with probability p, independently of past or future input symbols.

1

0

1

?

0

�
1− p

�1− p

�
p

	
p

Figure 1.8. Binary erasure channel.

Similarly, we define the memoryless q-ary erasure channel with erasure
probability p as a triple (F, Φ, Prob), where F is an input alphabet of size
q and Φ is the output alphabet F ∪ {?} (of size q+1). The conditional
probability distribution Prob satisfies for every two words, x = x1x2 . . . xm ∈
Fm and y = y1y2 . . . ym ∈ Φm, of the same length m, the independence
condition

Prob{y received | x transmitted }

=
m∏

j=1

Prob{ yj received | xj transmitted } ,

16 1. Introduction

and for every x ∈ F and y ∈ Φ,

Prob{ y was received | x was transmitted } =

⎧⎨⎩
1− p if y = x

p if y = ?
0 otherwise

.

It can be shown that the capacity of this channel is 1−p; namely, this is the
highest rate with which information can be transmitted through the channel
with a decoding error probability that goes to zero as the code length goes
to infinity.

In general, an erasure channel is a triple S = (F, Φ,Prob), where Φ = F∪
{?} for an erasure symbol “?” not contained in F , and the following property
holds for every two words, x = x1x2 . . . xm ∈ Fm and y = y1y2 . . . ym ∈ Φm,
of the same length m:

Prob{y was received | x was transmitted } > 0

only if yj ∈ {xj , ?} for j = 1, 2, . . . , m. For such channels, we have the next
result.

Proposition 1.6 Let C be an (n,M, d) code over F and let Φ = F ∪{?}.
There is a decoder D : Φn → C ∪ {“e”} that recovers every pattern of up to
d−1 erasures.

Proof. Consider a decoder D : Φn → C ∪ {“e”} defined as follows:

D(y) =
{

c if y agrees with exactly one c ∈ C on the entries in F
“e” otherwise

.

Suppose that the number of erasures (i.e., the number of occurrences of
the symbol “?”) in a word y ∈ Φn does not exceed d−1. Since every two
distinct codewords in C differ on at least d locations, there can be at most
one codeword in C that agrees with y on its non-erased locations. And if y is
received through an erasure channel, then the transmitted codeword agrees
with y on those locations.

The following theorem combines Propositions 1.3, 1.4, and 1.6: it covers
the case where a channel S = (F, F ∪ {?}, Prob) inserts either erasures or
errors (or both), i.e., the channel S may change any input symbol in F to
any of the symbols in F ∪ {?}.

Theorem 1.7 Let C be an (n, M, d) code over F and let S = (F, Φ, Prob)
be a channel with Φ = F ∪ {?}. For each number ρ of erasures in the range
0 ≤ ρ ≤ d−1, let τ = τρ and σ = σρ be nonnegative integers such that

2τ + σ + ρ ≤ d−1 .

Problems 17

There is a decoder D : Φn → C ∪ {“e”} with the following properties:

• If the number of errors (excluding erasures) is τ or less, then all the
errors and erasures will be recovered correctly.

• Otherwise, if the number of errors is τ + σ or less, then the decoder
will return “e”.

Proof. Let y be the received word and let J be the set of indexes of
all entries of y that are in F ; that is, J points at the non-erased entries of
y. For a word x ∈ Φn, we denote by xJ the sub-word of x indexed by J .
Consider the code

CJ = { cJ : c ∈ C } .

Clearly, the minimum distance of CJ is at least d − ρ. Now apply the de-
coder of Proposition 1.5 to the code CJ to decode the word yJ ∈ Fn−ρ. If
d(yJ , cJ) ≤ τ for some codeword cJ ∈ CJ , then the decoder will return this
(unique and correct) codeword cJ , which corresponds to a unique codeword
c ∈ C; otherwise, the decoder will return “e”.

Theorem 1.7 exhibits the “exchange rate” that exists between error cor-
rection on the one hand, and error detection or erasure correction on the
other hand: error correction costs twice as much as any of the other two
levels of handling errors. Indeed, each corrected error requires increasing
the minimum distance of the code by 2, while for each detected error or
corrected erasure we need to increase the minimum distance only by 1.

Problems

[Section 1.2]
Problem 1.1 (Additive white Gaussian noise channel) This problem presents an
example of a channel, called the additive white Gaussian noise (in short, AWGN)
channel, whose input and output alphabets are the real field R (and are thus infinite
and continuous).

Given a positive integer m and an input word x1x2 . . . xm ∈ Rm, the respective
output of the AWGN channel is a random word y1y2 . . . ym ∈ Rm, whose cumulative
conditional probability distribution satisfies for every real word z1z2 . . . zm ∈ Rm

the independence condition

Prob{ y1 ≤ z1, y2 ≤ z2, . . . , ym ≤ zm | x1x2 . . . xm } =
m∏

j=1

Prob{ yj ≤ zj | xj } ,

and for every x, z ∈ R,

d

dz
Prob{ yj ≤ z | x transmitted } =

1√
2πσ2

e−(z−x)2/(2σ2) ,

18 1. Introduction

where e = 2.71828 · · · is the base of natural logarithms, π = 3.14159 · · · , and σ is a
positive real. Thus, each output value yj can be written as a sum xj + νj , where
ν1, ν2, . . . , νm are mutually independent Gaussian random variables taking values in
R, with each νj having expected value 0 and variance σ2 (see Figure 1.9; the term
“white” captures the fact that the random variables νj are uncorrelated).

+xj � � yj = xj + νj

�

νj

Figure 1.9. AWGN channel.

A binary word is transmitted through the AWGN channel by feeding each entry
of the word into a modulator, which is a mapping Λ : {0, 1} → R defined by

Λ(0) = α and Λ(1) = −α ,

for some positive real α. A respective demodulator Δ : R → {0, 1} is placed at the
output of the channel, where

Δ(y) =
{

0 if y ≥ 0
1 otherwise .

Show that the sequence of modulator, AWGN channel, and demodulator, as
shown in Figure 1.10, behaves as a memoryless binary symmetric channel with
crossover probability

p = 1
2 − erf(α/σ) ,

where erf : R → [0, 1
2] is the error function, which is defined by

erf(z) =
1√
2π

∫ z

t=0

e−t2/2 dt .

+� Modulator
Λ

� �Demodulator
Δ

�

�
νj

Figure 1.10. AWGN channel with modulator and demodulator.

(The quantity (α/σ)2 is commonly referred to as the signal-to-noise ratio or, in
short, SNR, with α2 and σ2 standing for the “energy per symbol” of the signal xj and
the noise νj , respectively. The SNR is usually measured in decibel units (dB), i.e., it
is expressed as the value 20 log10(α/σ). Clearly, any transmitted binary information
word can undergo encoding before being fed into the system in Figure 1.10, in which
case a respective decoder will be placed after the demodulator. Such a scheme
is called hard-decision decoding, as opposed to soft-decision decoding, where the
decoder has direct access to the output of the AWGN channel.)

Problems 19

[Section 1.3]
Problem 1.2 Let F = {0, 1} and let x, y, and z be words in Fn that form an
“equilateral triangle,” that is,

d(x,y) = d(y, z) = d(z,x) = 2t .

Show that there is exactly one word v in Fn such that

d(x,v) = d(y,v) = d(z,v) = t .

Problem 1.3 (Rank distance) Let A and B be m × n matrices over a field F .
Define the rank distance between A and B by rank(A−B). Show that the rank
distance is a metric over the set of all m× n matrices over F .

Hint: Recall that rank(A+B) ≤ rank(A) + rank(B).

Problem 1.4 Show that when one adds an overall parity bit to each codeword of
an (n,M, d) code over {0, 1} where d is odd, an (n+1,M, d+1) code is obtained.
(The overall parity bit of a word over {0, 1} is 0 if the Hamming weight of the word
is even, and is 1 otherwise.)

[Section 1.4]
Problem 1.5 A codeword of the code {01010, 10101} is transmitted through a BSC
with crossover probability p = 0.1, and a nearest-codeword decoder D is applied to
the received word. Compute the decoding error probability Perr of D.

Problem 1.6 Let C be a (7, 16) code over F = {0, 1} such that every word in F 7

is at Hamming distance at most 1 from exactly one codeword of C. A codeword of
C is transmitted through a BSC with crossover probability p = 10−2.

1. Compute the rate of C.
2. Show that the minimum distance of C equals 3.

3. What is the probability of having more than one error in the received word?

4. A nearest-codeword decoder D is applied to the received word. Compute the
decoding error probability Perr of D.

5. Compare the value of Perr to the error probability when no coding is used:
compute the probability of having at least one bit in error when an (uncoded)
word of four bits is transmitted through the given BSC.

Problem 1.7 Show that for every code C over an alphabet of size q, a nearest-
codeword decoder is an MLD with respect to the memoryless q-ary symmetric
channel with crossover probability p < 1− (1/q).

Problem 1.8 A channel S = (F, Φ,Prob) is called memoryless if for every positive
integer m and every two words x1x2 . . . xm ∈ Fm and y1y2 . . . ym ∈ Φm,

Prob{ y1y2 . . . ym received | x1x2 . . . xm transmitted }

=
m∏

j=1

Prob{ yj received | xj transmitted } .

20 1. Introduction

The channel is called binary if F = {0, 1}. Thus, a memoryless binary channel is
characterized by the output alphabet Φ and the values of the function

Prob(y|x) = Prob{ y received | x transmitted } , x ∈ F , y ∈ Φ .

(According to this definition, the conditional probability of a memoryless channel
at any given time index j depends only on the input symbol and the output symbol
at that time index; in particular, the behavior of the channel does not depend on
the past or the future, neither does it depend on the index j itself. A memoryless
channel is therefore also time-invariant.)

Let S = (F = {0, 1}, Φ, Prob) be a memoryless binary channel and assume that
Prob(y|x) > 0 for every x ∈ F and y ∈ Φ. For every element y ∈ Φ, define the log
likelihood ratio of y by

μ(y) = log2

(
Prob(y|0)
Prob(y|1)

)
.

Let C be an (n,M) code over F , and define D : Φn → C to be the decoder that
maps every word y1y2 . . . yn ∈ Φn to the codeword c1c2 . . . cn ∈ C that maximizes
the expression

n∑
j=1

(−1)cj · μ(yj)

(with the entries cj acting here as integers, i.e., (−1)0 = 1 and (−1)1 = −1). Show
that D is a maximum-likelihood decoder for C with respect to the channel S.

Problem 1.9 Let S = (F, Φ, Prob) be a memoryless channel as defined in Prob-
lem 1.8. Let C be an (n,M, d) code over F and DMLD : Φn → C be a maximum-
likelihood decoder for C with respect to S. For a codeword c ∈ C, denote by Y (c)
the set of pre-images of c under DMLD; namely,

Y (c) = {y ∈ Φn : DMLD(y) = c } .

1. Show that for every c ∈ C,

Perr(c) =
∑

c′∈C\{c}

∑
y∈Y (c′)

Prob(y|c) ,

where
Prob(y|c) = Prob{y received | c transmitted } .

2. Show that for every c ∈ C,

Perr(c) ≤
∑

c′∈C\{c}

∑
y∈Y (c′)

√
Prob(y|c) · Prob(y|c′)

and, so,
Perr(c) ≤

∑
c′∈C\{c}

∑
y∈Φn

√
Prob(y|c) · Prob(y|c′) .

Problems 21

3. (The Bhattacharyya bound) Show that for every codeword c = c1c2 . . . cn

in C,

Perr(c) ≤
∑

c′1c′2...c′n∈C\{c}

n∏
j=1

∑
y∈Φ

√
Prob(y|cj) · Prob(y|c′j)

and, so,

Perr(c) ≤
∑

c′1c′2...c′n∈C\{c}

∏
j : cj �=c′j

∑
y∈Φ

√
Prob(y|cj) · Prob(y|c′j) .

4. Show that for every c, c′ ∈ F ,∑
y∈Φ

√
Prob(y|c) · Prob(y|c′) ≤ 1 .

When does equality hold?

Hint: Use the Cauchy–Schwartz inequality.

5. Show that if S is a memoryless binary channel (as defined in Problem 1.8)
then for every c ∈ C,

Perr(c) ≤
∑

c′∈C\{c}
γd(c,c′) ,

where
γ =

∑
y∈Φ

√
Prob(y|0) · Prob(y|1) .

In particular, if S is the BSC with crossover probability p, then γ =
2
√

p(1−p).

6. Suppose now that S is the memoryless q-ary symmetric channel with crossover
probability p. Show that for every c ∈ C,

Perr(c) ≤
∑

c′∈C\{c}
γd(c,c′) ,

where

γ = 2

√
p(1−p)
q−1

+
p(q−2)
q−1

.

Hint: For two distinct elements c, c′ ∈ F , compute the expression√
Prob(y|c) · Prob(y|c′) ,

assuming first that y ∈ {c, c′} and then that y takes any other value of F .

7. Let S and γ be either as in part 5 or part 6. Show that the decoding error
probability of DMLD can be bounded from above by

Perr ≤ (M−1) · γd .

22 1. Introduction

[Section 1.5]
Problem 1.10 Show that for every (n,M, d) code C over F and for every decoder
D : Fn → C there is a codeword c ∈ C and a word y ∈ Fn such that d(y, c) ≤
�(d+1)/2 and D(y) �= c.

Problem 1.11 Let C be an (8, 16, 4) code over F = {0, 1}. A codeword of C is
transmitted through a BSC with crossover probability p = 10−2.

1. Compute the rate of C.

2. Given a word y ∈ F 8, show that if there is a codeword c ∈ C such that
d(y, c) ≤ 1, then every other codeword c′ ∈ C \ {c} must satisfy d(y, c′) ≥ 3.

3. Compute the probability of having exactly two errors in the received word.

4. Compute the probability of having three or more errors in the received word.

5. The following decoder D : F 8 → C ∪ {“e”} is applied to the received word:

D(y) =
{

c if there is c ∈ C such that d(y, c) ≤ 1
“e” otherwise .

Compute the decoding error probability of D; namely, compute the probabil-
ity that D produces either “e” or a wrong codeword.

6. Show that the value computed in part 4 bounds from above the probability
that the decoder D in part 5 produces a wrong codeword (the latter prob-
ability is called the decoding misdetection probability of D: this probability
does not count the event that the decoder produces “e”).

Problem 1.12 Let S denote the memoryless binary erasure channel with input
alphabet F = {0, 1}, output alphabet Φ = F ∪{?}, and erasure probability p = 0.1.
A codeword of the binary (4, 8, 2) parity code is transmitted through S and the
following decoder D : Φ4 → C ∪ {“e”} is applied to the received word:

D(y) =
{

c if y agrees with exactly one c ∈ C on the entries in F
“e” otherwise .

Compute the probability that D produces “e”. Does this probability depend on
which codeword is transmitted?

Problem 1.13 Repeat Problem 1.12 for the code C = {0000, 0111, 1011, 1101}.

Notes

[Section 1.1]
Figure 1.1 is taken from Shannon’s seminal paper [330], which laid the foundations
of what is known today as information theory. This area is treated in several
textbooks, such as Cover and Thomas [87], Csiszár and Körner [88], Gallager [140],
and McEliece [259].

Notes 23

[Section 1.4]
The expression for the capacity of the BSC is a special case of the notion of capacity
which can be defined for a wider family of channels, and Theorems 1.1 and 1.2 can
then be shown to hold for these channels. We next introduce the definition of
capacity for the family of (discrete) memoryless channels (in short, DMC), which
were defined in Problem 1.8.

Consider a probability distribution Q : F × Φ → [0, 1]; i.e., Q(x, y) is the
probability of the pair (x, y) ∈ F × Φ. Define the marginal distributions

P (x) =
∑
y∈Φ

Q(x, y) and Ψ(y) =
∑
x∈F

Q(x, y) .

The mutual information of Q is defined by

I(Q) =
∑

(x,y)∈F×Φ

Q(x, y) · log|F |

(
Q(x, y)

P (x)Ψ(y)

)
,

where we assume that the summation skips pairs (x, y) ∈ F × Φ for which either
P (x) = 0 or Ψ(y) = 0. Denoting by EQ{f(x, y)} the expected value of a function
f : F × Φ → R with respect to the probability distribution Q, we have

I(Q) = EQ

{
log|F |

(
Q(x, y)

P (x)Ψ(y)

)}
.

The following result provides bounds on I(Q).

Proposition 1.8 For Q : F × Φ → [0, 1],

0 ≤ I(Q) ≤ 1 .

Proof. Starting with the lower bound and letting q = |F |,

I(Q) = −EQ

{
logq

(
P (x)Ψ(y)
Q(x, y)

)}
≥ − logq EQ

{
P (x)Ψ(y)
Q(x, y)

}
, (1.2)

where the (last) inequality follows from the concavity of the logarithmic function
(in general, every ∩-concave real function f : x → f(x) satisfies the inequality
E{f(X)} ≤ f(E{X}), which is known as Jensen’s inequality). Now,

EQ

{
P (x)Ψ(y)
Q(x, y)

}
=

∑
(x,y)∈F×Φ

Q(x, y) · P (x)Ψ(y)
Q(x, y)

=
∑
x∈F

P (x)
∑
y∈Φ

Ψ(y) = 1 ,

and, so, from (1.2) we get that I(Q) ≥ − logq 1 = 0.
As for the upper bound, since Q(x, y) ≤ Ψ(y) we have

I(Q) = EQ

{
logq

(
Q(x, y)

P (x)Ψ(y)

)}
≤ EQ

{
logq

(
1

P (x)

)}
= EP

{
logq

(
1

P (x)

)}
,

24 1. Introduction

and by concavity we obtain

EP

{
logq

(
1

P (x)

)}
≤ logq EP

{
1

P (x)

}
= logq

∑
x∈F

P (x) · 1
P (x)

= logq q = 1 .

Thus,

I(Q) ≤ EP

{
logq

(
1

P (x)

)}
≤ 1 ,

as desired.

The lower bound in Proposition 1.8 is attained when Q(x, y) = P (x)Ψ(y); this
corresponds to the case where a random symbol taken from F is statistically inde-
pendent of the symbol taken from Φ. As for the other extreme case, one can verify
that the upper bound is attained when Q(x, y) defines a deterministic mapping from
Φ onto F and the symbols in F are uniformly distributed.

The capacity of a DMC S = (F, Φ,Prob) is defined by

cap(S) = max
P

I(Q) ,

where the maximum is taken over all probability distributions P : F → [0, 1] and
Q is related to P by

Q(x, y) = P (x) · Prob(y|x) ,

with Prob(y|x) standing hereafter for Prob{ y received | x transmitted }. Note that
P (x) equals the marginal distribution

∑
y∈Φ Q(x, y).

Example 1.11 Let S = (F, F, Prob) be the memoryless q-ary symmetric chan-
nel with crossover probability p. We show that

cap(S) = 1− Hq(p) ,

where Hq : [0, 1]→ [0, 1] is the q-ary entropy function

Hq(p) = −p logq p− (1− p) logq(1− p) + p logq(q−1) .

Notice that for q = 2 we get H2(p) = H(p).
Let Q(x, y) = P (x) · Prob(y|x) for some probability distribution P : F → [0, 1]

and denote the marginal distribution
∑

x∈F Q(x, y) by Ψ(y). We have,

I(Q) = EQ

{
logq

(
Prob(y|x)

Ψ(y)

)}
= EQ

{
logq Prob(y|x)

}
+ EQ

{
logq (1/Ψ(y))

}
.

Now,

EQ

{
logq Prob(y|x)

}
=

∑
x∈F

P (x)
∑
y∈F

Prob(y|x) · logq Prob(y|x)

=
∑
x∈F

P (x)
(
(1− p) logq(1− p) + p logq(p/(q−1))

)
= (1− p) logq(1− p) + p logq(p/(q−1))
= −Hq(p)

Notes 25

(regardless of P) and

EQ

{
logq (1/Ψ(y))

}
≤ logq EQ

{
1/Ψ(y)

}
= logq q = 1 , (1.3)

where the inequality in (1.3) follows from the concavity of the logarithmic function;
furthermore, this inequality holds with equality when Ψ(y) = 1/q for every y ∈ F .
Such a marginal distribution Ψ can be realized by taking P (x) = 1/q for every
x ∈ F . Hence, we obtain

cap(S) = max
P

I(Q) = EQ

{
logq Prob(y|x)

}
+ max

P
EQ

{
logq (1/Ψ(y))

}
= 1− Hq(p) .

In particular, for q = 2 (i.e., the BSC) the capacity equals 1− H(p).

The proofs of Theorems 1.1 and 1.2 for the case of the memoryless q-ary sym-
metric channel will be given in Sections 4.7 and 4.6, respectively.

Example 1.12 Let S = (F, Φ, Prob) be the memoryless q-ary erasure channel
with erasure probability p. We show that

cap(S) = 1− p .

Fix a probability distribution P : F → [0, 1] and let Q : F ×Φ → [0, 1] be given
by Q(x, y) = P (x) · Prob(y|x). The marginal distribution Ψ(y) =

∑
x∈F Q(x, y) is

related to P as follows:

Ψ(y) =
{

(1− p) · P (y) if y ∈ F
p if y = ? .

Therefore,

I(Q) = EQ

{
logq

(
Prob(y|x)

Ψ(y)

)}
=

∑
x∈F

P (x)
∑
y∈Φ

Prob(y|x) · logq

(
Prob(y|x)

Ψ(y)

)

=
∑
x∈F

P (x) · (1− p) · logq

(
1− p

Ψ(x)

)
= (1− p) ·

∑
x∈F

P (x) · logq

(
1

P (x)

)
= (1− p) · EP

{
logq (1/P (x))

}
≤ (1− p) · logq EP

{
1/P (x)

}
= 1− p ,

where the inequality follows from concavity; furthermore, the inequality holds with
equality when P (x) = 1/q for every x ∈ F . Hence, cap(S) = maxP I(Q) = 1− p.

Problem 1.9 demonstrates a useful technique for bounding the decoding error
probability from above, based on the Bhattacharyya bound; see [43].

Chapter 2

Linear Codes

In this chapter, we consider block codes with a certain structure, which are
defined over alphabets that are fields. Specifically, these codes, which we
call linear codes, form linear spaces over their alphabets. We associate two
objects with these codes: a generator matrix and a parity-check matrix. The
first matrix is used as a compact representation of the code and also as a
means for efficient encoding. The parity-check matrix will be used as a tool
for analyzing the code (e.g., for computing its minimum distance) and will
also be part of the general framework that we develop for the decoding of
linear codes.

As examples of linear codes, we will mention the repetition code, the
parity code, and the Hamming code with its extensions. Owing to their
structure, linear codes are by far the predominant block codes in practical
usage, and virtually all codes that will be considered in subsequent chapters
are linear.

2.1 Definition

Denote by GF(q) a finite (Galois) field of size q. For example, if q is a
prime, the field GF(q) coincides with the ring of integer residues modulo
q, also denoted by Zq. We will see more constructions of finite fields in
Chapter 3.

An (n,M, d) code C over a field F = GF(q) is called linear if C is a linear
subspace of Fn over F ; namely, for every two codewords c1, c2 ∈ C and two
scalars a1, a2 ∈ F we have a1c1 + a2c2 ∈ C.

The dimension of a linear (n,M, d) code C over F is the dimension of
C as a linear subspace of Fn over F . If k is the dimension of C, then
we say that C is a linear [n, k, d] code over F (depending on the context,
we may sometimes omit the specification of the minimum distance and use
the abbreviated notation [n, k] instead). The difference n−k is called the

26

2.1. Definition 27

redundancy of C. The case k = 0 corresponds to the trivial linear code,
which consists only of the all-zero word 0 (i.e., the word whose entries are
all zero).

Every basis of a linear [n, k, d] code C over F = GF(q) contains k code-
words, the linear combinations of which are distinct and generate the whole
set C. Therefore, |C| = M = qk and the code rate is R = (logq M)/n = k/n.

Words y = y1y2 . . . yn over a field F—in particular, codewords of a linear
[n, k, d] code over F—will usually be denoted by (y1 y2 . . . yn), to emphasize
that they are elements of a vector space Fn.

Example 2.1 The (3, 4, 2) parity code over GF(2) is a linear [3, 2, 2]
code since it is spanned by (1 0 1) and (0 1 1).

A generator matrix of a linear [n, k, d] code over F is a k × n matrix
whose rows form a basis of the code. In most cases, a generator matrix of a
given linear code is not unique (see Problem 2.2). We will typically denote
a generator matrix by G. Obviously, the rank of a generator matrix G of a
linear code C over F equals the dimension of C.

Example 2.2 The matrix

G =
(

1 0 1
0 1 1

)
is a generator matrix of the [3, 2, 2] parity code over GF(2), and so is the
matrix

Ĝ =
(

0 1 1
1 1 0

)
.

In general, the [n, n−1, 2] parity code over a field F is defined as the code
with a generator matrix

G =

⎛⎜⎜⎜⎝ I
−1
−1

...
−1

⎞⎟⎟⎟⎠ ,

where I is the (n−1)× (n−1) identity matrix and −1 is the additive inverse
of the (multiplicative) unity element 1 of F . The entries along each row of
G sum to zero, and so do the entries in every linear combination of these
rows. Hence, the [n, n−1, 2] parity code over F can be equivalently defined
as the (n−1)-dimensional linear subspace over F that consists of all vectors
in Fn whose entries sum to zero. From this characterization of the code we
easily see that its minimum distance is indeed 2.

28 2. Linear Codes

The definition of the parity code applies to any finite field F , even though
it is the binary case where the term “parity” really carries its ordinary mean-
ing: only in GF(2) is a zero sum equivalent to having an even number
of 1’s.

Example 2.3 The (3, 2, 3) repetition code over GF(2) is a linear [3, 1, 3]
code generated by

G = (1 1 1) .

In general, the [n, 1, n] repetition code over a field F is defined as the code
with a generator matrix

G = (1 1 . . . 1) .

Every linear code, being a linear space, contains the all-zero vector 0
as one of its codewords. In the next proposition, we show that the mini-
mum distance of a linear code equals the minimum Hamming weight of any
nonzero codeword in the code.

Proposition 2.1 Let C be a linear [n, k, d] code over F . Then

d = min
c∈C\{0}

w(c) .

Proof. Since C is linear,

c1, c2 ∈ C =⇒ c1 − c2 ∈ C .

Now, d(c1, c2) = w(c1 − c2) and, so,

d = min
c1,c2∈C : c1 �=c2

d(c1, c2) = min
c1,c2∈C : c1 �=c2

w(c1 − c2) = min
c∈C\{0}

w(c) .

2.2 Encoding of linear codes

Let C be a linear [n, k, d] code over F and G be a generator matrix of C. We
can encode information words to codewords of C by regarding the former as
vectors u ∈ F k and using a mapping F k → C defined by

u�→ uG .

Since rank(G) = k, this mapping is one-to-one. Also, we can apply elemen-
tary operations to the rows of G to obtain another generator matrix that
contains a k × k identity matrix as a sub-matrix.

2.3. Parity-check matrix 29

A k × n generator matrix is called systematic if it has the form(
I A

)
,

where I is a k × k identity matrix and A is a k × (n−k) matrix. A code
C has a systematic generator matrix if and only if the first k columns of
any generator matrix of C are linearly independent. Now, there are codes
for which this condition does not hold; however, if C is such a code, we
can always permute the coordinates of C to obtain an equivalent (although
different) code Ĉ for which the condition does hold. The code Ĉ has the same
length, dimension, and minimum distance as the original code C.

When using a systematic generator matrix G = (I |A) for encoding, the
mapping u �→ uG takes the form u �→ (u |uA); that is, the first k entries
in the encoded codeword form the information word.

2.3 Parity-check matrix

Let C be a linear [n, k, d] code over F . A parity-check matrix of C is an r×n
matrix H over F such that for every c ∈ Fn,

c ∈ C ⇐⇒ HcT = 0 .

In other words, the code C is the (right) kernel, ker(H), of H in Fn. From
the well-known relationship between the rank of a matrix and the dimension
of its kernel we get

rank(H) = n− dimker(H) = n− k .

So, in (the most common) case where the rows of H are linearly independent
we have r = n−k.

Let G be a k×n generator matrix of C. The rows of G span ker(H) and,
in particular,

HGT = 0 =⇒ GHT = 0

(where (·)T stands for transposition). Also,

dimker(G) = n− rank(G) = n− k .

Hence, the rows of H span ker(G). So, a parity-check matrix of a linear code
can be computed by finding a basis of the kernel of a generator matrix of
the code.

In the special case where G is a systematic matrix (I |A), we can take
the (n−k)× n matrix H = (−AT | I) as a parity-check matrix.

30 2. Linear Codes

Example 2.4 The matrix

(1 1 . . . 1)

is a parity-check matrix of the [n, n−1, 2] parity code over a field F , and⎛⎜⎜⎜⎝ I
−1
−1
...
−1

⎞⎟⎟⎟⎠
is a parity-check matrix of the [n, 1, n] repetition code over F .

Let C be a linear [n, k, d] code over F . The dual code of C, denoted by
C⊥, consists of all vectors x ∈ Fn such that x · cT = 0 for all c ∈ C. That is,
the codewords of C⊥ are “orthogonal” to C (yet the notion of orthogonality
over finite fields should be used with care, since a vector can be orthogonal
to itself). An equivalent definition of a dual code is given by

C⊥ = {x ∈ Fn : xGT = 0 } ,

where G is a generator matrix of C. It follows that the dual code C⊥ is a linear
[n, n−k, d⊥] code over F having G as a parity-check matrix. Conversely, a
generator matrix of C⊥ is a parity-check matrix of C (see Problem 2.15); so,
(C⊥)⊥ = C, and we refer to (C, C⊥) as a dual pair.

The [n, 1, n] repetition code and the [n, n−1, 2] parity code form a dual
pair.

Example 2.5 The linear [7, 4, 3] Hamming code over F = GF(2) is de-
fined by the parity-check matrix

H =

⎛⎝ 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎞⎠ ,

whose columns range over all the nonzero vectors in F 3. A respective gen-
erator matrix is given by

G =

⎛⎜⎜⎝
1 1 1 1 1 1 1
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎞⎟⎟⎠ .

Indeed, HGT = 0 and dim ker(H) = 7 − rank(H) = 4 = rank(G). One
can check exhaustively that the minimum Hamming weight of any nonzero
codeword in the code is 3.

2.3. Parity-check matrix 31

Example 2.6 The linear [8, 4, 4] extended Hamming code over GF(2) is
obtained from the [7, 4, 3] Hamming code by preceding each codeword with
an overall parity bit. Based on this definition, a parity-check matrix He of
the code can be obtained from the matrix H in Example 2.5 by adding an
all-zero column and then an all-one row, i.e.,

He =

⎛⎜⎜⎝
1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎞⎟⎟⎠ .

Due to the additional overall parity bit, codewords of Hamming weight 3 in
the [7, 4, 3] Hamming code become codewords of Hamming weight 4 in the
extended code.

For the extended code, the matrix He is also a generator matrix. So,
the [8, 4, 4] extended Hamming code over GF(2) is a self-dual code; namely,
C = C⊥.

The following theorem provides a characterization of the minimum dis-
tance of a linear code through any parity-check matrix of the code.

Theorem 2.2 Let H be a parity-check matrix of a linear code C �= {0}.
The minimum distance of C is the largest integer d such that every set of
d−1 columns in H is linearly independent.

Proof. Write H = (h1 h2 . . . hn) and let c = (c1 c2 . . . cn) be a
codeword in C with Hamming weight t > 0. Let J ⊆ {1, 2, . . . , n} be the
support of c, i.e., J is the set of indexes of the t nonzero entries in c. From
HcT = 0 we have ∑

j∈J

cjhj = 0 ,

namely, the t columns of H that are indexed by J are linearly dependent.
Conversely, every set of t linearly dependent columns in H defines at

least one vanishing nontrivial linear combination of the columns of H, with
at most t nonzero coefficients in that combination. The coefficients in such
a combination, in turn, form a nonzero codeword c ∈ C with w(c) ≤ t.

Given d as defined in the theorem, it follows that no nonzero codeword
in C has Hamming weight less than d, but there is at least one codeword in
C whose Hamming weight is d.

The next two examples generalize the constructions in Examples 2.5
and 2.6.

32 2. Linear Codes

Example 2.7 For an integer m > 1, the [2m−1, 2m−1−m, 3] Hamming
code over F = GF(2) is defined by an m × (2m−1) parity-check matrix
H whose columns range over all the nonzero elements of Fm. Every two
columns in H are linearly independent and, so, the minimum distance of
the code is at least 3. In fact, the minimum distance is exactly 3, since
there are three dependent columns, e.g., (0 . . . 0 0 1)T , (0 . . . 0 1 0)T , and
(0 . . . 0 1 1)T .

Example 2.8 The [2m, 2m−1−m, 4] extended Hamming code over F =
GF(2) is derived from the [2m−1, 2m−1−m, 3] Hamming code by preceding
each codeword of the latter code with an overall parity bit. An (m+1) ×
2m parity-check matrix of the extended code can be obtained by taking as
columns all the elements of Fm+1 whose first entry equals 1. It can be
verified that every three columns in this matrix are linearly independent.

Hamming codes are defined also over non-binary fields, as demonstrated
in the next example.

Example 2.9 Let F = GF(q) and for an integer m > 1 let n be given
by (qm − 1)/(q − 1). The [n, n−m, 3] Hamming code over F is defined by
an m × n parity-check matrix H whose columns range over all the nonzero
elements of Fm whose leading nonzero entry is 1. Again, every two columns
in H are linearly independent, yet H contains three dependent columns. So,
the minimum distance of the code is 3.

An extended code can be obtained by preceding each codeword with an
entry whose value is set so that the (weighted) sum of entries in the codeword
is zero (by a weighted sum we mean that each coordinate is assigned a
constant of the field which multiplies the entry in that coordinate before
taking the sum). However, for q > 2, the extended code may still have
minimum distance 3.

2.4 Decoding of linear codes

Let C be a linear [n, k, d] code over F = GF(q). Recall from Example 1.6
and Problem 1.7 that maximum-likelihood decoding for C with respect to a
memoryless q-ary symmetric channel with crossover probability p < 1−(1/q)
is the same as nearest-codeword decoding; namely:

• Given a received word y ∈ Fn, find a codeword c ∈ C that minimizes
the value d(y, c).

2.4. Decoding of linear codes 33

Equivalently:

• Given a received word y ∈ Fn, find a word e ∈ Fn of minimum
Hamming weight such that y − e ∈ C.

Below are two methods for implementing nearest-codeword decoding.
The first method, called standard array decoding, is rather impractical, but it
demonstrates how the linearity of the code is incorporated into the decoding.
The second method, called syndrome decoding, is in effect a more efficient
way of implementing standard array decoding.

2.4.1 Standard array decoding of linear codes

Let C be a linear [n, k, d] code over F = GF(q). A standard array for C is a
qn−k × qk array of elements of Fn defined as follows.

• The first row in the array consists of the codewords of C, starting with
the all-zero codeword.

• Each subsequent row starts with a word e ∈ Fn of a smallest Hamming
weight that has not yet appeared in previous rows, followed by the
words e + c, where c ranges over all the nonzero codewords in C in
their order of appearance in the first row.

Example 2.10 Let C be a linear [5, 2, 3] code over GF(2) with a gener-
ator matrix

G =
(

1 0 1 1 0
0 1 0 1 1

)
.

A standard array of this code is shown in Table 2.1. Clearly, the standard

Table 2.1. Standard array.

00000 10110 01011 11101
00001 10111 01010 11100
00010 10100 01001 11111
00100 10010 01111 11001
01000 11110 00011 10101
10000 00110 11011 01101
00101 10011 01110 11000
10001 00111 11010 01100

array is not unique. For example, we can permute the five rows that start
with the words of Hamming weight 1. Furthermore, the penultimate row
could start with any of the words 00101, 11000, 10001, or 01100.

34 2. Linear Codes

Each row in the standard array is a coset of C in Fn. Indeed, two words
y1,y2 ∈ Fn are in the same row if and only if y1 − y2 ∈ C. The cosets of C
form a partition of Fn into qn−k subsets, each of size |C| = qk.

The first word in each row is called a coset leader . By construction, a
coset leader is always a minimum-weight word in its coset. However, as the
last two rows in the example show, a minimum-weight word in a coset is not
necessarily unique.

Let y be a received word. Regardless of the decoding strategy, the error
word ê found by the decoder must be such that y − ê ∈ C. Hence, the
decoded error word must be in the same coset as y. Nearest-codeword
decoding means that ê is a minimum-weight word in its coset. Our decoding
strategy will therefore be as follows.

• Given a received word y ∈ Fn, find the row (coset) that contains y,
and let the decoded error word be the coset leader e of that row.

The decoded codeword is c = y − e. By construction, c is the first entry in
the column containing y.

Referring to the example, suppose that the received word is y = 01111.
This word appears in the fourth row and the third column of the standard
array in Table 2.1. The coset leader of the fourth row is 00100, and the
decoded codeword is 01011, which is the first entry in the third column.

Notice that when the Hamming weight of the coset leader does not exceed
(d−1)/2, then it is the unique minimum-weight word in its coset. This must
be so in view of Proposition 1.3, where we have shown that nearest-codeword
decoding yields the correct codeword when the number of errors does not
exceed (d−1)/2.

In the example, the coset leaders of Hamming weight 1 are the unique
minimum-weight words in their cosets.

2.4.2 Syndrome decoding of linear codes

Let C be a linear [n, k, d] code over F = GF(q) and fix H to be an (n−k)×n
parity-check matrix of C; that is, we assume here that the rows of H are
linearly independent.

The syndrome of a word y ∈ Fn (with respect to H) is defined by

s = HyT .

Recall that for every vector c ∈ Fn,

c ∈ C ⇐⇒ HcT = 0 .

That is, the codewords of C are precisely the vectors of Fn whose syndromes
are 0. Now, if y1 and y2 are vectors in Fn, then

y1 − y2 ∈ C ⇐⇒ HyT
1 = HyT

2 ,

2.4. Decoding of linear codes 35

which means that y1 and y2 are in the same coset of C in Fn if and only if
their syndromes are equal. So, given an (n−k) × n parity-check matrix H
of C, there is a one-to-one correspondence between the qn−k cosets of C in
Fn and the qn−k possible values of the syndromes, with the trivial coset C
corresponding to the syndrome 0.

Nearest-codeword decoding can thus be performed by the following two
steps:

1. Finding the syndrome of (the coset of) the received word: given a re-
ceived word y ∈ Fn, compute s = HyT .

2. Finding a coset leader in the coset of the received word: find a
minimum-weight word e ∈ Fn such that

s = HeT .

Step 1 is simply a matrix-by-vector multiplication. As for Step 2, it
is equivalent to finding a smallest set of columns in H whose linear span
contains the vector s. This problem is known to be computationally diffi-
cult (NP-complete) for general matrices H and vectors s. However, when
the redundancy n−k is small, we can implement Step 2 through a look-up
table of size qn−k that lists for every syndrome its respective coset leader.
Step 2 can sometimes be tractable also when n−k is large: in fact, most
codes that we treat in upcoming chapters have parity-check matrices with a
special structure that allows efficient decoding when the number of decoded
errors does not exceed (d−1)/2 (and sometimes even when it does). Thus,
with such codes and decoding algorithms, the coset leader in Step 2 can be
computed efficiently, and no look-up table will be necessary.

The definition of syndrome can be extended to r×n parity-check matrices
H that have dependent rows. In this case, the syndrome of y ∈ Fn will be
a vector HyT ∈ F r where r > n−k. Still, there will be qn−k possible values
for the syndrome, which correspond to the qn−k cosets of the code in Fn.

Example 2.11 Let C be the [2m−1, 2m−1−m, 3] Hamming code over
GF(2) and let H = (h1 h2 . . . h2m−1) be an m× (2m−1) parity-check ma-
trix of the code, where hj is the m-bit binary representation of the integer j.

Suppose that y ∈ Fn is the received word and that at most one error has
occurred. Then y = c + e where c ∈ C and e is either 0 or a unit vector.

The syndrome of y is the same as that of e, i.e.,

s = HyT = HeT .

Now, if e = 0 then s = 0 and y is an error-free codeword. Otherwise,
suppose that the nonzero entry of e is at location j. In this case,

s = HyT = HeT = hj .

36 2. Linear Codes

That is, the syndrome, when regarded as an m-bit binary representation of
an integer, is equal to the location index j of the error.

Problems

[Section 2.1]
Problem 2.1 Let C1 and C2 be linear codes of the same length n over F = GF(q)
and let G1 and G2 be generator matrices of C1 and C2, respectively. Define the
following codes:

• C3 = C1 ∪ C2
• C4 = C1 ∩ C2
• C5 = C1 + C2 = { c1 + c2 : c1 ∈ C1 and c2 ∈ C2 }
• C6 = { (c1 | c2) : c1 ∈ C1 and c2 ∈ C2 }

(here (·|·) stands for concatenation of words). For i = 1, 2, . . . , 6, denote by ki the
dimension logq |Ci| and by di the minimum distance of Ci. Assume that both k1 and
k2 are greater than zero.

1. Show that C3 is linear if and only if either C1 ⊆ C2 or C2 ⊆ C1.
2. Show that the codes C4, C5, and C6 are linear.

3. Show that if k4 > 0 then d4 ≥ max{d1, d2}.
4. Show that k5 ≤ k1 + k2 and that equality holds if and only if k4 = 0.

5. Show that d5 ≤ min{d1, d2}.
6. Show that ⎛⎝ G1 0

0 G2

⎞⎠
is a generator matrix of C6 and, so, k6 = k1 + k2.

7. Show that d6 = min{d1, d2}.

Problem 2.2 Show that the number of distinct generator matrices of a linear
[n, k, d] code over F = GF(q) is

∏k−1
i=0 (qk − qi).

Hint: First show that the sought number equals the number of k × k nonsingular
matrices over F . Next, count the latter matrices: show that given a set U of i < k
linearly independent vectors in F k (with U standing for the first i rows in a k × k
nonsingular matrix over F), there are qk − qi ways to extend U by one vector to
form a set of i+1 linearly independent vectors in F k.

Problem 2.3 Let C be a linear [n, k, d] code over F where n > k. For i ∈
{1, 2, . . . , n}, denote by Ci the code

Ci = {(c1 c2 . . . ci−1 ci+1 . . . cn) : (c1 c2 . . . cn) ∈ C} .

The code Ci is said to be obtained by puncturing C at the ith coordinate.

Problems 37

1. Show that Ci is a linear [n−1, ki, di] code over F where ki ≥ k−1 and di ≥
d−1.

Hint: Show that Ci is spanned by the rows of a matrix obtained by deleting
the ith column from a generator matrix of C.

2. Show that there are at least n−k indexes i for which ki = k.

Problem 2.4 Let (a1 a2 . . . ak) be a nonzero vector over F = GF(q) and consider
the mapping f : F k → F defined by f(x1, x2, . . . , xk) =

∑k
i=1 aixi. Show that each

element of F is the image under f of exactly qk−1 vectors in F k.

Problem 2.5 Show that in every linear code over F = GF(2), either all codewords
have even Hamming weight or exactly half of the codewords have even Hamming
weight.

Hint: Let G be a generator matrix of the code; see when Problem 2.4 can be applied
to the mapping F k → F that is defined by u�→ uG(1 1 . . . 1)T .

Problem 2.6 Let C be a linear [n, k, d] code over F = GF(q) and let T be a qk×n
array whose rows are the codewords of C. Show that each element of F appears in
every nonzero column in T exactly qk−1 times.

Hint: Use Problem 2.4.

Problem 2.7 (The Plotkin bound for linear codes) Show that every linear [n, k, d]
code over F = GF(q) satisfies the inequality

d ≤ n · (q−1) · qk−1

qk − 1
.

Hint: Using Problem 2.6, show that the average Hamming weight of the qk − 1
nonzero codewords in the code is at most n · (q−1) · qk−1/(qk− 1). Then argue that
the minimum distance of the code is bounded from above by that average.

Problem 2.8 Let G be a k × n generator matrix of a linear code C �= {0} over
a field F . Show that the minimum distance of C is the largest integer d such that
every k × (n−d+1) sub-matrix of G has rank k.

Hint: Show that if J is the set of indexes of the zero entries in a nonzero codeword,
then the columns in G that are indexed by J form a k× |J | sub-matrix whose rows
are linearly dependent; conversely, show that if the columns indexed by a set J form
a sub-matrix whose rows are linearly dependent, then there is a nonzero codeword
in which the entries that are indexed by J equal zero.

Problem 2.9 (Group codes) Let F be an Abelian group. An (n,M) code over F is
called a group code over F if it is a subgroup of Fn under the addition in Fn, where
the addition of two words in Fn is defined as their sum, component by component.
Show that for every (n, M) group code C over F of size M > 1,

d(C) = min
c∈C\{0}

w(c) .

38 2. Linear Codes

[Section 2.2]

Problem 2.10 Let F be the ternary field GF(3) and let C be a linear code over F
that is generated by

G =
(

2 1 2 1
1 1 1 0

)
.

1. List all the codewords of C.

2. Find a systematic generator matrix of C.

3. Compute the minimum distance of C.

4. A codeword of C is transmitted through an additive channel (F, F, Prob) and
the word y = (1 1 1 1) is received. Find all the codewords of C that can
be produced as an output by a nearest-codeword decoder for C when applied
to y.

5. Suppose that the encoding is carried out by the mapping u�→ uG. A nearest-
codeword decoder for C is applied to the word y in part 4 to produce a
codeword ĉ. Denote by û the information word that is associated with ĉ.
Can any of the entries of û be uniquely determined—regardless of which
nearest-codeword decoder is used?

6. Repeat part 5 for the case where a systematic generator matrix replaces G in
the encoding.

[Section 2.3]

Problem 2.11 Let C be a linear code over F = GF(2) with a parity-check matrix

H =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

1. What are the parameters n, k, and d of C?

2. Write a generator matrix of C.

3. Find the largest integer t such that every pattern of up to t errors will be
decoded correctly by a nearest-codeword decoder for C.

4. A codeword of C is transmitted through an additive channel (F, F, Prob) and
the word y = (1 0 1 0 1 0 1 0 1) is received. What will be the respective
output of a nearest-codeword decoder for C when applied to y?

5. Given that the answer to part 4 is the correct codeword, how many errors
does a nearest-codeword decoder correct in this case? And how is this number
consistent with the value t in part 3?

Problems 39

Problem 2.12 Let C1 be a linear [n, k1, d1] code and C2 be a linear [n, k2, d2] code
(of the same length)—both over F . Define the code C by

C = { (c1 | c1+c2) : c1 ∈ C1 and c2 ∈ C2 } .

1. Let G1 and G2 be generator matrices of C1 and C2, respectively. Show that
C is a linear code over F generated by⎛⎝ G1 G1

0 G2

⎞⎠ .

2. Let H1 and H2 be parity-check matrices of C1 and C2, respectively. Show that⎛⎝ H1 0

H2 −H2

⎞⎠
is a parity-check matrix of C.

3. Show that C is a linear [2n, k, d] code over F where k = k1 + k2 and d =
min{2d1, d2}.

4. Write Φ = F ∪{?}, where ? stands for the erasure symbol, and let D1 : Φn →
C1 be a decoder for C1 that recovers correctly any pattern of τ errors and ρ
erasures, whenever 2τ + ρ < d1 (see Theorem 1.7). Also, let D2 : Fn → C2
be a decoder for C2 that recovers correctly any pattern of up to �(d2−1)/2
errors.
Consider the decoderD : F 2n → C that maps every vector y = (y1 y2 . . . y2n)
in F 2n to a codeword (c1 | c1+c2) ∈ C as follows. Write y = (y1 |y2), where
y1 (respectively, y2) consists of the first (respectively, last) n entries of y.
The codeword c2 ∈ C2 is given by

c2 = D2(y2 − y1) .

As for the codeword c1 ∈ C1, denote by J the support of y2−y1− c2 and let
the vector z = (z1 z2 . . . zn) be defined by

zj =
{

yj if j �∈ J
? otherwise , 1 ≤ j ≤ n .

Then,
c1 = D1(z) .

Show that D recovers correctly any pattern of up to �(d−1)/2 errors, where
d is as in part 3.

Problem 2.13 Let C1 be a linear [n1, k1, d1] code over F and let C2 be a linear
[n2, k2, d2] code over F where k2 ≥ k1. Let G1 be a generator matrix of C1 and

G2 =
(

G2,1

G2,2

)

40 2. Linear Codes

be a generator matrix of C2, where G2,1 consists of the first k1 rows of G2. Consider
the linear [n1 + n2, k, d] code C over F with a generator matrix

G =

(
G1 G2,1

0 G2,2

)
.

1. Show that k = k2.

2. Show that if k1 = k2 then d ≥ d1 + d2. Provide examples of codes C1 and C2,
where k1 < k2 and d < d1 + d2.

3. Show that there is a k1 × n1 matrix Q1 over F such that Q1G
T
1 = I, where

I is the k1 × k1 identity matrix.

4. Let Q1 be as in part 4 and let H1 be parity-check matrix of C1. Show that
the matrix (

H1

Q1

)
has rank n1.

5. Show that there is a k1 × n2 matrix Q2 over F such that Q2G
T
2,1 = I and

Q2G
T
2,2 = 0.

6. Let Q1, H1, and Q2 be as in the previous parts and let H2 be a parity-check
matrix of C2. Show that ⎛⎜⎜⎝

H1 0

0 H2

Q1 −Q2

⎞⎟⎟⎠
is a parity-check matrix of C.

Problem 2.14 Let C be a linear [n, k, d] code over F where k > 1. For i ∈
{1, 2, . . . , n}, denote by C(i) the code

C(i) = {(c1 c2 . . . ci−1 ci+1 . . . cn) : (c1 c2 . . . ci−1 0 ci+1 . . . cn) ∈ C} .

The code C(i) is said to be obtained by shortening C at the ith coordinate.

1. Show that C(i) is a linear [n−1, k(i), d(i)] code over F where k(i) ≥ k−1 and
d(i) ≥ d.

2. Show that a parity-check matrix of C(i) is obtained by deleting the ith column
from a parity-check matrix of C.

Problem 2.15 Let C be a linear code over F . Show that every generator matrix
of the dual code C⊥ is a parity-check matrix of C. Conclude that (C⊥)⊥ = C.

Problem 2.16 For an integer m > 1 let C be the [n, n−m, 3] Hamming code over
GF(2) where n = 2m−1.

1. Show that for every two distinct columns h1 and h2 in a parity-check matrix
of C there is a unique third column in that matrix that equals the sum h1+h2.

Problems 41

2. Using part 1, show that the number of codewords of Hamming weight 3 in C
is n(n−1)/6.

3. Show that C contains a codeword of Hamming weight n (namely, C contains
the all-one codeword).

4. How many codewords are there in C of Hamming weight n−1? n−2? and
n−3?

Problem 2.17 (First-order Reed–Muller codes) Let F = GF(q) and for a positive
integer m let n = qm. The first-order Reed–Muller code over F is defined as the
linear [n,m+1] code C over F with an (m+1)× n generator matrix whose columns
range over all the vectors in Fm+1 with a first entry equaling 1. (Observe that for
q = 2, the first-order Reed–Muller code is the dual code of the extended Hamming
code defined in Example 2.8.)

1. Show that the minimum distance of C equals qm−1(q−1) and that this number
is the Hamming weight of q(qm− 1) codewords in C. What are the Hamming
weights of the remaining q codewords in C?
Hint: Use Problem 2.4.

2. Show that no linear [n,m+1] code over F can have minimum distance greater
than qm−1(q−1).

Hint: Use the Plotkin bound in Problem 2.7.

3. The shortened first-order Reed–Muller code over F is defined as the linear
[n−1,m] code C′ over F with an m× (n−1) generator matrix whose columns
range over all the nonzero vectors in Fm. Show that C′ can be obtained from
C by the shortening operation defined in Problem 2.14.

4. Show that every nonzero codeword in the shortened code C′ has Hamming
weight qm−1(q−1).

5. Verify that the shortened code C′ attains the Plotkin bound in Problem 2.7.

Problem 2.18 (Simplex codes, or dual codes of Hamming codes) Let F = GF(q)
and for an integer m > 1 let n = (qm − 1)/(q− 1). Consider the dual code C of the
[n, n−m] Hamming code over F .

1. Show that the Hamming weight of each nonzero codeword in C is qm−1.

Hint: Use Problem 2.17.

2. Verify that C attains the Plotkin bound in Problem 2.7.

Problem 2.19 (Binary Reed–Muller codes) Let F = GF(2) and let m and r be
integers such that m > 0 and 0 ≤ r ≤ m. Denote by S(m, r) the Hamming sphere
of radius r in Fm centered at 0, that is

S(m, r) = {e ∈ Fm : w(e) ≤ r} ;

note that

|S(m, r)| =
r∑

j=0

(
m
j

)
.

42 2. Linear Codes

For two elements a, e ∈ F , the expression ae will be interpreted as if e is an
integer, namely,

ae =
{

0 if a = 0 and e = 1
1 if a = 1 or e = 0 .

Given vectors a = (a0 a1 . . . am−1) and e = (e0 e1 . . . em−1) in Fm, the notation
ae will stand hereafter as a shorthand for the product ae0

0 ae1
1 · · · a

em−1
m−1 .

Let GRM(m, r) be the |S(m, r)|×2m matrix over F whose rows and columns are
indexed by the elements of S(m, r) and Fm, respectively, and for every e ∈ S(m, r)
and a ∈ Fm, the entry of GRM(m, r) that is indexed by (e,a) equals ae. Denote by
CRM(m, r) the linear code over F that is spanned by the rows of GRM(m, r). The
code CRM(m, r) is called the rth order Reed–Muller code of length 2m over F .

1. Identify the codes CRM(m, 0) and CRM(m, 1).

2. Show that the rows of GRM(m, r) are linearly independent.

Hint: It suffices to show that rank(GRM(m, m)) = 2m. Show that when
the rows and columns of GRM(m,m) are arranged according to the ordi-
nary lexicographic ordering of their indexes, then GRM(m, m) becomes upper-
triangular, with 1’s along the main diagonal.
(The following alternate proof uses the correspondence between the rows
of GRM(m,m) and the functions x �→ xe for e ∈ Fm. For every vector
u = (ue)e∈F m in F 2m

whose entries are indexed by the elements of Fm, the
entry in uGRM(m,m) that is indexed by a ∈ Fm equals the value of the
function fu : x �→

∑
e∈F m uexe at x = a. Now, it is known that Boolean

“and” and “exclusive-or”—namely, multiplication and addition in F—and
the constant “1” form a functionally complete set of Boolean operations,
in that they generate every Boolean function. Thus, when u ranges over
all the elements of F 2m

, the functions fu range over all the 22m

Boolean
functions with m variables. Deduce that the rows of GRM(m,m) are linearly
independent.)

3. Show that for 0 < r < m,

GRM(m, r) =

⎛⎝ GRM(m−1, r) GRM(m−1, r)

0 GRM(m−1, r−1)

⎞⎠ .

Hint:

S(m, r) = {(0 e) : e ∈ S(m−1, r)} ∪ {(1 e) : e ∈ S(m−1, r−1)} .

4. Show that the minimum distance of CRM(m, r) is 2m−r.

Hint: Apply Problem 2.12 to part 3 inductively.

5. For e ∈ S(m, r), denote by (GRM(m, r))e the row of GRM(m, r) that is in-
dexed by e. Show that for elements e and e′ in Fm,

(GRM(m,m))e · (GRM(m,m))T
e′ = 0

if and only if there is at least one location in which both e and e′ have a zero
entry.

Problems 43

6. Show that for 0 ≤ r < m,

(CRM(m, r))⊥ = CRM(m,m−r−1) .

Hint: Use part 5 to show that GRM(m, r)(GRM(m,m−r−1))T = 0, and verify
that

rank(GRM(m, r)) + rank(GRM(m,m−r−1)) =
m∑

j=0

(
m
j

)
= 2m .

Problem 2.20 (Linear codes over rings) Let F be a commutative ring of finite size
and let the addition in Fn be defined as in Problem 2.9. Using the vector notation
(c1 c2 . . . cn) for words in Fn, the product of a word c = (c1 c2 . . . cn) in Fn by a
scalar a ∈ F is defined—similarly to vectors over fields—by

a · c = (ac1 ac2 . . . acn) .

A set of words u1,u2, . . . ,um ∈ F r is linearly independent over F if and only if for
every m elements a1, a2, . . . , am ∈ F ,

m∑
i=1

aiui = 0 ⇐⇒ a1 = a2 = . . . = am = 0 .

An (n,M) code C over F is called linear over F if C is a group code over F (as
defined in Problem 2.9) and for every a ∈ F ,

c ∈ C =⇒ a · c ∈ C .

Let H be an r×n matrix over F whose columns are given by h1,h2, . . . ,hn ∈ F r.
Extend the definition of matrix-by-vector multiplication from fields to the ring F :
for a word c = (c1 c2 . . . cn), let HcT be

∑n
j=1 cjhj . Consider the (n, M) code C

over F that is defined by

C =
{
c ∈ Fn : HcT = 0

}
.

1. Show that C is a linear code over F .

2. Show that if M > 1, then d(C) equals the largest integer d such that every
set of d−1 columns in H is linearly independent.

3. Suppose that every set of d−1 columns in H contains a (d−1) × (d−1) sub-
matrix whose determinant has a multiplicative inverse in F (such a sub-matrix
is then invertible over F). Show that d(C) ≥ d.
(Observe that the converse is not true; for example, if F is the ring Z6 and

H =

⎛⎝ 1 0 3 3
1 0 2 2
0 1 1 0

⎞⎠ ,

then d(C) = 3, yet none of the determinants of the 2× 2 sub-matrices in the
last three columns has a multiplicative inverse in Z6.)

44 2. Linear Codes

Problem 2.21 (Product codes and interleavers) Let C1 be a linear [n1, k1, d1] code
over F = GF(q) and let C2 be a linear [n2, k2, d2] code over the same field F . Assume
that both codes have systematic generator matrices.

Define a mapping E : F k1k2 → Fn1n2 through the algorithm shown in Figure 2.1.
The algorithm makes use of an array Γ over F with n1 columns and n2 rows; the
array Γ is divided into three sub-arrays, U , V , and W , as shown in Figure 2.2.

Input: word u ∈ F k1k2 .
Output: word c ∈ Fn1n2 .

(a) Fill in the sub-array U , row by row, by the contents of u.

(b) For i = 1, 2, . . . , k2, determine the contents of the ith row in the sub-array V
so that the ith row in Γ is a codeword of C1.

(c) For j = 1, 2, . . . , n1, determine the contents of the jth column in the sub-array
W so that the jth column in Γ is a codeword of C2.

(d) Read the contents of Γ, row by row, into a word c of length n1n2, and output
c as the value E(u).

Figure 2.1. Algorithm that defines the mapping u�→ E(u).

U V

W

�

�

k2

�

�

n2

� �n1

� �k1

Figure 2.2. Array Γ of a product code.

The product code C1 ∗ C2 is defined by

C1 ∗ C2 =
{
c ∈ Fn1n2 : c = E(u) for some u ∈ F k1k2

}
.

1. Why is it always possible to determine the contents of the sub-array V so
that it satisfies the condition in Step (b) in Figure 2.1?

2. Is the contents of V uniquely determined by the contents of U?

3. Show that the rows of W form codewords of C1.
4. Show that C1 ∗ C2 is a linear [n1n2, k1k2, d1d2] code over F .

Problems 45

5. Given two matrices A = (Ai,j) m
i=1

n
j=1 and B = (Bi,j) r

i=1
s

j=1 of orders m × n
and r×s, respectively, over a field F , define their Kronecker product (or direct
product) as the mr × ns matrix A⊗B whose entries are given by

(A⊗B)r(i−1)+i′,s(j−1)+j′ = Ai,jBi′,j′ ,

1≤i≤m, 1≤j≤n, 1≤i′≤r, 1≤j′≤s .

Let H1 and H2 be parity-check matrices of C1 and C2, respectively, and denote
by In the n× n identity matrix over F . Show that(

In2 ⊗H1

H2 ⊗ In1

)
is a parity-check matrix of C1 ∗ C2.

6. An interleaver is a special case of a product code where C1 is the [n1, n1, 1]
code Fn1 . A burst of length � is the event of having errors in a codeword such
that the locations i and j of the first (leftmost) and last (rightmost) errors,
respectively, satisfy j−i = �−1.
Suggest an encoding–decoding scheme that is based on interleavers and allows
one to correct every burst of length up to �(d2−1)/2 · n1.

[Section 2.4]
Problem 2.22 Let H be a parity-check matrix of a linear code over F and let t
be a positive integer. Recall the definition of a burst as in part 6 of Problem 2.21.

1. Find a necessary and sufficient condition on the columns of H so that every
burst of length up to t that occurs in a codeword can be detected.

2. What are the respective conditions on the columns of H so that every burst
of length up to t can be corrected?

3. A burst erasure of length � is the event where erasures occur in � consecutive
locations within a codeword. Find a necessary and sufficient condition on the
columns of H so that every burst erasure of length up to t can be recovered.

Problem 2.23 (Sylvester-type Hadamard matrices) Let k be a positive integer
and F be the field GF(2). The 2k×2k Sylvester-type Hadamard matrix, denoted by
Hk, is the real matrix whose rows (respectively, columns) are indexed by the row
(respectively, column) vectors in F k, and

(Hk)u,v =
{

1 if u · v = 0
−1 if u · v = 1 , u,v ∈ F k .

For k = 0, define H0 to be the 1× 1 matrix (1).

1. Assuming that the rows and columns of Hk are written according to the
standard lexicographic ordering on the elements of F k, show that for every
k ≥ 0,

Hk+1 =
(
Hk Hk

Hk −Hk

)
.

46 2. Linear Codes

2. Suggest a recursive algorithm for multiplying the matrix Hk by a vector in
R2k

while requiring only k · 2k real additions and subtractions.

Hint: For x0,x1 ∈ R2k

,

Hk+1

(
x0

x1

)
=
(
Hkx0 +Hkx1

Hkx0 −Hkx1

)
.

3. Show that the rows of the 2k+1 × 2k matrix(
Hk

−Hk

)
form the codewords of the [2k, k+1] first-order Reed–Muller code over F ,
which was defined in Problem 2.17, with 1 (respectively, −1) representing the
element 0 (respectively, 1) of F .

4. Show that
H2

k = HkHT
k = 2k · I .

Problem 2.24 Let F = GF(2) and let S = (F, Φ, Prob) be a memoryless binary
channel as defined in Problem 1.8; namely, for every positive integer m and every
two words x1x2 . . . xm ∈ Fm and y1y2 . . . ym ∈ Φm, the conditional probability
distribution takes the form

Prob{ y1y2 . . . ym received | x1x2 . . . xm transmitted } =
m∏

j=1

Prob(yj |xj) .

Assume hereafter that Prob(y|x) > 0 for every x ∈ F and y ∈ Φ.
Let C be a linear [n, k, d] code over F , and let the function D : Φn → C map

every word y1y2 . . . yn ∈ Φn to the codeword (c1 c2 . . . cn) ∈ C that maximizes the
expression

n∑
j=1

(−1)cj · μ(yj) ,

where

μ(y) = log2

(
Prob(y|0)
Prob(y|1)

)
, y ∈ Φ

(the elements cj act in the expression (−1)cj as if they were integers). Recall from
Problem 1.8 that D is a maximum-likelihood decoder for C with respect to the
channel S.

Fix G = (g1 g2 . . . gn) to be a k × n generator matrix of C. For every word
y = y1y2 . . . yn in Φn, associate a vector μ(y) ∈ F 2k

whose entries are indexed by
the column vectors in F k, and the entry indexed by v ∈ F k is given by

(μ(y))v =
∑

j : gj=v

μ(yj)

(a sum over an empty set is defined as zero).
An information word u ∈ F k is transmitted through the channel S by encoding

it into the codeword c = uG.

Notes 47

1. Show that for every y ∈ Φn, the value D(y) is a codeword ûG that corre-
sponds to an index û ∈ F k of a largest entry in the vector Hkμ(y), where
Hk is the 2k × 2k Sylvester-type Hadamard matrix defined in Problem 2.23.

2. Assume that the values μ(y) are pre-computed for all y ∈ Φ. Show that
the decoder D can then be implemented with less than (k+1) · 2k + n real
additions, subtractions, and comparisons (as opposed to n ·2k−1 operations,
which are required in a brute force search over the codewords of C).

Notes

[Section 2.2]

Two (n,M) codes C and Ĉ over F are said to be equivalent if the sets C and Ĉ are
the same, up to a fixed permutation on the coordinates of the codewords of C. For
example, the code in Example 2.10 is equivalent to the linear code over F = GF(2)
with a generator matrix

Ĝ =
(

1 1 0 0 1
0 0 1 1 1

)
.

Given two k × n matrices G and Ĝ over a field F , the complexity of deciding
whether these matrices generate equivalent linear codes over F is still not known.
On the one hand, this problem is unlikely to be too easy, since it is at least as
difficult as the Graph Isomorphism problem (see Babai et al. [26’] and Petrank and
Roth [279]). On the other hand, as shown in [279], the equivalence problem of lin-
ear codes is unlikely to be intractable (NP-complete) either; see also Sendrier [327].
For more on the theory of NP-completeness, refer to the book by Garey and John-
son [143].

[Section 2.3]

Hamming codes were discovered by Golay in [149] and [150] and by Hamming
in [169]. Unlike the binary case, an attempt to extend Hamming codes over an
arbitrary field GF(q) generally results in a code whose minimum distance is still
3. The problem of determining the length, Λq(r), of the longest linear code with
minimum distance 4 and redundancy r over GF(q) has been treated primarily in
the context of projective geometries over finite fields.

Specifically, let PG(r−1, q) denote the (r−1)-dimensional projective geometry
over F = GF(q) (the elements of PG(r−1, q) are all the nonzero vectors of F r,
with linearly dependent vectors being identified as one element of PG(r−1, q); thus,
|PG(r−1, q)| = (qr − 1)/(q − 1)). An n-cap in PG(r−1, q) is a set of n points in
PG(r−1, q) such that no three points in the set are collinear. The elements of an n-
cap over F = GF(q) thus form an r×n parity-check matrix of a linear [n,≥n−r,≥4]
code over F , and Λq(r) is the size of the largest n-cap in PG(r−1, q).

The case q = 2 is fully settled: every linear [n, n−r, 4] code over F implies (by
puncturing) the existence of a linear [n−1, n−r−1, 3] code C over F , and, since no
two columns in an (r−1)× (n−1) parity-check matrix of C are linearly dependent,
we have the upper bound n−1 ≤ 2r−1 − 1. This bound is tight as it is attained by

48 2. Linear Codes

[2r−1, 2r−1−r, 4] extended Hamming codes; therefore,

Λ2(r) = 2r−1 .

For r = 3, the values of Λq(r) are known to be

Λq(3) =
{

q+1 when q is odd
q+2 when q is even

(these values follow from a result that will be proved in Section 11.3: see Proposi-
tion 11.15 therein). It is also known that when r = 4 and q > 2,

Λq(4) = q2 + 1

(an attaining code construction will be presented in Problem 3.44). For r ≥ 5 and
sufficiently large q we have the upper bound

Λq(r) ≤
{

qr−2 − 1
4qr−(5/2) + 2qr−3 when q is odd

qr−2 − 1
2qr−3 when q is even

.

See Hirschfeld and Thas [186, Chapter 27] and Thas [361] for details.
Reed–Muller codes (Problems 2.17 and 2.19) are named after Reed [288] and

Muller [265]. For more on Reed–Muller codes, including their generalization to
non-binary alphabets, see Assmus and Key [18, Chapter 5], Berlekamp [36, Sec-
tions 15.3 and 15.4], MacWilliams and Sloane [249, Chapters 13–15], and Peterson
and Weldon [278, Section 5.5]. Refer also to the discussion on Reed–Muller codes
in the notes on Sections 5.1 and 5.2.

[Section 2.4]

The complexity of nearest-codeword decoding of linear codes was first treated by
Berlekamp et al. [38]. Specifically, they showed that given an r × n matrix H over
F = GF(2), a vector s ∈ F r, and an integer m, the problem of deciding whether
there is a solution to HeT = s for a vector e ∈ Fn such that w(e) ≤ m, is NP-
complete. Furthermore, Arora et al. [17] showed that the problem remains NP-hard
even if it is relaxed only to approximating, within a constant factor, the Hamming
weight of the lightest vector e that satisfies s = HeT . The approximation within
certain constant factors turns out to be hard also if the decoder—which depends
on H, but not on s—can be preprocessed, i.e., the time required to design the
decoder is not counted towards the complexity; see Bruck and Naor [68], Feige and
Micciancio [122], Lobstein [236], and Regev [291].

The problem of deciding whether the minimum distance. of a given linear code
is at most m is, in a way, a special case of the nearest-codeword decoding problem
and can be stated as follows. Given an r × n (parity-check) matrix H over F and
an integer m, decide whether there is a solution to HeT = 0 for a nonzero vector
e ∈ Fn such that w(e) ≤ m. This problem was shown to be NP-complete over the
rational field by Khachiyan [212] and over finite fields by Vardy [370]. Dumer et
al. [110] showed that the approximation—within a constant factor—of the minimum
distance of linear codes is unlikely to be polynomial-time.

Notes 49

Sylvester-type Hadamard matrices are used quite often in signal and image pro-
cessing, and the algorithm sought in Problem 2.23 is known as the Fast Hadamard
Transform (in short, FHT). For more on these matrices, see for example, Agaian [3],
Wallis et al. [378], and Yarlagadda and Hershey [391].

Chapter 3

Introduction to Finite Fields

For most of this chapter, we deviate from our study of codes to become
acquainted with the algebraic concept of finite fields. These objects will
serve as our primary tool for constructing codes in upcoming chapters. As a
motivating example, we present at the end of this chapter a construction of
a double-error-correcting binary code, whose description and analysis make
use of finite fields. This construction will turn out to be a special case of a
more general family of codes, to be discussed in Section 5.5.

Among the properties of finite fields that we cover in this chapter, we
show that the multiplicative group of a finite field is cyclic; this property, in
turn, suggests a method for implementing the arithmetic operations in finite
fields of moderate sizes through look-up tables, akin to logarithm tables.
We also prove that the size of any finite field must be a power of a prime
and that this necessary condition is also sufficient, that is, every power of a
prime is a size of some finite field. The practical significance of the latter
property is manifested particularly through the special case of the prime 2,
since in most coding applications, the data is sub-divided into symbols—e.g.,
bytes—that belong to alphabets whose sizes are powers of 2.

3.1 Prime fields

For a prime p, we let GF(p) (Galois field of size p) denote the ring of integer
residues modulo p (this ring is also denoted by Zp).

By Euclid’s algorithm for integers (Problem A.3), for every integer a ∈
{1, 2, . . . , p−1} there exist integers s and t such that

s · a + t · p = 1 .

The integer s, taken modulo p, is the multiplicative inverse a−1 of a in GF(p).
Therefore, GF(p) is indeed a field.

50

3.2. Polynomials 51

Example 3.1 In GF(7) we have

2 · 4 = 3 · 5 = 6 · 6 = 1 · 1 = 1 .

Also, a6 = 1 for every nonzero a ∈ GF(7).
The multiplicative group of GF(7) is cyclic, and the elements 3 and 5

generate all the nonzero elements of the field:

30 = 1 = 50

31 = 3 = 55

32 = 2 = 54

33 = 6 = 53

34 = 4 = 52

35 = 5 = 51

Let F be a field. The symbols 0 and 1 will stand for the additive and
multiplicative unity elements, respectively, of F . The multiplicative group of
F will be denoted by F ∗, and the multiplicative order of an element a ∈ F ∗

(whenever such an order exists) will be denoted by O(a). In particular, this
order exists whenever F is finite, in which case we get the following result.

Proposition 3.1 Let F be a finite field. For every a ∈ F ,

a|F | = a .

Proof. Clearly, 0|F | = 0. As for a ∈ F ∗, by Lagrange’s Theorem it
follows that O(a) divides |F ∗| (Problem A.16); therefore, a|F |−1 = 1.

We show in Section 3.5 below that the multiplicative group of every finite
field is cyclic. A generator of F ∗ is called a primitive element in F .

3.2 Polynomials

Let F be a field. A polynomial over F (in the indeterminate x) is an expres-
sion of the form

a(x) = a0 + a1x + . . . + anxn ,

where n is a nonnegative integer and a0, a1, . . . , an are elements of F : these
elements are called the coefficients of the polynomial a(x). We regard two
polynomials as equal if they agree on their nonzero coefficients. The set of
all polynomials over F in the indeterminate x is denoted by F [x].

We next mention several terms and notations that are associated with
polynomials.

The zero polynomial over F is the (unique) polynomial whose coefficients
are all zero.

The degree of a nonzero polynomial a(x) =
∑n

i=0 aix
i over F is the largest

index i for which ai �= 0. The degree of the zero polynomial is defined as −∞.

52 3. Introduction to Finite Fields

The degree of a(x) will be denoted by deg a(x) or deg a, and the set of all
polynomials over F of degree less than n will be denoted by Fn[x].

A nonzero polynomial a(x) is called monic if the coefficient of xdeg a

equals 1.
Let a(x) =

∑n
i=0 aix

i and b(x) =
∑n

i=0 bix
i be two polynomials over F

(of possibly different degrees). Their sum and difference are defined by

a(x)± b(x) =
n∑

i=0

(ai ± bi)xi ,

and their product is the polynomial c(x) =
∑2n

i=0 cix
i whose coefficients are

ci =
i∑

j=0

ajbi−j , 0 ≤ i ≤ 2n

(where ai = bi = 0 for i > n). Under these operations, F [x] forms an integral
domain (see the Appendix and Problem 3.2).

Let a(x) and b(x) be polynomials over F such that a(x) �= 0. As with
integers, we can apply a “long division” on a(x) and b(x) and compute unique
polynomials—a quotient q(x) and a remainder r(x)—such that

b(x) = a(x)q(x) + r(x) ,

where deg r < deg a. In particular, a(x) | b(x) (“a(x) divides b(x)”) means
that dividing b(x) by a(x) yields a zero remainder; in this case we also say
that a(x) is a factor of b(x). The notation

b(x) ≡ c(x) (mod a(x))

(“b(x) is congruent to c(x) modulo a(x)”) is the same as saying that a(x)
divides b(x)− c(x).

Euclid’s algorithm (see Problem 3.3) can be applied to polynomials to
compute their greatest common divisor (gcd). Such a divisor is defined only
up to a multiple by a nonzero scalar in F ; so, gcd(a(x), b(x)) = 1 is the same
as writing deg gcd(a(x), b(x)) = 0.

Example 3.2 Let F = GF(2) and let a(x) = x4 + x2 + x + 1 and
b(x) = x3 + 1. To find gcd(a(x), b(x)) we compute a sequence of remainders
ri(x) as follows, starting with r−1(x) = a(x) and r0(x) = b(x).

1. Divide r−1(x) = x4 + x2 + x + 1 by r0(x) = x3 + 1:

x

x4 + x2 + x + 1 x3 + 1
x4 + x

x2 + 1

3.2. Polynomials 53

That is, the quotient is x and the remainder is r1(x) = x2 + 1:

x4 + x2 + x + 1︸ ︷︷ ︸
r−1(x)

= x(x3 + 1︸ ︷︷ ︸
r0(x)

) + x2 + 1︸ ︷︷ ︸
r1(x)

. (3.1)

2. Divide r0(x) = x3 + 1 by the new remainder r1(x) = x2 + 1:

x

x3 + 1 x2 + 1
x3 + x

x + 1

(Recall that −x = x over GF(2).) Thus,

x3 + 1︸ ︷︷ ︸
r0(x)

= x(x2 + 1︸ ︷︷ ︸
r1(x)

) + x + 1︸ ︷︷ ︸
r2(x)

. (3.2)

3. Divide r1(x) = x2 + 1 by the new remainder r2(x) = x + 1:

x + 1
x2 + 1 x + 1
x2 + x

x + 1

So,
x2 + 1︸ ︷︷ ︸
r1(x)

= (x + 1)(x + 1︸ ︷︷ ︸
r2(x)

)

and the new remainder, r3(x), is zero. Hence,

gcd(x4 + x2 + x + 1, x3 + 1) = r2(x) = x + 1 .

For two polynomials a(x), b(x) ∈ F [x], not both zero, there always exist
polynomials s(x), t(x) ∈ F [x] such that

s(x) · a(x) + t(x) · b(x) = gcd(a(x), b(x))

(substitute i = ν in part 2 of Problem 3.3). In the previous example we have

gcd(a(x), b(x)) = r2(x) = x + 1
(3.2)
= x3+1︸ ︷︷ ︸

r0(x)

+ x(x2+1︸ ︷︷ ︸
r1(x)

)

54 3. Introduction to Finite Fields

(3.1)
= x3+1︸ ︷︷ ︸

r0(x)

+ x[x4+x2+x+1︸ ︷︷ ︸
r−1(x)

+ x(x3+1︸ ︷︷ ︸
r0(x)

)]

= x(x4+x2+x+1︸ ︷︷ ︸
r−1(x)

) + (x2+1)(x3+1︸ ︷︷ ︸
r0(x)

)

= x · a(x) + (x2+1) · b(x) .

So here s(x) = x and t(x) = x2 + 1.
A polynomial P (x) ∈ F [x] is called irreducible over F if (i) deg P (x) >

0 and (ii) for any a(x), b(x) ∈ F [x] such that P (x) = a(x) · b(x), either
deg a(x) = 0 or deg b(x) = 0. That is, the only non-scalar divisors of P (x)
are its multiples by elements of F ∗. A polynomial that is not irreducible is
called reducible.

Example 3.3 The polynomial x2 +1 is irreducible over the real field R.
Indeed, if it were reducible, then we would have x2 + 1 = (x − α)(x − β)
for some real polynomials x − α and x − β. Yet this would imply that
α2 + 1 = (α− α)(α− β) = 0, which is impossible for every real α.

Example 3.4 We construct the irreducible polynomials over F = GF(2)
for small degrees.

Clearly, x and x+1 are all the irreducible polynomials of degree 1 over F .
The reducible polynomials of degree 2 over F are

x2 , x(x + 1) = x2 + x , and (x + 1)2 = x2 + 1 .

This leaves one irreducible polynomial of degree 2, namely, x2 + x + 1.
Turning to degree 3, consider the polynomial

a(x) = x3 + a2x
2 + a1x + a0

over F . If a(x) is reducible, then it must be divisible by some polynomial
of degree 1. Now, it is easy to see that x | a(x) if and only if a0 = 0. In
addition, it will follow from Proposition 3.5 below that x+1 | a(x) if and only
if a(x) takes the zero value at x = 1, i.e.,

a(1) = 1 + a2 + a1 + a0 = 0 .

We thus conclude that a(x) is irreducible if and only if a0 = a1 + a2 = 1,
resulting in the two polynomials

x3 + x + 1 and x3 + x2 + 1 .

Finally, we consider the polynomial

a(x) = x4 + a3x
3 + a2x

2 + a1x + a0

3.2. Polynomials 55

of degree 4 over F . From similar arguments to those used earlier, we deduce
that neither x nor x + 1 divides a(x) if and only if a0 = a1 + a2 + a3 = 1,
thereby resulting in the following four polynomials:

x4 + x + 1 , x4 + x2 + 1 , x4 + x3 + 1 , and x4 + x3 + x2 + x + 1 .

Yet, these polynomials are not necessarily irreducible: we still need to check
the case where a(x) is a product of two (irreducible) polynomials of degree
2. Indeed, the polynomial

(x2 + x + 1)2 = x4 + x2 + 1

is reducible.
Table 3.1 summarizes our discussion in this example.

Table 3.1. List of irreducible polynomials over GF(2).

n Irreducible polynomials of degree n over GF(2)
1 x, x + 1
2 x2 + x + 1
3 x3 + x + 1, x3 + x2 + 1
4 x4 + x + 1, x4 + x3 + 1, x4 + x3 + x2 + x + 1

Irreducible polynomials play a role in F [x] which is similar to that of
prime numbers in the integer ring Z. Specifically, we show in Theorem 3.4
below that F [x] is a unique factorization domain: every polynomial in F [x]
can be expressed in an essentially unique way as a product of irreducible
polynomials over F . We precede the theorem by a lemma and a proposition.

Lemma 3.2 Let a(x), b(x), and c(x) be polynomials over F such that
c(x) �= 0 and gcd(a(x), c(x)) = 1. Then

c(x) | a(x) · b(x) =⇒ c(x) | b(x) .

Proof. Since gcd(a(x), c(x)) = 1, there are polynomials s(x) and t(x)
over F such that

s(x) · a(x) + t(x) · c(x) = gcd(a(x), c(x)) = 1 ,

i.e.,
s(x) · a(x) ≡ 1 (mod c(x)) .

56 3. Introduction to Finite Fields

Multiplying both sides by b(x) yields

s(x) · a(x) · b(x) ≡ b(x) (mod c(x)) .

However, s(x) · a(x) · b(x) ≡ 0 (mod c(x)). So, b(x) ≡ 0 (mod c(x)).

Proposition 3.3 Let P (x) be an irreducible polynomial over F and let
a(x) and b(x) be polynomials over F . Then,

P (x) | a(x) · b(x) =⇒ P (x) | a(x) or P (x) | b(x) .

Proof. This is an immediate corollary of Lemma 3.2.

Theorem 3.4 (The unique factorization theorem) The factorization of
a nonzero polynomial into irreducible polynomials over F is unique (up to
permutation and scalar multiples).

Proof. Let a(x) be a monic polynomial over F . The proof is by induction
on the (smallest) number of irreducible factors of a(x) (the factors are not
necessarily distinct).

When the number of factors is zero, a(x) = 1 and the result is obvious.
Now, suppose that a(x) =

∏n
i=1 Pi(x) =

∏m
i=1 Qi(x), where Pi(x) and

Qi(x) are monic irreducible polynomials. By Proposition 3.3, P1(x) divides
one of the Qi(x)’s, say Q1(x). Hence, P1(x) = Q1(x) and we can apply the
induction hypothesis to a(x)/P1(x).

3.3 Extension fields

Let F be a field and P (x) be an irreducible polynomial of degree h over F .
Consider the ring of residues of the polynomials in F [x] modulo P (x).

This ring is denoted by F [x]/P (x), and the residues can be regarded as
elements of Fh[x] with polynomial arithmetic modulo P (x). We show that
this ring is a field. To this end, we verify that every nonzero element in that
ring has a multiplicative inverse with respect to the constant polynomial 1.

Recall that gcd(a(x), P (x)) = 1 for every a(x) ∈ Fh[x] \ {0}. Hence,
there exist polynomials s(x) and t(x) over F such that

s(x) · a(x) + t(x) · P (x) = gcd(a(x), P (x)) = 1

or
s(x) · a(x) ≡ 1 (mod P (x)) .

3.3. Extension fields 57

So, s(x), when reduced modulo P (x), is a multiplicative inverse of a(x) in
F [x]/P (x) (one can effectively compute s(x) by substituting b(x) = P (x) in
Euclid’s algorithm in Problem 3.3).

Let F and Φ be fields. We say that Φ is an extension field of F if F is
a subfield of Φ; that is, F ⊆ Φ, and the addition and multiplication opera-
tions of Φ, when acting on the elements of F , coincide with the respective
operations of F .

An extension field Φ of F is a vector space over F . The extension degree
of Φ over F , denoted by [Φ : F], is the dimension of Φ as a vector space
over F .

If P (x) is an irreducible polynomial of degree h over F , then the field
F [x]/P (x) is an extension field of F with extension degree h.

Example 3.5 Let F be the real field R and P (x) be the irreducible
polynomial x2 + 1 over R. The field R[x]/(x2 + 1) is an extension field of R

with extension degree 2. In this field, the sum of two elements, a + bx and
c + dx, is given by

(a + bx) + (c + dx) = (a + c) + (b + d)x ,

while their product is

(a + bx)(c + dx) = ac + (ad + bc)x + bdx2

≡ (ac− bd) + (ad + bc)x (mod (x2 + 1)) .

One can easily identify these operations as addition and multiplication in the
complex field C, with x substituting for

√
−1. Indeed, the fields R[x]/(x2+1)

and C are isomorphic.

When F = GF(q), the field F [x]/P (x) has size qh and is denoted by
GF(qh). This notational convention, which does not specify the polynomial
P (x), will be justified in Chapter 7: we will show in Theorem 7.13 that
all finite fields of the same size are isomorphic. Hence, the field GF(qh)
is essentially unique, even though it may have several (seemingly) different
representations.

Example 3.6 Let F = GF(2) and P (x) = x3 + x + 1. We construct
the field Φ = GF(23) as a ring of residues of the polynomials over F modulo
P (x). The second column in Table 3.2 contains the elements of the field,
which are written as polynomials in the indeterminate ξ.

The third column in the table expresses each nonzero element in the field
as a power of the element ξ = 0 · 1 + 1 · ξ + 0 · ξ2. Indeed,

ξ3 ≡ 1 + ξ (mod P (ξ)) ,

58 3. Introduction to Finite Fields

Table 3.2. Representation of GF(23) as F [ξ]/(ξ3 + ξ + 1).

Coefficients Field element Power of ξ

000 0 0
100 1 1
010 ξ ξ
110 1 + ξ ξ3

001 ξ2 ξ2

101 1 + ξ2 ξ6

011 ξ + ξ2 ξ4

111 1 + ξ + ξ2 ξ5

ξ4 ≡ ξ · ξ3 ≡ ξ(1 + ξ) ≡ ξ + ξ2 (mod P (ξ)) ,

ξ5 ≡ ξ · ξ4 ≡ ξ(ξ + ξ2) ≡ ξ2 + ξ3 ≡ 1 + ξ + ξ2 (mod P (ξ)) ,

ξ6 ≡ ξ · ξ5 ≡ ξ(1 + ξ + ξ2) ≡ ξ + ξ2 + ξ3 ≡ 1 + ξ2 (mod P (ξ)) ,

and
ξ7 ≡ ξ · ξ6 ≡ ξ(1 + ξ2) ≡ ξ + ξ3 ≡ 1 (mod P (ξ)) .

Several remarks are worth making about Example 3.6. First, while the
elements of Φ = GF(23) are represented in the example as polynomials in
F3[ξ], we can also define polynomials over the field Φ itself (in which case we
will typically use the indeterminate x); for example, (ξ+ξ2) + (1+ξ)x2 + x3

is a polynomial in Φ[x].
Secondly, we can obtain an alternate representation of the field GF(23) by

using the other irreducible polynomial of degree 3 over F , namely, x3+x2+1.
The third column of Table 3.2 will look different under such a representation
(see Problem 3.6).

Thirdly, notice the difference between GF(23) and Z8: the latter is the
ring of integer residues modulo 8 and, since it has zero divisors (e.g., 4 · 2 ≡
0 (mod 8)), it is certainly not a field.

Let F be a field and let Φ be an extension field of F with extension
degree [Φ : F] = h. We can represent Φ as a vector space over F using any
basis

Ω = (ω1 ω2 . . . ωh)

of Φ over F . The representation of an element u ∈ Φ will be a column vector

3.4. Roots of polynomials 59

u = (u1 u2 . . . uh)T in F h such that

u = Ωu = (ω1 ω2 . . . ωh)

⎛⎜⎜⎜⎝
u1

u2
...

uh

⎞⎟⎟⎟⎠ =
h∑

i=1

uiωi .

When Φ = F [ξ]/P (ξ) for an irreducible polynomial P (x) of degree h over
F , it is convenient to select the basis

Ω = (1 ξ ξ2 . . . ξh−1) ,

in which case each element u = u1 + u2ξ + . . . + uhξh−1 in Φ is represented
by the vector of coefficients of u when the latter is regarded as a polynomial
in Fh[ξ].

Example 3.7 Continuing Example 3.6, we can represent the elements of
GF(23) as vectors in F 3 (see the first column in Table 3.2), e.g., the vectors
(1 0 1) and (0 1 1) stand for the elements 1+ξ2 and ξ +ξ2, respectively. Ad-
dition in the field then becomes the conventional component-by-component
addition of vectors over F . In order to perform multiplication, we switch
back to the polynomial representation; for example, the product of (1 0 1)
and (0 1 1) equals (1 1 0) since

(1 + ξ2)(ξ + ξ2) = ξ + ξ2 + ξ3 + ξ4 ≡ 1 + ξ (mod P (ξ)) .

Inversion can be implemented using Euclid’s algorithm.
Alternatively, we can use the third column of Table 3.2 as a “logarithm

table” for multiplication as follows. We first see in the table that the elements
(1 0 1) and (0 1 1) equal ξ6 and ξ4, respectively. The product of these two
powers of ξ can then be easily computed by adding the exponents modulo
the multiplicative order, 7, of ξ; i.e., ξ6 · ξ4 = ξ10 ≡ ξ3 (mod P (ξ)). Finally,
we look again at Table 3.2 and see that ξ3 is represented by the vector
(1 1 0). This table approach, which allows us to compute inversions as
well, is commonly used when implementing arithmetic operations in fields
of moderate sizes.

3.4 Roots of polynomials

Let F be a field and Φ be an extension field of F . An element β ∈ Φ is a
root of a polynomial a(x) ∈ F [x] if the equality a(β) = 0 holds in Φ.

In the representation of the field GF(23) in Example 3.6, the element ξ
is a root of the polynomial P (x) = x3 + x + 1. In fact, the elements ξ2 and
ξ4 = ξ2 + ξ are also roots of this polynomial in GF(23).

60 3. Introduction to Finite Fields

Proposition 3.5 Let a(x) be a polynomial over F and let β be an ele-
ment in an extension field Φ of F . Then a(β) = 0 if and only if x−β | a(x),
where the latter division is in Φ[x].

Proof. Write a(x) = b(x)(x− β) + c, where deg c < 1. Then a(β) = 0 if
and only if c = 0.

Assuming the representation of GF(23) as in Example 3.6, we have

x3 + x + 1 = (x− ξ)(x− ξ2)(x− ξ4) .

Thus, while x3 +x+1 is irreducible over GF(2), it is reducible over GF(23),
since it factors into three linear terms over that field.

Proposition 3.6 Let F be a finite field. Then∏
β∈F

(x− β) = x|F | − x . (3.3)

Proof. By Proposition 3.1, every element of F is a root of the polynomial
x|F |−x. Therefore, by Proposition 3.5, the polynomial x−β divides x|F |−x
for every β ∈ F . The claim follows by observing that both sides of (3.3)
have the same degree and both are monic.

Let Φ be an extension field of F and let β ∈ Φ be a root of a nonzero
polynomial a(x) ∈ F [x]. The multiplicity of β in a(x) is the largest integer
m such that (x− β)m | a(x). A root is called simple if its multiplicity is 1.

Theorem 3.7 A polynomial of degree n ≥ 0 over a field F has at most
n roots (counting multiplicity) in every extension field of F .

Proof. Let β1, β2, . . . be the roots of a(x) in an extension field Φ of F
and let mi be the multiplicity of the root βi. The product

∏
i(x − βi)mi ,

which is a polynomial of degree m =
∑

i mi over Φ, necessarily divides a(x)
in Φ[x]; so, m ≤ n.

3.5 Primitive elements

In this section, we will demonstrate a key property of the multiplicative
group of a finite field, namely, that this group is cyclic.

Example 3.8 We construct the field GF(24) as a ring of residues of the
polynomials over F = GF(2) modulo the polynomial P1(x) = x4+x+1. The
elements of the field are listed in Table 3.3 as polynomials in F4[ξ] and sorted

3.5. Primitive elements 61

Table 3.3. Representation of GF(24) as F [ξ]/(ξ4 + ξ + 1).

Power of ξ Field element Coefficients
0 0 0000
ξ0 1 1000
ξ1 ξ 0100
ξ2 ξ2 0010
ξ3 ξ3 0001
ξ4 1 + ξ 1100
ξ5 ξ + ξ2 0110
ξ6 ξ2 + ξ3 0011
ξ7 1 + ξ + ξ3 1101
ξ8 1 + ξ2 1010
ξ9 ξ + ξ3 0101
ξ10 1 + ξ + ξ2 1110
ξ11 ξ + ξ2 + ξ3 0111
ξ12 1 + ξ + ξ2 + ξ3 1111
ξ13 1 + ξ2 + ξ3 1011
ξ14 1 + ξ3 1001

according to increasing powers of the element ξ = 0 · 1 + 1 · ξ + 0 · ξ2 + 0 · ξ3.
Thus, the element ξ is a primitive element if we represent the field GF(24)
as F [ξ]/P1(ξ).

We can represent the field GF(24) also as F [ξ]/P2(ξ), where

P2(x) = x4 + x3 + x2 + x + 1 .

Yet, in this representation, the element ξ has multiplicative order 5 and
is therefore non-primitive: the polynomial P2(x) divides x5 − 1 and, so,
ξ5 ≡ 1 (mod P2(ξ)) (refer also to Problems 3.17 and 3.18).

Theorem 3.8 Every finite field contains a primitive element; that is,
the multiplicative group of a finite field is cyclic.

Proof. Let F be a finite field and let α ∈ F ∗ be of maximal multiplicative
order O(α) in F ∗. We first show that O(β) divides O(α) for every β ∈ F ∗.

For an element β ∈ F ∗, let r be a prime divisor of O(β) and write

O(β) = rm · n and O(α) = rs · t ,

where gcd(r, n) = gcd(r, t) = 1. We have

O(βn) =
O(β)

gcd(O(β), n)
=
O(β)

n
= rm

62 3. Introduction to Finite Fields

and
O(αrs

) =
O(α)

gcd(O(α), rs)
=
O(α)

rs
= t

(see Problem A.9). Now, gcd(rm, t) = 1 and, so,

O(βn · αrs
) = O(βn) · O(αrs

) = rm · t

(Problem A.10). But O(βn ·αrs
) ≤ O(α), since α has a maximal multiplica-

tive order in F ∗; therefore, rm · t ≤ rs · t, i.e., m ≤ s. Hence, rm divides
O(α).

By applying the previous argument to every prime divisor r of O(β) we
obtain that O(β) divides O(α).

We thus conclude that every β ∈ F ∗ is a root of the polynomial xO(α)−1.
By Theorem 3.7 it follows that

O(α) = deg (xO(α) − 1) ≥ |F ∗| = |F | − 1 .

In fact, the inequality must hold with equality, since O(α) divides |F ∗|.

If α is a primitive element in F , then αi is primitive if and only if
gcd(i, |F ∗|) = 1 (Problem A.11). Therefore, the number of primitive ele-
ments in F = GF(q) is φ(q − 1), where φ(·) is the Euler function defined in
Problem A.1.

3.6 Field characteristic

We now turn to demonstrating several properties of the additive groups of
finite fields.

Let F be a field. The characteristic of F , denoted by c(F), is the order
of the element 1 in the additive group of F , provided that this order is finite.
If 1 does not have a finite additive order, then c(F) is defined to be zero.

For example, c(GF(7)) = 7, c(GF(24)) = 2, and c(R) = 0.
Given a positive integer m ∈ Z, the element

1 + 1 + . . . + 1︸ ︷︷ ︸
m times

in a field F will be denoted by m; in most cases, we omit the bar if no
confusion arises. Similarly, for an element β ∈ F ,

mβ = (1 + 1 + . . . + 1︸ ︷︷ ︸
m times

) · β = β + β + . . . + β︸ ︷︷ ︸
m times

.

The distinct elements of F among

0, ±1, ±2, . . . , ±m, . . .

3.6. Field characteristic 63

are called the integers of F . When c(F) > 0, the (ordinary) integers m, n ∈ Z

represent the same integer of F if and only if m ≡ n (mod c(F)); thus, when
c(F) > 0, we may assume without loss of generality that the integers of F
are

0, 1, 2, . . . , c(F)−1 .

The next proposition imposes a restriction on the values that c(F) may
take.

Proposition 3.9 If F is a field with c(F) > 0, then c(F) is a prime.

Proof. Suppose that c(F) = mn for some positive integers m and n.
Then, by the distributive law,

0 =
mn∑
i=1

1 =
(m∑

i=1

1
)(n∑

i=1

1
)

.

Therefore, either
∑m

i=1 1 = 0 or
∑n

i=1 1 = 0, which implies that either m or
n is at least c(F) (= mn). However, this is possible only when either n or
m equals 1.

Suppose that F is a field with c(F) > 0. By the last proposition, c(F) = p
for a prime p, and—without loss of generality—the p distinct integers of F
are 0, 1, . . . , p−1. Since p is the additive order of 1 in F , the integers of F ,
with the addition and multiplication operations of F , form a field which is
isomorphic to GF(p). We verify this next: given two nonnegative integers
m,n ∈ Z, let c be the remainder obtained when the (ordinary) integer m+n
is divided by the characteristic p. Then,

m + n =
(m∑

i=1

1
)

+
(n∑

i=1

1
)

=
m+n∑
i=1

1 =
c∑

i=1

1 = m + n .

Likewise, if d is the remainder of mn modulo p then, by the distributive law,

m · n =
(m∑

i=1

1
)
·
(n∑

i=1

1
)

=
mn∑
i=1

(1 · 1) =
mn∑
i=1

1 =
d∑

i=1

1 = mn .

We conclude that GF(p) is a subfield of F . This, in turn, leads to the
following property of the size of finite fields.

Theorem 3.10 Let F be a finite field with c(F) = p. Then |F | = pn for
some integer n.

64 3. Introduction to Finite Fields

Proof. The field F is an extension field of GF(p) and, as such, it is a
vector space over GF(p) of a finite dimension n. The size of F must therefore
be pn.

Next, we provide several useful facts about the characteristic.

Proposition 3.11 Let F be a field with c(F) = p > 0. For every α, β ∈
F ,

(α± β)p = αp ± βp .

Proof. For 0 < i < p, the binomial coefficient(
p

i

)
=

p(p−1)(p−2) · · · (p−i+1)
i!

(3.4)

is an integer multiple of p: the numerator in (3.4) is divisible by p whereas
the denominator is not.

Corollary 3.12 Let F be a field with c(F) = p > 0. For every α, β ∈ F
and integer m ≥ 0,

(α± β)pm
= αpm ± βpm

.

Proof. Iterate Proposition 3.11 m times.

Corollary 3.13 Let F be a finite field with c(F) = p. For every in-
teger m ≥ 0, the mapping fm : F → F defined by fm : x �→ xpm

is an
automorphism of F (i.e., fm is an isomorphism of F into itself).

Proof. Clearly, fm(α · β) = fm(α) · fm(β) for every α, β ∈ F , and by
Corollary 3.12 we also have fm(α+β) = fm(α)+ fm(β). It remains to show
that fm has an inverse mapping. Observe that if |F | = pn then fm+n = fm.
Hence, we can assume that m < n, and the inverse of fm is then fn−m.

A mapping x �→ xpm
over a finite field of characteristic p is called a

Frobenius mapping .

3.7 Splitting field

The following result complements Theorem 3.7.

Proposition 3.14 Let a(x) be a polynomial of degree n ≥ 0 over a field
F . Then there exists an extension field Φ of F with [Φ : F] < ∞ in which
a(x) has n roots (counting multiplicity).

3.7. Splitting field 65

Proof. The proof is by induction on n for every field, and the result
is obvious for n = 0. As for the induction step, suppose that P (x) is an
irreducible factor of degree m of a(x), and consider the extension field K =
F [ξ]/P (ξ) of F , where ξ is an indeterminate. The element ξ is a root of
P (x) in K and, as such, it is also a root of a(x) in K. Write a(x) =
(x − ξ)b(x), where b(x) is a polynomial of degree n−1 over K. By the
induction hypothesis, there is an extension field Φ of K with [Φ : K] < ∞
in which b(x) has n−1 roots. Clearly, the field Φ is also an extension field
of F and [Φ : F] = [Φ : K][K : F].

Given a field F and a polynomial a(x) ∈ F [x], a field Φ which satisfies the
conditions of the last proposition with the smallest possible extension degree
[Φ : F] is called a splitting field of a(x) over F . (As mentioned earlier, we
will show in Chapter 7 that all finite fields of the same size are isomorphic.
This result, in turn, will imply that given a finite field F and a polynomial
a(x) ∈ F [x], the splitting field of a(x) over F is unique. Until then, however,
we will use the indefinite article when referring to splitting fields.)

Let a(x) =
∑n

i=0 aix
i be a polynomial over F . The formal derivative of

a(x), denoted by a′(x), is defined as

a′(x) =
n∑

i=1

iaix
i−1 .

We have
(a(x)b(x))′ = a′(x)b(x) + a(x)b′(x)

and
[a(b(x))]′ = a′(b(x))b′(x)

(Problem 3.38).
Through the formal derivative, we can determine whether the roots of a

given polynomial over F are simple in all the extension fields of F .

Lemma 3.15 Let a(x) be a nonzero polynomial over a field F . The
roots of a(x) in every extension field of F are simple if and only if
gcd(a(x), a′(x)) = 1.

Proof. Let β be a root of a(x) with multiplicity m in an extension field
Φ of F and write a(x) = (x− β)mb(x) (where b(β) �= 0). We have

a′(x) = m(x− β)m−1b(x) + (x− β)mb′(x) . (3.5)

Hence, x − β divides r(x) = gcd(a(x), a′(x)) in Φ[x] if and only if m > 1.
In particular, deg r(x) = 0 implies m = 1. Conversely, if deg r(x) > 0, then
r(x) has a root β in an extension field of F , in which case x−β divides both

66 3. Introduction to Finite Fields

a(x) and a′(x). By (3.5), the multiplicity of β as a root of a(x) must be
greater than 1, or else we would have a′(β) = b(β) �= 0.

In Section 3.3, we described how extension fields can be constructed
based on irreducible polynomials. Through that construction method, we
effectively provide an explicit representation of the extension field, as in
Examples 3.6 or 3.8. The next proposition, on the other hand, shows the
existence of such fields in a more implicit manner.

Proposition 3.16 Let F = GF(q) and consider the polynomial

Q(x) = xqn − x

over F where n is a positive integer. The roots of Q(x) in a splitting field
of Q(x) over F form an extension field K of F with extension degree [K :
F] = n.

Proof. Denote by Φ a splitting field of Q(x) over F . Since q is a power
of c(F), we have

Q′(x) = qnxqn−1 − 1 = −1 .

Hence, gcd(Q(x), Q′(x)) = 1 and, so, by Lemma 3.15, the polynomial Q(x)
has qn distinct roots in Φ. We denote by K the set of roots of Q(x) in Φ.

For any two elements α, β ∈ K we have

(α + β)qn
= αqn

+ βqn
= α + β

and
(αβ)qn

= αqn
βqn

= αβ .

This implies that K is closed under addition and multiplication in Φ. Since
K is finite, it follows from Problem A.13 that K is a subfield of Φ. Noting
that F ⊆ K and |K| = qn, we thus conclude that K is an extension field of
F with [K : F] = n. (Observe that K itself is in fact a splitting field of Q(x)
over F , which readily implies that [Φ : F] = [K : F] = n.)

The previous proposition implies the following converse of Theorem 3.10.

Theorem 3.17 For every prime p and integer n > 0 there is an exten-
sion field of GF(p) with extension degree n.

3.8 Application: double error-correcting codes

In this section, we exhibit how finite fields can be instrumental in designing
codes: we present a construction of a linear code over F = GF(2) with

3.8. Application: double error-correcting codes 67

minimum distance at least 5. We will start off with a parity-check matrix
of the Hamming code over F = GF(2)—thereby guaranteeing a minimum
distance of at least 3—and then increase the minimum distance by adding
(carefully-selected) rows to that matrix.

We can represent a parity-check matrix of a [2m−1, 2m−1−m, 3] Ham-
ming code C over F = GF(2) as

H = (α1 α2 . . . α2m−1) ,

where αj ranges over all the nonzero elements of GF(2m).

Example 3.9 Construct the field GF(24) as in Example 3.8, and take
αj = ξj−1 for 1 ≤ j ≤ 15. In this case,

H =

⎛⎜⎜⎝
1 0 0 0 1 0 0 1 1 0 1 0 1 1 1
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

⎞⎟⎟⎠ .

Let c = (c1 c2 . . . cn) be a vector of length n = 2m−1 over F = GF(2).
The vector c is a codeword of the [n, n−m, 3] Hamming code C if and only
if HcT = 0 or, equivalently,

n∑
j=1

cjαj = 0 ,

where the equality is over GF(2m).
Taking squares of both sides and recalling that c2

j = cj , we obtain

n∑
j=1

cjα
2
j = 0 .

Hence, the matrix

H2 =
(

α1 α2 . . . α2m−1

α2
1 α2

2 . . . α2
2m−1

)
,

where each element of GF(2m) is represented as a column vector in Fm, is
again a parity-check matrix of C, yet of order 2m×n. So, when adding rows
to H to form H2, we did not change the code; in particular, neither the
minimum distance nor the rate has changed.

68 3. Introduction to Finite Fields

Example 3.10 For the parameters of Example 3.9 we get

H2 =
(

1 ξ ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10 ξ11 ξ12 ξ13 ξ14

1 ξ2 ξ4 ξ6 ξ8 ξ10 ξ12 ξ14 ξ ξ3 ξ5 ξ7 ξ9 ξ11 ξ13

)
,

and, in binary form,

H2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 1 1 0 1 0 1 1 1
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1
1 0 1 0 1 1 1 1 0 0 0 1 0 0 1
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 1 0 1 1 1 1 0 0 0 1 0 0 1 1
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The latter matrix has order 8× 15, yet its rank (as a matrix over GF(2)) is
only 4: each of the last four rows can be obtained as a linear combination
of the first four rows (specifically, rows 6 and 8 are copies of rows 3 and 4,
respectively; row 5 equals the sum of rows 1 and 3; and row 7 is the sum of
rows 2 and 4).

Next, we try to replace the second powers with the third powers of the
nonzero elements of GF(2m), resulting in

H3 =
(

α1 α2 . . . α2m−1

α3
1 α3

2 . . . α3
2m−1

)
.

This matrix, when represented over F = GF(2), is a 2m × n parity-check
matrix of some linear [n, k, d] code over F with k ≥ n−2m. We refer to this
code in the present section as C3.

Example 3.11 For the parameters of Example 3.9 we get

H3 =
(

1 ξ ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10 ξ11 ξ12 ξ13 ξ14

1 ξ3 ξ6 ξ9 ξ12 1 ξ3 ξ6 ξ9 ξ12 1 ξ3 ξ6 ξ9 ξ12

)
.

The respective binary matrix takes the form

H3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 0 1 1 0 1 0 1 1 1
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1
1 0 0 0 1 1 0 0 0 1 1 0 0 0 1
0 0 0 1 1 0 0 0 1 1 0 0 0 1 1
0 0 1 0 1 0 0 1 0 1 0 0 1 0 1
0 1 1 1 1 0 1 1 1 1 0 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

3.8. Application: double error-correcting codes 69

and one can verify that the eight rows in this matrix are linearly independent
over F . Hence, in this case, the code C3 turns out to be a linear [15, 7] code
over F .

We next show that the minimum distance of C3 is at least 5. We do this
by presenting an algorithm for decoding correctly every pattern of up to two
errors.

Let c ∈ C3 be the transmitted codeword and y be the received word.
The error word is given by e = y − c, and we compute the syndrome of y
with respect to the matrix H3 (see Section 2.4.2). For the analysis in the
sequel, we find it convenient to write the syndrome as a vector of length 2
over GF(2m): (

s1

s3

)
= H3yT = H3eT .

Suppose that at most two errors have occurred, i.e., w(e) ≤ 2. We
distinguish between the following cases.

Case 1: e = 0. Here (
s1

s3

)
= H3eT = 0 ,

namely, s1 = s3 = 0.
Case 2: w(e) = 1. Let i be the location of the (only) entry equaling 1 in

e. Then (
s1

s3

)
= H3eT =

(
αi

α3
i

)
;

namely, s3 = s3
1 �= 0, and the error location is the index i such that αi = s1.

Case 3: w(e) = 2. Let i and j be the distinct locations of the two entries
in e equaling 1. We have(

s1

s3

)
= H3eT =

(
αi + αj

α3
i + α3

j

)
.

Since s1 = αi + αj �= 0, we can write

s3

s1
=

α3
i + α3

j

αi + αj
= α2

i + αiαj + α2
j .

Also,
s2
1 = α2

i + α2
j .

By adding the left-hand sides and, respectively, the right-hand sides of the
last two equations we obtain

s3

s1
+ s2

1 = αiαj ;

70 3. Introduction to Finite Fields

in particular, αiαj �= 0 implies s3 �= s3
1, thereby making Case 3 distinguish-

able from Cases 1 and 2. Recalling that

s1 = αi + αj ,

it follows that αi and αj are the solutions to the following quadratic equation
over GF(2m) in the unknown x:

x2 + s1x + s3s
−1
1 + s2

1 = 0 . (3.6)

Now, the problem of finding roots of a quadratic polynomial over GF(2m) can
be translated into a set of m linear equations over GF(2) (see Problem 3.42).
Alternatively, we can also find the solutions to (3.6) simply by substituting
the elements α1, α2, . . . , α2m−1 into the left-hand side of (3.6) and checking
the result; such a procedure requires a number of operations in GF(2m) that
is at most linear in the code length.

Summing up Cases 1–3, we have ended up with a decoding algorithm for
correcting up to two errors.

The double-error-correcting [narrow-sense] alternant code over F =
GF(2) is a linear [n, k, d] code of length n ≤ 2m−1 with a (2m)× n parity-
check matrix

H3 =
(

α1 α2 . . . αn

α3
1 α3

2 . . . α3
n

)
, (3.7)

for distinct nonzero elements αj ∈ GF(2m). Such codes are obtained from
C3 by shortening (see Problem 2.14) and, so, we have k ≥ n−2m and d ≥ 5.
Obviously, the decoding algorithm that we have described for C3 applies to
these shortened codes as well.

Figure 3.1 summarizes the decoding algorithm for correcting up to two
errors while using a double-error-correcting [n, k≥n−2m] alternant code over
F = GF(2). We will see in Section 5.5 that these codes are instances of a
more general family of codes.

Problems

[Section 3.1]

Problem 3.1 Verify that the multiplicative group of GF(11) is cyclic, and find all
the generators of this group (i.e., all the primitive elements in GF(11)).

[Section 3.2]

Problem 3.2 Show that F [x] is an integral domain for any field F .

Problems 71

Input: received word y ∈ Fn.
Output: error word e ∈ Fn or an error-detection indicator “e”.

1. Compute the syndrome(
s1

s3

)
= H3yT ∈ (GF(2m))2 ,

where H3 is given by (3.7);

2. if s1 = s3 = 0 then return e = 0;

3. else if s3
1 = s3 then return an error word e with only one nonzero entry at

location i, if any, such that αi = s1;

4. else if s1 �= 0 then return an error word e with two nonzero entries at locations
i and j, where i and j correspond to two distinct solutions αi and αj , if any,
to the quadratic equation

x2 + s1x + s3s
−1
1 + s2

1 = 0

in the unknown x over GF(2m);

5. otherwise, or if any of the previous steps fails (by not finding the elements
αi or αj), return an error-detection indicator “e” to signal that at least three
errors have occurred.

Figure 3.1. Decoding algorithm for a double-error-correcting binary alternant code.

Problem 3.3 (Extended Euclid’s algorithm for polynomials) Let a(x) and b(x) be
polynomials over a field F such that a(x) �= 0 and deg a > deg b and consider the
algorithm in Figure 3.2 for computing the polynomials ri(x), qi(x), si(x), and ti(x)
over F (the algorithm is written in the style of the C programming language, and
the notation “ri−2(x) div ri−1(x)” stands for the quotient obtained when ri−2(x)
is divided by ri−1(x)).

Let ν be the largest index i for which ri(x) �= 0. Show the following properties
by induction on i:

1. si(x)ti−1(x)− si−1(x)ti(x) = (−1)i+1 for i = 0, 1, . . . , ν+1.

2. si(x)a(x) + ti(x)b(x) = ri(x) for i = −1, 0, . . . , ν+1.

3. deg ti + deg ri−1 = deg a for i = 0, 1, . . . , ν+1.

4. deg si + deg ri−1 = deg b for i = 1, 2, . . . , ν+1.

5. If a polynomial g(x) divides both a(x) and b(x) then g(x) divides ri(x) for
i = −1, 0, . . . , ν+1.

6. rν(x) divides ri(x) for i = ν−1, ν−2, . . . ,−1.

(From parts 5 and 6 it follows that rν(x) = gcd(a(x), b(x)).)

72 3. Introduction to Finite Fields

r−1(x) ← a(x); r0(x) ← b(x);
s−1(x) ← 1; s0(x) ← 0;
t−1(x) ← 0; t0(x) ← 1;
for (i← 1; ri−1(x) �= 0; i++) {

qi(x) ← ri−2(x) div ri−1(x);
ri(x) ← ri−2(x)− qi(x)ri−1(x);
si(x) ← si−2(x)− qi(x)si−1(x);
ti(x) ← ti−2(x)− qi(x)ti−1(x);

}

Figure 3.2. Euclid’s algorithm.

Problem 3.4 Let r and s be positive integers. Show that over every field, the
polynomial xr − 1 divides xs − 1 if and only if r | s.

Problem 3.5 Let r and s be positive integers and let t = gcd(r, s). The purpose of
this problem is to generalize Problem 3.4 and show that over every field, gcd(xr −
1, xs − 1) = xt − 1.

1. Show that over every field, the polynomial xt − 1 divides both xr − 1 and
xs − 1.

Let g(x) be a polynomial that divides both xr − 1 and xs − 1 over a field F .

2. Show that the polynomial x has a finite multiplicative order in the ring
F [x]/g(x).

3. Denote by e the multiplicative order of x in F [x]/g(x). Show that e divides
both r and s and, therefore, it divides t.

Hint: See part 1 of Problem A.9.

4. Show that g(x) divides xe − 1 and, therefore, it divides xt − 1.

5. Deduce that gcd(xr − 1, xs − 1) = xt − 1.

[Section 3.3]
Problem 3.6 Let F = GF(2) and suppose that the field Φ = GF(23) is represented
as F [ξ]/(ξ3 + ξ2 + 1). Express each nonzero element of Φ as a power of ξ.

Problem 3.7 Let F = GF(2) and represent the field Φ = GF(23) as F [ξ]/(ξ3 +ξ+
1). In particular, each element u ∈ Φ is associated with a vector u = (u0 u1 u2)T

in F 3 such that u = u0 + u1ξ + u2ξ
2; that is,

u = (1 ξ ξ2)

⎛⎝ u0

u1

u2

⎞⎠ = (1 ξ ξ2)u .

Consider the mapping f : Φ → Φ defined by f : u �→ ξ2u. Express f as a linear
transformation by finding a 3× 3 matrix A over F such that

f : (1 ξ ξ2)u�→ (1 ξ ξ2)Au .

Problems 73

Problem 3.8 Let F = GF(2) and let the field Φ = GF(22) be represented as
F [ξ]/(ξ2 + ξ + 1).

1. Let u0, u1, v0, and v1 denote elements in F . Show that the product of the
elements u0 + u1ξ and v0 + v1ξ in Φ is given by

(u0v0 + u1v1) + (u0v1 + u1v0 + u1v1)ξ

and, so, it can be computed using three additions and four multiplications
in F .

2. Show that two elements in Φ can be multiplied using four additions and three
multiplications in F .

Hint: Consider the terms u0v0, u1v1, and (u0 + u1)(v0 + v1).

3. Show that the square of an element in Φ can be computed using one addition
in F .

4. Show that the mapping Φ→ Φ defined by x�→ ξx2 can be computed only by
re-positioning of elements of F , without any arithmetic operations in F .

Problem 3.9 Let a(x) =
∑n

i=0 aix
i be a monic polynomial of degree n over a field

F . The companion matrix of a(x), denoted by Ca, is an n×n matrix over F defined
by

Ca =

⎛⎜⎜⎜⎜⎜⎝
0 0 . . . 0 −a0

1 0 . . . 0 −a1

0 1 . . . 0 −a2

...
. 0

...
0 . . . 0 1 −an−1

⎞⎟⎟⎟⎟⎟⎠ .

1. Show that a(x) is the characteristic polynomial of Ca; i.e., a(x) equals the
determinant det(xI − Ca).

2. Let

u(x) =
n−1∑
i=0

uix
i and v(x) =

n−1∑
i=0

vix
i

be two polynomials in Fn[x], and define the associated vectors

u = (u0 u1 u2 . . . un−1)T and v = (v0 v1 v2 . . . vn−1)T

in Fn. Show that
v(x) ≡ x · u(x) (mod a(x))

if and only if
v = Cau .

3. Consider the circuit shown in Figure 3.3. Each of the n boxes represents a
delay unit, which can store an element of F . The delay units are synchronous
through the control of a clock. A circle labeled −ai represents a multiplication
by the constant −ai, and the circled “+” represents addition in F . Let
u = (u0 u1 u2 . . . un−1)T be the initial contents of the delay units. Show
that right after the �th clock tick, the contents of the delay units equal C�

au;
hence, the circuit computes the remainder in Fn[x] obtained when dividing
x� · u(x) by a(x).

74 3. Introduction to Finite Fields

u0 + u1 + · · · + un−1

–a0 –a1 –a2 · · · –an−1

� � � � � � �

� � � �

� � �

· · ·

Figure 3.3. Multiplication by powers of x modulo a(x).

4. (Multiplication by a fixed polynomial modulo a(x)) Let b(x) =
∑

i bix
i be

a polynomial over F . Consider the mapping ψb : Fn[x] → Fn[x] defined
by ψb : u(x) �→ v(x), where v(x) is the remainder in Fn[x] obtained when
dividing b(x) · u(x) by a(x); namely,

v(x) ≡ b(x) · u(x) (mod a(x)) .

Show that ψb can be expressed as a linear transformation Fn → Fn defined
by u�→ b(Ca)u, where

b(Ca) =
∑

i

biC
i
a .

5. Show that the set of matrices

{ b(Ca) : b(x) ∈ Fn[x] } ,

with ordinary matrix addition and multiplication, forms a ring isomorphic to
F [x]/a(x); in particular, if a(x) is irreducible over F then the resulting ring
is a field.

Hint: Recall that a(Ca) = 0 (the Cayley–Hamilton Theorem).

6. Show that a(x) is irreducible over F if and only if b(Ca) is nonsingular for
every nonzero polynomial b(x) ∈ Fn[x].

Problem 3.10 Let P (x) = x2+x+β be an irreducible polynomial over F = GF(q)
and consider the field Φ = F [ξ]/P (ξ). Show that the multiplicative inverse of a
nonzero element u0 + u1ξ ∈ Φ is given by

u0 − u1 − u1ξ

u2
0 − u0u1 + u2

1β

(notice that the denominator of the latter expression is a nonzero element of F).

[Section 3.4]

Problem 3.11 Let Φ be an extension field of F = GF(q) and consider the poly-
nomial Q(x) = xq − x over Φ. Show that the roots of Q(x) in Φ are the elements
of F .

Problems 75

Problem 3.12 Let F be a field and Φ be an extension field of F with extension
degree [Φ : F] = h < ∞. Let β be an element in Φ and denote by m the small-
est positive integer such that the elements 1, β, β2, . . . , βm are linearly dependent
over F .

1. Verify that m ≤ h.

2. Show that if a(x) is a nonzero polynomial in F [x] such that a(β) = 0, then
deg a(x) ≥ m.

3. Show that there exists a unique monic polynomial Mβ(x) of degree exactly
m over F such that Mβ(β) = 0.

4. Show that the polynomial Mβ(x) is irreducible over F .

5. Show that if a(x) is a nonzero polynomial in F [x] such that a(β) = 0, then
Mβ(x) divides a(x).

Hint: Show that β is a root of the remainder polynomial obtained when a(x)
is divided by Mβ(x).

6. Let F = GF(2) and Φ = F [ξ]/(ξ3 + ξ + 1). Compute the polynomial Mξ3(x).

Hint: Using Table 3.2, identify the representations in F 3 of ξ3i for i = 0, 1, 2, 3
according to the basis Ω = (1 ξ ξ2). Then check the linear dependence of
those representations.

Problem 3.13 (Vandermonde matrix) Let β1, β2, . . . , βr be r distinct elements of
a field F and let X be the r × r matrix that is given by

X =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 . . . 1
β1 β2 . . . βr

β2
1 β2

2 . . . β2
r

...
...

...
...

βr−1
1 βr−1

2 . . . βr−1
r

⎞⎟⎟⎟⎟⎟⎟⎠ .

Show that
det(X) =

∏
(i,j):

1≤i<j≤r

(βj − βi) .

Hint: Let z be an indeterminate and consider the parametric matrix

X(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1 1
β1 β2 . . . βr−1 z

β2
1 β2

2 . . . β2
r−1 z2

...
...

...
...

...
βr−2

1 βr−2
2 . . . βr−2

r−1 zr−2

βr−1
1 βr−1

2 . . . βr−1
r−1 zr−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Show that the polynomial
b(z) = det(X(z))

76 3. Introduction to Finite Fields

is divisible by z − βi for every 1 ≤ i < r and that the coefficient of zr−1 in b(z) is
given by det(X̃), where X̃ denotes the (r−1) × (r−1) upper-left sub-matrix of X.
Deduce by induction on r that

b(z) =
(r−1∏

i=1

(z − βi)
) ∏

(i,j):
1≤i<j<r

(βj − βi) .

Complete the proof by arguing that det(X) = b(βr).

Problem 3.14 (Unique interpolation) Let β1, β2, . . . , βr be r distinct elements of
a field F .

1. Given a vector (v1 v2 . . . vr) in F r, show that there exists a unique polyno-
mial u(x) ∈ Fr[x] that interpolates through the points {(βj , vj)}r

j=1; namely,
u(x) satisfies

u(βj) = vj , 1 ≤ j ≤ r .

Hint: Use Problem 3.13 to show that the set of linear equations

r−1∑
i=0

uiβ
i
j = vj , 1 ≤ j ≤ r ,

has a unique solution for (u0 u1 . . . ur−1).

2. Show that the polynomial u(x) in part 1 is given by

u(x) =
n∑

�=1

v�

∏
1≤m≤r:

m �=�

x− βm

β� − βm
.

Hint: Verify that u(βj) = vj for all j.

Problem 3.15 Let F be the finite field GF(q). Show that every function f : F →
F can be realized uniquely by a polynomial u(x) ∈ Fq[x]; that is, there exists a
unique polynomial u(x) ∈ Fq[x] that satisfies

f(β) = u(β) for every β ∈ F .

Hint: See Problem 3.14.

Problem 3.16 Let a(x) be a polynomial over F and β be an element in an exten-
sion field of F and define b(x) = a(x + β).

1. Show that β is a root of multiplicity m of a(x) if and only if 0 is a root of
multiplicity m of b(x).

2. Write b(x) =
∑

i bix
i. Show that β is a root of multiplicity m of a(x) if and

only if b0 = b1 = . . . = bm−1 = 0 and bm �= 0.

Problems 77

[Section 3.5]
Problem 3.17 Let F = GF(2) and suppose that the field Φ = GF(24) is repre-
sented as F [ξ]/(ξ4 + ξ3 + 1). Express each nonzero element of Φ as a power of ξ.

Problem 3.18 Let F = GF(2) and suppose that the field Φ = GF(24) is repre-
sented as F [ξ]/(ξ4 + ξ3 + ξ2 + ξ + 1). Show that in this representation, ξ + 1 is a
primitive element in Φ.

Hint: Verify that for m ∈ {3, 5}, the powers (ξ +1)m (when computed in Φ) do not
equal 1.

Problem 3.19 Let m be an integer greater than 1. Show that all the elements in
GF(2m) \ {0, 1} are primitive if and only if 2m−1 is a prime (such primes are called
Mersenne primes).

Problem 3.20 Let F = GF(q) where q is a power of an odd prime and let α be a
primitive element in F . Show that α(q−1)/2 = −1.

Hint: Identify α(q−1)/2 as one of the roots in F of the polynomial x2 − 1.

Problem 3.21 Let α1, α2, . . . , αq−1 be the nonzero elements of F = GF(q). Show
that

q−1∏
j=1

αj = −1 .

Hint: Let α be a primitive element in F . First, argue that
∏q−1

j=1 αj = α(q−1)(q−2)/2.
Then distinguish between odd and even values of q: for the former values apply
Problem 3.20, and for the latter values justify the equalities (αq−1)(q−2)/2 = 1 =
(−1)q−1 = −1.

Problem 3.22 Let α1, α2, . . . , αq be the elements of F = GF(q) and let r be an
integer in the range 0 ≤ r < q−1. Show that

q∑
j=1

αr
j = 0

(where 00 is defined as 1).

Hint: The case r = 0 follows by applying Problem A.16 to the additive group of
F . Next, assume that 0 < r < q−1 and let α be a primitive element in F . First,
argue that

∑q
j=1 αr

j =
∑q−2

i=0 αir. Then, using the known formula for the sum of a
geometric progression, show that the latter sum is equal to (α(q−1)r − 1)/(αr − 1).

[Section 3.6]
Problem 3.23 (Quadratic residues) Let F = GF(q), where q is a power of an odd
prime. An element β ∈ F is called a quadratic residue in F if it is a square of
a nonzero element of F . Equivalently, β is a quadratic residue if the polynomial
x2 − β has nonzero roots in F . A nonzero element that is not a quadratic residue
is called a quadratic non-residue.

78 3. Introduction to Finite Fields

1. List all the quadratic residues in GF(7) and in GF(13).

2. Show that there are exactly (q−1)/2 quadratic residues in F .

Hint: An element is a quadratic residue if and only if it is an even power of
a primitive element in F .

3. Show that the quadratic residues in F are the roots of the polynomial
x(q−1)/2−1 in F , and the quadratic non-residues are the roots of x(q−1)/2 +1.

4. Show that −1 is a quadratic residue in F if and only if q ≡ 1 (mod 4).

Hint: Use part 3 (or see Problem 3.20).

5. Suppose that q ≡ 1 (mod 4) and let α be a quadratic non-residue in F . Show
that the set

{α + β : β is a quadratic residue in F }
contains exactly (q−1)/4 quadratic residues in F .

Hint: The problem is equivalent to finding the number of solutions (x, y) ∈
F ∗ × F ∗ of the equation α + x2 = y2. This equation can also be written as
α = (y − x)(y + x). Denote z = y + x, in which case

x =
z − α/z

2
and y =

z + α/z

2

(where the division by 2 stands for multiplication by the inverse of the integer
2 of F). Next, consider the values y ∈ F ∗ obtained when z ranges over the
elements of F ∗, and show that each such y is obtained for two distinct values
of z, which are the two distinct roots of the polynomial z2 − 2yz + α.

6. Show that when q ≡ 1 (mod 4) and α is a quadratic residue in F , the set
defined in part 5 contains exactly (q−5)/4 quadratic residues.

7. Show that when q ≡ 3 (mod 4) and α is a nonzero element in F , the set
defined in part 5 contains exactly (q−3)/4 quadratic residues.

Problem 3.24 (Quadratic polynomials over fields with odd characteristic) Let
F = GF(q), where q is a power of an odd prime, and let P (x) = x2 + αx + β
be a polynomial over F .

1. Find a necessary and sufficient condition on α and β for P (x) to be irreducible
over F .

Hint: The condition involves the discriminant of P (x) (which is defined sim-
ilarly to the real field); see Problem 3.23.

2. Fix α and let β range over all the elements of F . Find the number of poly-
nomials P (x) that are irreducible over F .

3. Fix β and let α range over all the elements of F . Find the number of poly-
nomials P (x) that are irreducible over F (this number may depend on β).

Problem 3.25 (Multiplicative characters) Let Φ be the field GF(q) and C be the
complex field. A multiplicative character of Φ is a nonzero mapping ψ : Φ∗ → C

that satisfies ψ(β · γ) = ψ(β)ψ(γ) for every β, γ ∈ Φ∗.

Problems 79

1. Let ω be a root of order q−1 of unity in C; that is, ω = e2πı/(q−1), where e =
2.71828 · · · is the base of natural logarithms, π = 3.14159 · · · , and ı =

√
−1.

Let α be a primitive element in Φ, and consider the mapping ψ� : Φ∗ → C

that is defined for some integer � ∈ {0, 1, . . . , q−2} by

ψ�(α
i) = ω�i , 0 ≤ i ≤ q−2 .

Show that ψ� is a multiplicative character of Φ.

2. Show that ψ(1) = 1 for every multiplicative character ψ of Φ.

3. Show that (ψ(β))q−1 = 1 for every multiplicative character ψ of Φ and every
β ∈ Φ∗.

4. Show that a multiplicative character of Φ is completely determined by its
value at a primitive element in Φ.

5. Show that the mappings ψ� considered in part 1 range over all the multiplica-
tive characters of Φ.

6. Show that the set of multiplicative characters of Φ is orthogonal: for every
two multiplicative characters ψ�, ψ�′ of Φ,

∑
β∈Φ∗

ψ�(β)ψ∗
�′(β) =

{
q−1 if � = �′

0 otherwise ,

where a∗ denotes the complex conjugate of an element a ∈ C. In particular,
the trivial character ψ0, which takes the value 1 for every nonzero field ele-
ment, is orthogonal to any other multiplicative character; therefore, for every
nontrivial multiplicative character ψ of Φ,∑

β∈Φ∗
ψ(β) = 0 .

7. Let ψ be a nontrivial multiplicative character of Φ and extend its domain to
include the zero value by defining ψ(0) = 0. Show that for every γ ∈ Φ,

∑
β∈Φ∗

ψ(β)ψ∗(β+γ) =
{

q−1 if γ = 0
−1 otherwise .

Hint: Verify the chain of equalities

ψ(β)ψ∗(β+γ) = ψ(β) · ψ∗ (β(γβ−1 + 1)
)

= |ψ(β)|2 ψ∗ (γβ−1 + 1
)

= ψ∗ (γβ−1 + 1
)

.

Then compute the sum
∑

β∈Φ∗ ψ∗(γβ−1 + 1).

Problem 3.26 (Legendre symbol) Let p be an odd prime. An integer a ∈ Z is
called a quadratic residue (respectively, non-residue) modulo p if a is not a multiple

80 3. Introduction to Finite Fields

of p and the integer a of the field F = GF(p) is a quadratic residue (respectively,
non-residue) in F (see Problem 3.23).

Given an integer a ∈ Z, define the Legendre symbol of a modulo p by the
following value in Z:

(
a
p

)
=

⎧⎨⎩
1 if a is a quadratic residue modulo p
0 if p | a
−1 otherwise

.

Thus, the mapping ψ : F ∗ → {−1, 1} that is given by

ψ(a) =
(
a
p

)
, a = 1, 2, . . . , p−1 ,

is the multiplicative character ψ(p−1)/2 of F , as defined in part 1 of Problem 3.25;
this character is also referred to as the quadratic character of F .

1. Show that for every two integers a, b ∈ Z,(
ab
p

)
=
(
a
p

)
·
(
b
p

)
.

2. (Euler’s criterion) Show that if a is an integer that is not a multiple of p, then(
a
p

)
≡ a(p−1)/2 (mod p) .

Hint: Use part 3 of Problem 3.23.

3. (Legendre sequence) Let the sequence x = (x0 x1 x2 · · ·) over Z be defined
by

xi =

{
1 if

(
i
p

)
= 1

−1 otherwise
, i ≥ 0 .

Show that
p−1∑
i=0

xi = −1 .

4. Let x be as in part 3, and define the autocorrelation function of x by

Rx(τ) =
p−1∑
i=0

xixi+τ , τ = 0, 1, . . . , p−1 .

Show that when p ≡ 3 (mod 4),

Rx(τ) =
{

p if τ = 0
−1 otherwise ,

and when p ≡ 1 (mod 4),

Rx(τ) =

⎧⎨⎩
p if τ = 0
−3 if τ is a quadratic residue modulo p
1 otherwise

.

Hint: Use part 4 of Problem 3.23 and part 7 of Problem 3.25.

Problems 81

Problem 3.27 (Fourier transform) Let F = GF(q) and let n be a positive integer
that divides q−1. Fix an element α ∈ F of multiplicative order n (why does such
an element exist?), and denote by X the n× n Vandermonde matrix

(
αij

)n−1

i,j=0
=

⎛⎜⎜⎜⎜⎜⎝
1 1 1 . . . 1
1 α α2 . . . αn−1

1 α2 α4 . . . α2(n−1)

...
...

...
...

...
1 αn−1 α2(n−1) . . . α(n−1)(n−1)

⎞⎟⎟⎟⎟⎟⎠ ,

over F .
Given a column vector y = (yj)n−1

j=0 in Fn, the Fourier transform of y is defined
by ⎛⎜⎜⎜⎝

Y0

Y1

...
Yn−1

⎞⎟⎟⎟⎠ = Xy .

Also, associate with (yj)n−1
j=0 and (Yi)n−1

i=0 the polynomial representations

y(x) = y0 + y1x + . . . + yn−1x
n−1 and Y (x) = Y0 + Y1x + . . . + Yn−1x

n−1 ,

both in Fn[x].

1. Show that the inverse of X is given by

X−1 = (1/n) ·
(
α−ij

)n−1

i,j=0
,

where (1/n) stands here for the multiplicative inverse of the integer n of F .

2. Show that yj = 0 if and only if α−j is a root of the polynomial Y (x).

3. Let y = (yj)n−1
j=0 and z = (zj)n−1

j=0 be two column vectors in Fn with the asso-
ciated polynomial representations y(x) =

∑n−1
j=0 yjx

j and z(x) =
∑n−1

j=0 zjx
j

in Fn[x], and let (Yi)n−1
i=0 and (Zi)n−1

i=0 be the respective Fourier transforms of
y and z. Denote by c(x) =

∑n−1
j=0 cjx

j the remainder of dividing y(x)z(x) by
xn − 1; that is, c(x) is the unique polynomial in Fn[x] that satisfies

c(x) ≡ y(x)z(x) (mod (xn − 1)) ;

the associated vector c = (cj)n−1
j=0 is commonly referred to as the cyclic con-

volution of y and z. Show that the Fourier transform of the vector c is given
by (YiZi)n−1

i=0 .

Problem 3.28 (Discrete logarithms in prime fields) Let F = GF(p) where p is an
odd prime, and let α be a primitive element in F . Define the function

logα : F ∗ → {0, 1, . . . , p−2}

by
logα(αi) = i , i = 0, 1, . . . , p−2 .

The function logα(x) is referred to as the discrete logarithm in F with the basis α.

82 3. Introduction to Finite Fields

Show that when the images of logα(x) are regarded as integers of the field F ,
then logα(x) is realized by the polynomial

u(x) = −1−
p−2∑
j=1

xj

1− α−j

in Fp−1[x]; namely,
logα(β) = u(β) for every β ∈ F ∗ .

Hint: Writing u(x) =
∑p−2

j=0 ujx
j and letting X be a (p−1) × (p−1) Vandermonde

matrix as in Problem 3.27, first verify that the polynomial sought satisfies⎛⎜⎜⎜⎜⎜⎝
0
1
2
...

p−2

⎞⎟⎟⎟⎟⎟⎠ = X

⎛⎜⎜⎜⎜⎜⎝
u0

u1

u2

...
up−2

⎞⎟⎟⎟⎟⎟⎠ .

Deduce from part 1 of Problem 3.27 that

uj = −
p−2∑
i=0

i · α−ij , 0 ≤ j ≤ p−2 .

Proceed by proving the following identity, which holds for every positive integer n
and every element β ∈ F :

n−1∑
i=0

i · βi =

⎧⎨⎩
nβn

β − 1
− β(βn−1)

(β − 1)2
if β �= 1

n(n−1)/2 if β = 1
.

Finally, apply this identity to n = p−1 and β = α−j . (Why is (p−1)(p−2)/2 equal
to 1?)

(The images of logα(x) are interpreted in this problem as elements of the field
F (= Zp) only for the purpose of an exercise. In view of the fact that αi+p−1 = αi

for every integer i, it would be more natural in practice to regard those images as
elements of the ring Zp−1.)

Problem 3.29 Let n and a be positive integers such that gcd(n, a) = 1 and con-
sider the polynomial (x − a)n over the ring of integers. Show that n is a prime if
and only for every i = 1, 2, . . . , n−1, the coefficient of xi in (x − a)n is divisible
by n.

Hint: Obtain the “only if” part from Proposition 3.11. As for the “if” part, let p
be a prime divisor of n and let k be the multiplicity of p in the prime factorization
of n. Show that pk does not divide

(
n
p

)
an−p.

Problem 3.30 Let Φ be an extension field of F = GF(q). Show that if an element
α ∈ Φ is a root of a polynomial a(x) over F , then so are the elements αqr

for every
r ≥ 0.

Problems 83

Problem 3.31 (Trace of an element) Let F = GF(q) and Φ = GF(qm). Define
the trace polynomial over Φ with respect to F by

TΦ:F (x) = x + xq + xq2
+ . . . + xqm−1

.

The trace with respect to F of an element β ∈ Φ is defined as TΦ:F (β).

1. Show that for every β ∈ Φ,

(TΦ:F (β))q = TΦ:F (βq) = TΦ:F (β) .

2. Show that TΦ:F (β) ∈ F for every β ∈ Φ.

Hint: See Problem 3.11.

3. Show that the mapping Φ → F defined by x �→ TΦ:F (x) is a linear transfor-
mation over F ; namely, for every b, c ∈ F and β, γ ∈ Φ,

TΦ:F (b · β + c · γ) = b · TΦ:F (β) + c · TΦ:F (γ) .

4. Show by a counting argument that every linear transformation Φ→ F (over
F) can be written in the form x�→ TΦ:F (μx) for some μ ∈ Φ.

5. Show that when β ranges over all the elements of Φ, the trace TΦ:F (β) takes
each value of F exactly qm−1 times.

Hint: Use Problem 2.4.

6. Show that for every b ∈ F ,

TΦ:F (x)− b =
∏

β∈Φ : TΦ:F (β)=b

(x− β) .

7. Show that
xqm − x =

∏
b∈F

(TΦ:F (x)− b) .

8. Find a necessary and sufficient condition on m for having TΦ:F (b) = 0 for
every b ∈ F .

9. Let F be the field GF(2) and let the extension field Φ = GF(24) be represented
as F [ξ]/(ξ4 + ξ + 1) (see Table 3.3). Identify the elements β ∈ Φ for which
TΦ:F (β) = 1.

Problem 3.32 (Linearized polynomials) Let F = GF(q) and Φ = GF(qn). A
linearized polynomial over Φ with respect to F is a polynomial over Φ of the form

a(x) =
∑t

i=0 aix
qi

for some t ≥ 0. Hereafter in this problem, all the linearized polynomials are assumed
to be over Φ with respect to F .

1. Let a(x) be a linearized polynomial. Show that the mapping Φ → Φ defined
by x�→ a(x) is a linear transformation over F .

84 3. Introduction to Finite Fields

2. Show by a counting argument that every linear transformation Φ → Φ over
F can be represented as a mapping x�→ a(x) for some linearized polynomial
of degree at most qn−1.

3. Let a(x) be a linearized polynomial of degree qt where 0 ≤ t < n. Fix a basis
Ω = (α1 α2 . . . αn) of Φ over F , and let A be an n×n matrix representation
of the mapping Φ → Φ defined by x �→ a(x); that is, if u is a column vector
in Fn that represents an element u ∈ Φ as u = Ωu, then Au is a vector
representation of a(u), i.e., a(u) = ΩAu. Show that rank(A) ≥ n−t.

Hint: Find an upper bound on the size of the right kernel of A.

Problem 3.33 Let F = GF(q) and Φ = GF(qn) and let β1, β2, . . . , βm be elements
of Φ. Show that the m×m matrix

B =

⎛⎜⎜⎜⎜⎜⎜⎝

β1 β2 . . . βm

βq
1 βq

2 . . . βq
m

βq2

1 βq2

2 . . . βq2

m
...

...
...

...
βqm−1

1 βqm−1

2 . . . βqm−1

m

⎞⎟⎟⎟⎟⎟⎟⎠
is nonsingular if and only if β1, β2, . . . , βm, as elements belonging to a linear space
Φ over F , are linearly independent over F .

Hint: To show the “if” part, observe that (a0 a1 . . . am−1)B = 0 if and only if
β1, β2, . . . , βm are roots of the polynomial a(x) =

∑m−1
i=0 aix

qi

. Then use Prob-
lem 3.32 to argue that if β1, β2, . . . , βm are roots of a(x), then so are all their linear
combinations over F . Conclude that a(x) must be the zero polynomial whenever
β1, β2, . . . , βm are linearly independent over F .
To show the “only if” part, observe that for every c1, c2, . . . , cm ∈ F ,

m∑
j=1

cjβj = 0 =⇒
m∑

j=1

cjβ
qi

j = 0 for every i ≥ 0 .

Problem 3.34 Let F = GF(q) and let U be a linear subspace of Φ = GF(qn) over
F . Show that

a(x) =
∏
γ∈U

(x− γ)

is a linearized polynomial over Φ with respect to F (see Problem 3.32 for the
definition of linearized polynomials).

Hint: Let β1, β2, . . . , βm be a basis of U over F . Use Problem 3.33 to show that the
set of m linear equations

βqm

j +
m−1∑
i=0

aiβ
qi

j = 0 , 1 ≤ j ≤ m ,

has a unique solution for (a0 a1 . . . am−1) ∈ Φm. Then verify that a(x) equals
xqm

+
∑m−1

i=0 aix
qi

.

Problems 85

Problem 3.35 (Dual basis) Let F = GF(q) and let Ω = (β1 β2 . . . βn) be a basis
of Φ = GF(qn) over F . The dual basis (or complementary basis) of Ω over F is a
basis (λ1 λ2 . . . λn) of Φ over F for which

TΦ:F (λiβj) =
{

1 if i = j
0 if i �= j

, 1 ≤ i, j ≤ n ,

where TΦ:F (·) denotes the trace with respect to F , as defined in Problem 3.31.

1. Show that a dual basis always exists and that it is unique.

Hint: Using Problem 3.33, show that the set of n linear equations

n∑
j=1

λjβ
qi

j =
{

1 if i = 0
0 if i �= 0 , 0 ≤ i < n ,

has a unique solution for (λ1 λ2 . . . λn) ∈ Φn. Given that solution, show
that the n× n matrix ⎛⎜⎜⎜⎜⎝

λ1 λq
1 λq2

1 . . . λqn−1

1

λ2 λq
2 λq2

2 . . . λqn−1

2
...

...
...

...
...

λn λq
n λq2

n . . . λqn−1

n

⎞⎟⎟⎟⎟⎠
is a right inverse of the matrix B = (βqi

j)n−1
i=0

n
j=1 and, as such, it is also a left

inverse.

2. Let γ be an element of Φ and let u = (u1 u2 . . . un)T be the vector in Fn

that represents γ with respect to the basis Ω, that is, γ = Ωu. Show that

ui = TΦ:F (γλi) , 1 ≤ i ≤ n .

Problem 3.36 (Additive characters) Let F = GF(p) and Φ = GF(pm) where p is
a prime. An additive character of Φ is a nonzero mapping χ : Φ → C that satisfies
χ(β + γ) = χ(β)χ(γ) for every β, γ ∈ Φ.

1. Let ω be a root of order p of unity in C (see Problem 3.25), and consider the
mapping χμ : Φ → C that is defined for some μ ∈ Φ by

χμ(β) = ωTΦ:F (μβ) , β ∈ Φ ,

where x�→ TΦ:F (x) is the trace with respect to F as defined in Problem 3.31
(raising ω to a power b ∈ F is the same as writing ωt for some positive integer
t such that t = b). Show that χμ is an additive character of Φ.

2. Show that χ(0) = 1 for every additive character χ of Φ.

3. Show that (χ(β))p = 1 for every additive character χ of Φ and every β ∈ Φ.

86 3. Introduction to Finite Fields

4. Let Ω = (α1 α2 . . . αm) be a basis of Φ over F . Show that for every additive
character χ of Φ and every column vector u = (u1 u2 . . . um)T ∈ Fm,

χ(Ωu) =
m∏

j=1

(χ(αj))uj .

That is, an additive character of Φ is completely determined by its values at
a basis of Φ over F .

5. Let ω be a root of order p of unity in C. Show that for every additive character
χ of Φ there exists a row vector v ∈ Fm such that

χ(Ωu) = ωv·u , u ∈ Fm .

6. Show that the mappings χμ considered in part 1 range over all the additive
characters of Φ.

Hint: See parts 3 and 4 of Problem 3.31.

7. Show that the set of additive characters of Φ is orthogonal, i.e., for every two
additive characters χμ, χμ′ over Φ,∑

β∈Φ

χμ(β)χ∗
μ′(β) =

{
pm if μ = μ′

0 otherwise ,

where (·)∗ denotes a complex conjugate. Deduce that with the exception of
the trivial character χ0 (which takes the value 1 for every field element), every
additive character χ of Φ satisfies∑

β∈Φ

χ(β) = 0

(compare with part 6 of Problem 3.25).

8. Let χ be a nontrivial additive character of Φ. Show that for every γ ∈ Φ,∑
β∈Φ

χ(β)χ∗(γβ) =
{

pm if γ = 1
0 otherwise .

Problem 3.37 Let F = GF(p) and Φ = GF(pm) where p is a prime, and let
T(x) = TΦ:F (x) be the trace polynomial over Φ with respect to F , as defined in
Problem 3.31.

Fix α to be a primitive element in Φ and ω to be a root of order p of unity in
the complex field C, and consider the sequence x = (x0 x1 x2 · · ·) over C that is
defined by

xi = ωT(αi) , i ≥ 0 .

1. Show that
pm−2∑
i=0

xi = −1 .

Hint: Use part 7 of Problem 3.36.

Problems 87

2. Let x be as in part 1, and define the autocorrelation function of x by

Rx(τ) =
pm−2∑
i=0

xix
∗
i+τ , τ = 0, 1, . . . , pm−2

(where x∗
i+τ denotes the complex conjugate of xi+τ). Show that

Rx(τ) =
{

pm−1 if τ = 0
−1 otherwise .

Hint: Use again part 7 of Problem 3.36.

(Compare the properties of x herein with those in parts 3 and 4 of Problem 3.26.)

[Section 3.7]

Problem 3.38 Let a(x) and b(x) be polynomials over F and let c be an element
of F . Prove the following properties of the formal derivative:

1. (a(x) + b(x))′ = a′(x) + b′(x).

2. (c · a(x))′ = c · a′(x).

3. (a(x)b(x))′ = a′(x)b(x) + a(x)b′(x).

4. [a(b(x))]′ = a′(b(x))b′(x).

Problem 3.39 Let a(x) be a polynomial over a field F and let β be an element in
an extension field of F .

1. Show that β is a multiple root of a(x) if and only if a(β) = a′(β) = 0.

2. Show by example that there are cases where β is a root of multiplicity less
than 3 of a(x), yet a(β) = a′(β) = a′′(β) = 0.

Hint: Consider fields with characteristic 2.

Problem 3.40 Let a(x) =
∑n

i=0 aix
i be a polynomial over F . The �th Hasse

derivative (also known as the �th hyper-derivative) of a(x), denoted by a[�](x), is
defined as

a[�](x) =
n∑

i=�

(
i
�

)
aix

i−� .

1. Verify that a′(x) = a[1](x).

2. Show that the following properties hold for every two polynomials a(x) and
b(x) over F and every element c in F :

(a) (a(x) + b(x))[�] = a[�](x) + b[�](x).

(b) (c · a(x))[�] = c · a[�](x).

(c) (a(x)b(x))[�] =
∑�

m=0 a[m](x)b[�−m](x).

88 3. Introduction to Finite Fields

3. Show that for every field element β and every nonnegative integer i,

((x− β)i)[�] =
(

i
�

)
(x− β)i−�

(
(

i
�

)
is defined as 0 when i < �).

4. Show that for every polynomial b(x) =
∑n

i=0 bix
i over F and every element

β in an extension field of F ,

(b(x− β))[�] =
n∑

i=�

(
i
�

)
bi · (x− β)i−� = b[�](ξ)|ξ=x−β .

5. Let β be an element in an extension field of F . Show that β is a root of
a(x) of multiplicity exactly m if and only if m is the smallest � such that
a[�](x)|x=β �= 0.

Hint: Define b(x) = a(x + β) and use part 4 and Problem 3.16.

Problem 3.41 Let α be a nonzero element with multiplicative order n in a field F .

1. Show that F is a splitting field of the polynomial xn − 1 over F , and find all
the roots of this polynomial in F . What is the multiplicity of each root?

2. Show that
n−1∏
i=1

(x− αi) = 1 + x + x2 + . . . + xn−1

and, so,
n−1∏
i=1

(1− αi) = n .

Hint:
(x− 1)(1 + x + x2 + . . . + xn−1) = xn − 1 .

[Section 3.8]
Problem 3.42 (Quadratic polynomials over fields with characteristic 2) Let F =
GF(2) and Φ = GF(2m) and for a fixed element β ∈ Φ define the polynomial Pβ(x)
over Φ by

Pβ(x) = x2 + x + β .

Let TΦ:F (x) be the trace polynomial over Φ with respect to F , as defined in Prob-
lem 3.31.

1. Can Pβ(x) have multiple roots in Φ?

2. Show that Pβ(x) has roots in Φ only if TΦ:F (β) = 0.

Hint: Given an element γ ∈ Φ, compute the value TΦ:F (Pβ(γ)).

3. The polynomial P0(x) (i.e., Pβ(x) for β = 0) is evaluated at all the elements
of Φ. Show that P0(x) takes each value γ ∈ Φ at most twice. What can be
said about the trace TΦ:F (γ) of each value γ taken by P0(x)?

Problems 89

4. Based on part 3, show that if TΦ:F (β) = 0 then Pβ(x) has two distinct roots
in Φ.

5. Let α be a nonzero element in Φ. Show that the polynomial x2 + αx + β is
irreducible over Φ if and only if TΦ:F (β/α2) = 1. How many roots does this
polynomial have in Φ when α = 0?

Hint: x2 + αx + β = α2 · Pβ/α2(x/α).

(Recall from Corollary 3.13 that taking the square of an element in Φ is an auto-
morphism of Φ and, so, it is a linear transformation over F . Hence, the equation
x2 +αx = β over Φ can be translated into a set of m linear equations over F , whose
solutions, if any, are the roots of x2 + αx + β in Φ.)

Problem 3.43 Verify that the algorithm in Figure 3.1 will produce the error-
detection indicator “e” if the computed syndrome is such that s1 = 0 and s3 �= 0.

Problem 3.44 (Linear [q2+1, q2−3, 4] codes over GF(q)) Let F = GF(q) and for
b, c ∈ F let f : F × F → F be the function

f(x, y) = x2 + bxy + cy2 .

Consider the 4× 3 matrix over F which is given by

B =

⎛⎜⎜⎝
1 1 1
α1 α2 α3

β1 β2 β3

f(α1, β1) f(α2, β2) f(α3, β3)

⎞⎟⎟⎠ ,

where (α1 β1), (α2 β2), and (α3 β3) are distinct elements of F 2.

1. Show that the columns of B are linearly dependent over F only if

f(α1−α2, β1−β2) = f(α2−α3, β2−β3) = f(α3−α1, β3−β1) = 0 .

Hint: Start by showing that if the columns of B are linearly dependent, then
either α1 = α2 = α3 or

β1−β2

α1−α2
=

β2−β3

α2−α3
=

β3−β1

α3−α1
.

2. Show that if f(x, 1) = x2 + bx + c is an irreducible polynomial over F , then
the columns of B are linearly independent over F .

3. Suppose that f(x, 1) = x2+bx+c is an irreducible polynomial over F , and let
C be the linear code of length q2 over F whose parity-check matrix consists
of all distinct column vectors of the form⎛⎜⎜⎝

1
α
β

f(α, β)

⎞⎟⎟⎠ ,

where (α β) ranges over all the elements of F 2. Show that the minimum
distance of C is at least 4.

4. Show that the minimum distance remains at least 4 when one adds to the
parity-check matrix in part 3 the column vector (0 0 0 1)T .

90 3. Introduction to Finite Fields

Notes

An extensive treatment of finite fields can be found in the book by Lidl and Niederre-
iter [229]. More material can be found in books on coding theory, e.g., in Blahut [46,
Chapter 4] and MacWilliams and Sloane [249, Chapter 4].

[Section 3.2]
Euclid’s algorithm and its complexity analysis are covered in many sources. See, for
example, Aho et al. [6, Section 8.8], von zur Gathen and Gerhard [144, Section 11.1],
Knuth [215, Sections 4.5 and 4.6], and Zippel [403, Chapters 1 and 8]. There are
known methods for accelerating Euclid’s algorithm: the algorithm in [144, Sec-
tion 11.1] computes the gcd of two polynomials in Fn[x] using O(n log2 n log log n)
arithmetic operations in F (hereafter, the notation O(f) stands for an expression
that grows at most linearly with f).

There are known efficient algorithms for finding the irreducible factors—in par-
ticular, finding the linear factors and hence the roots—of polynomials over GF(pm).
Some of these algorithms are deterministic and are applicable to cases where p is
small (e.g., fixed): see Berlekamp [34], Berlekamp et al. [39], and Lidl and Niederre-
iter [229, Chapter 4]. Other algorithms are probabilistic and their time complexity
grows polynomially with log p (rather than with p), thereby making them applicable
to large fields as well: see Ben-Or [32], Berlekamp [34], Lidl and Niederreiter [229,
Sections 4.2 and 4.3], Rabin [286], and Shoup [336].

Factorization algorithms can also serve for testing irreduciblity. In Section 7.2
we show that irreducible polynomials are rather dense among all polynomials of the
same degree; hence, any algorithm for testing irreduciblity implies a probabilistic
algorithm for finding irreducible polynomials (refer also to Shoup [334], [335]). As
for explicit constructions of irreducible polynomials over finite fields, the polynomial

x2·3n

+ x3n

+ 1

is irreducible over GF(2) for every positive integer n (see Golomb [152, p. 96] and
Problem 7.11).

[Section 3.3]
The implementation of arithmetic in an extension field Φ of a field F = GF(q) de-
pends on the particular representation of the elements of Φ. When Φ = F [ξ]/P (ξ)
for an irreducible polynomial P (x) of degree n over F , the elements of Φ are com-
monly represented as polynomials in Fn[x]. Addition in Φ is then implemented by
n additions in F . Multiplication can be performed by first computing the product
in F [x] and then reducing the result modulo P (x). The (asymptotically) fastest
known algorithm for multiplying polynomials of degree less than n over F is due
to Schönhage and Strassen [322], [323], requiring O(n log n log log n) additions and
multiplications in F . This is also the complexity of computing the remainder modulo
P (x) ([6, Section 8.3], [144, Section 9.1]), and is thus the complexity of multiplying
elements in Φ. A multiplicative inverse of an element in Φ can be obtained by fast
methods of computing the gcd, requiring O(n log2 n log log n) arithmetic operations
in F [144, Section 11.1].

Notes 91

If only multiplications in F are to be counted, then the multiplication of two
elements in Φ = F [ξ]/P (ξ) can be carried out in O(n) multiplications in F . See
Chudnovsky and Chudnovsky [80] and Winograd [386]. Reducing the number of
multiplications at the expenses of additions in F can lead to savings in complexity if
recursion is used through an intermediate field K, where F ⊆ K ⊆ Φ: multiplication
in Φ is implemented using operations in K, and then each multiplication in K is
realized by operations in F .

[Section 3.5]

There is no general efficient algorithm known for testing whether a given element
α in GF(q) is primitive. When the prime factorization of q−1 is known, then one
can perform the test by checking if α(q−1)/� �= 1 for every prime divisor � of q−1.
Yet, the best known algorithms for integer factorization have super-polynomial time
complexity.

The discrete logarithm problem over finite fields is defined as follows. Let
F = GF(pn) where p is a prime and let α be a primitive element in F ; given
β ∈ F ∗, compute the (unique) integer i ∈ {0, 1, . . . , |F |−2} such that β = αi

(Problem 3.28 deals with the case where n = 1). The fastest known algorithms
for computing the discrete logarithm have a time complexity that is still super-
polynomial in log |F |: see Adleman [1], Coppersmith [85], Coppersmith et al. [86],
Gordon [159], Odlyzko [273], and Schirokauer [320], [321].

[Section 3.6]

The notion of characters (Problems 3.25 and 3.36) can be generalized to every finite
Abelian group G. Specifically, a nonzero mapping χ : G→ C is a character of G if

χ(β + γ) = χ(β)χ(γ) for every β, γ ∈ G

(see, for example, Lidl and Niederreiter [229, Section 5.1]). Denoting by 0 the unity
of G, every character χ of G satisfies χ(0) = 1. For the special case of the ring Zn

we thus have
(χ(1))n = χ(1 + 1 + . . . + 1︸ ︷︷ ︸

n times

) = χ(0) = 1

for every character χ of Zn. This, in turn, implies that the characters of Zn are
given by

χμ(β) = ωμβ
n , β ∈ Zn ,

where ωn is a fixed root of order n of unity in C and μ ranges over the elements of
Zn. It follows that the characters of Zn form a group, where χ0 serves as the unity
element and the product of two characters χμ and χμ′ is defined by

(χμ · χμ′)(β) = χμ(β)χμ′(β) , β ∈ Zn ;

furthermore, this group is isomorphic to Zn. Now, every finite Abelian group G is
isomorphic to the direct sum

Zn1 ⊕ Zn2 ⊕ . . .⊕ Znm

92 3. Introduction to Finite Fields

for some integers n1, n2, . . . , nm (see, for example, the book by MacLane and
Birkhoff [246, p. 387]). Thus, one can conclude that the characters of G take
the form

χ(β1, β2, . . . , βm) =
m∏

i=1

ωμiβi
ni

, (β1, β2, . . . , βm) ∈ Zn1 ⊕ Zn2 ⊕ . . .⊕ Znm
,

for some elements μi ∈ Zni
, and these characters form a group that is isomorphic to

G (see [246, pp. 416–417]). In Problem 3.25, G is the multiplicative group of GF(q)
(in which case m = 1 and n1 = q−1), while in Problem 3.36, G is the additive
group of GF(pm) (in which case n1 = n2 = . . . = nm = p).

Additional properties of the Legendre symbol (Problem 3.26) will be presented
in the notes on Section 13.5.

For a treatment of the Fourier transform over finite fields (Problem 3.27), see
Blahut [46, Chapter 8], [48] and MacWilliams and Sloane [249, Section 8.6].

Problem 3.29 is taken from Agrawal and Biswas [4]; it exhibits one of the
characterizations of prime numbers that has eventually led to the deterministic
polynomial-time algorithm for primality testing due to Agrawal et al. [5].

For more on linearized polynomials (Problem 3.32), see Berlekamp [36, Chap-
ter 11], Lidl and Niederreiter [229, Section 3.4], and MacWilliams and Sloane [249,
Section 4.9].

Chapter 4

Bounds on the Parameters of
Codes

In this chapter, we establish conditions on the parameters of codes. In the
first part of the chapter, we present bounds that relate between the length
n, size M , minimum distance d, and the alphabet size q of a code. Two of
these bounds—the Singleton bound and the sphere-packing bound—imply
necessary conditions on the values of n, M , d, and q, so that a code with
the respective parameters indeed exists. We also exhibit families of codes
that attain each of these bounds. The third bound which we present—the
Gilbert–Varshamov bound—is an existence result: it states that there exists
a linear [n, k, d] code over GF(q) whenever n, k, d, and q satisfy a certain
inequality. Additional bounds are included in the problems at the end of this
chapter. We end this part of the chapter by introducing another example of
necessary conditions on codes—now in the form of MacWilliams’ identities,
which relate the distribution of the Hamming weights of the codewords in a
linear code with the respective distribution in the dual code.

The second part of this chapter deals with asymptotic bounds, which
relate the rate of a code to its relative minimum distance δ = d/n and its
alphabet size, as the code length n tends to infinity.

In the third part of the chapter, we shift from the combinatorial setting
of (n,M, d) codes to the probabilistic framework of the memoryless q-ary
symmetric channel. We first prove the Shannon Converse Coding Theorem,
which states that at code rates above the capacity of the channel, the decod-
ing error probability of any decoder for any code approaches 1 as the code
length goes to infinity. We then present and prove the respective Coding
Theorem, which applies to rates below the channel capacity. Specifically,
we show that in this range, the expected decoding error probability of a
nearest-codeword decoder for a random linear code decreases exponentially
with the code length.

93

94 4. Bounds on the Parameters of Codes

4.1 The Singleton bound

The next theorem is our first bound on the parameters of a code.

Theorem 4.1 (The Singleton bound) For any (n,M, d) code over an
alphabet of size q,

d ≤ n− (logq M) + 1 .

Proof. Let � = �logq M� − 1. Since q� < M , there must be at least two
codewords that agree on their first � coordinates. Hence, d ≤ n− �.

For a linear [n, k, d] code over GF(q), the Singleton bound becomes

d ≤ n− k + 1 .

This inequality can be derived also from Theorem 2.2: since the rank of
a parity-check matrix of the code is n−k, such a matrix contains a set of
n−k+1 linearly dependent columns (in fact, every set of n−k+1 columns
is linearly dependent). Thus, the minimum distance is at most n−k+1.
Alternatively, the Singleton bound for linear codes can also be obtained by
looking at a systematic generator matrix of the code: the Hamming weight
of each row in that matrix is at most n−k+1.

An (n,M, d) code over an alphabet of size q is called maximum distance
separable (in short, MDS) if it attains the Singleton bound, namely, it sat-
isfies the equality d = n− (logq M) + 1.

The following codes are examples of MDS codes over F = GF(q):

• The whole space Fn, which is a linear [n, n, 1] code over F .

• The [n, n−1, 2] parity code over F .

• The [n, 1, n] repetition code over F .

We next present another important family of MDS codes.
Let α1, α2, . . . , αn be distinct elements of F = GF(q). A [normalized

generalized] Reed–Solomon code over F is a linear [n, k, d] code with the
parity-check matrix

HRS =

⎛⎜⎜⎜⎜⎜⎝
1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αn−k−1
1 αn−k−1

2 . . . αn−k−1
n

⎞⎟⎟⎟⎟⎟⎠ .

This construction requires that the code length n be at most the field size q.

4.2. The sphere-packing bound 95

Proposition 4.2 Every Reed–Solomon code is MDS.

Proof. Every (n−k) × (n−k) sub-matrix of HRS has a Vandermonde
form

B =

⎛⎜⎜⎜⎜⎜⎝
1 1 . . . 1
β1 β2 . . . βn−k

β2
1 β2

2 . . . β2
n−k

...
...

...
...

βn−k−1
1 βn−k−1

2 . . . βn−k−1
n−k

⎞⎟⎟⎟⎟⎟⎠ ,

where β1, β2, . . . , βn−k are distinct elements of the field (see Problem 3.13).
Now, the determinant of B is given by

det(B) =
∏
(i,j):

1≤i<j≤n−k

(βj − βi)

and, therefore, det(B) �= 0 and B is nonsingular. It follows that every set
of n−k columns in HRS is linearly independent and, so, by Theorem 2.2 we
have d ≥ n− k + 1.

We will learn more on Reed–Solomon codes in subsequent chapters.

4.2 The sphere-packing bound

Let F be an alphabet of size q. Recall that a sphere of radius t in Fn is a
set of words in Fn at Hamming distance t or less from a given word in Fn.
The number of words in such a sphere, or the volume of the sphere, is given
by

Vq(n, t) =
t∑

i=0

(
n

i

)
(q − 1)i

(see Problem 4.5). This quantity appears in our second bound, presented
next.

Theorem 4.3 (The sphere-packing bound) For any (n,M, d) code over
an alphabet F of size q,

M · Vq(n, �(d−1)/2) ≤ qn . (4.1)

Proof. The spheres in Fn of radius t = �(d−1)/2 that are centered at
the codewords of an (n,M, d) code must be disjoint, as shown in Figure 1.7;
indeed, if two such spheres intersected, then, by the triangle inequality, their
centers would be at Hamming distance less than d from one another. It

96 4. Bounds on the Parameters of Codes

follows that the total volume of these spheres, which is given by the left-
hand side of (4.1), is at most qn.

The sphere-packing bound is also known as the Hamming bound.
For a linear [n, k, d] code over GF(q), the sphere-packing bound becomes

Vq(n, �(d−1)/2) ≤ qn−k ,

and specifically for q = 2 we get

�(d−1)/2	∑
i=0

(
n

i

)
≤ 2n−k .

A code is called perfect if it attains the sphere-packing bound. The
minimum distance of such a code is necessarily odd (Problem 4.6).

Clearly, the whole space Fn over an alphabet F is a perfect code. Here
are more examples of perfect codes.

Example 4.1 Consider the [n, 1, n] repetition code over GF(2) where n
is odd. We have

V2(n, (n−1)/2) =
(n−1)/2∑

i=0

(
n

i

)
=

1
2
·

n∑
i=0

(
n

i

)
= 2n−1 .

Hence, this code is perfect.

Example 4.2 Consider the [n, n−m, 3] Hamming code over GF(q)
where m > 1 and n = (qm − 1)/(q − 1). Here

Vq(n, 1) = 1 + n(q − 1) = qm = qn−k ,

which implies that the code is perfect.

Apart from those examples, there are only two other linear perfect codes:

• The [23, 12, 7] Golay code over GF(2).

• The [11, 6, 5] Golay code over GF(3).

These two codes are defined in the notes on this section at the end of the
chapter and will also be discussed in Section 8.5.

Example 4.3 We consider codes of minimum distance 5 over F =
GF(2). We have

V2(n, 2) = 1 + n +
(
n
2

)
= 1

2(n2 + n + 2)

4.3. The Gilbert–Varshamov bound 97

and, so, every (n,M, 5) code C over F satisfies

M ≤ 2n

1
2(n2 + n + 2)

.

In particular, for n = 2m−1 we get

M ≤ 22m−1

22m−1 − 2m−1 + 1
.

If, in addition, C is a linear [n, k, 5] code over F then

k = log2 M ≤ 2m−1−
⌈
log2

(
22m−1 − 2m−1 + 1

)⌉
= 2m − 2m

(whenever m > 1). In comparison, the double-error-correcting code, C3, that
we constructed in Section 3.8 satisfies

k ≥ 2m − 2m− 1 .

4.3 The Gilbert–Varshamov bound

While the Singleton bound and the sphere-packing bound provide necessary
conditions on the parameters of codes, the following theorem presents a
sufficient condition for the existence of a linear code with given parameters.

Theorem 4.4 (The Gilbert–Varshamov bound) Let F = GF(q) and let
n, k, and d be positive integers such that

Vq(n−1, d−2) < qn−k .

Then there exists a linear [n, k] code over F with minimum distance at
least d.

Proof. We construct iteratively an (n−k) × n parity-check matrix H
in which every d−1 columns are linearly independent, by starting with an
(n−k)× (n−k) identity matrix and then adding a new column in each iter-
ation. Assume that we have already selected the �−1 columns

h1,h2, . . . ,h�−1 (4.2)

to H. To maintain the property that every d−1 columns are linearly in-
dependent, a vector in Fn−k is eligible to be selected as an �th column to
H, if and only if it cannot be expressed as a linear combination of any d−2

98 4. Bounds on the Parameters of Codes

columns taken from (4.2). Equivalently, the ineligible columns are all the
vectors in Fn−k that can be written as

(h1 h2 . . . h�−1)x ,

for some vector x ∈ F �−1 of Hamming weight at most d−2. The number
of such vectors x, in turn, is Vq(�−1, d−2), and this number is therefore
an upper bound on the number of ineligible columns in Fn−k (an ineligible
column may be associated with more than one vector x). Hence, in order to
be able to select an �th column to H, it is sufficient to require that

Vq(�−1, d−2) < qn−k .

And under the conditions of the theorem, this inequality holds for every
� ≤ n.

The following result shows that, in fact, most linear codes have parame-
ters that are close to the Gilbert–Varshamov bound.

Theorem 4.5 Let F = GF(q) and for positive integers n, k, and d, let
ρ be given by

ρ =
qk − 1
q − 1

· Vq(n, d−1)
qn

.

Then all but a fraction at most ρ of the linear [n, k] codes over F have
minimum distance at least d.

Proof. We first recall from Problem 2.2 that the number of generator
matrices of a linear [n, k] code over F is the same for all such codes. There-
fore, it suffices to show that all but a fraction at most ρ of the k×n matrices
over F generate linear [n, k] codes over F with minimum distance at least
d (note that the ensemble of k × n matrices over F includes also matrices
whose rank is less than k, thus making the result slightly stronger than what
we need).

Let S be the sphere of radius d−1 in Fn that is centered at 0 and let
U denote the set of all nonzero vectors in F k whose leading nonzero entry
is 1. Clearly, |S| = Vq(n, d−1) and |U | = (qk − 1)/(q − 1). A k × n matrix
over F is called “bad” if it does not generate a linear [n, k] code over F with
minimum distance at least d. Equivalently, G is bad if uG ∈ S for some
u ∈ U . Assuming a uniform distribution over all k × n matrices over F ,
for every u ∈ U the random vector uG is uniformly distributed over Fn.
Therefore,

Prob {G is bad } = Prob {uG ∈ S for some u ∈ U }

≤
∑
u∈U

Prob {uG ∈ S } = |U | · |S|
qn

= ρ ,

as claimed.

4.4. MacWilliams’ identities 99

It follows from Theorem 4.5 that if Vq(n, d−1) ≤ ((q−1)/2) · qn−k, then
more than half of the linear [n, k] codes over GF(q) have minimum distance
at least d. Yet, the proof of the theorem is not constructive as it does not
imply an efficient algorithm for finding even one such code for given n, k, d,
and q.

4.4 MacWilliams’ identities

Unlike the Singleton bound or the sphere-packing bound, this section
presents constraints on the parameters of codes through equalities rather
than inequalities. Yet, as we point out in the sequel, such equalities can
serve as a basis for new bounding techniques. The discussion here will be
limited to linear codes, even though generalizations are known for the non-
linear case as well.

Let C be a linear [n, k, d] code over F = GF(q). The (Hamming) weight
distribution of C is a list (Wi)n

i=0, where Wi equals the number of codewords
in C of Hamming weight i. Clearly, W0 = 1 and Wi = 0 for 1 ≤ i < d. The
respective generating function,

WC(z) =
n∑

i=0

Wiz
i ,

is called the (Hamming) weight enumerator of C.

Example 4.4 Let F = GF(q) and let n = (qm − 1)/(q − 1) where m is
a positive integer. The dual code of the [n, n−m, 3] Hamming code over F
is a linear [n,m, qm−1] code C (known as the simplex code) whose nonzero
codewords all have Hamming weight qm−1 (see Problem 2.18). The weight
enumerator of C is then given by

WC(z) = 1 + (qm−1) · zqm−1
.

In what follows, we will find it convenient to consider also the homoge-
neous weight enumerator, which is given by the bivariate polynomial

W h
C (x, z) = xn ·WC(z/x) =

n∑
i=0

Wix
n−izi .

The next theorem relates the weight distribution of the dual code C⊥ to
that of C. The proof of the theorem makes use of the properties of characters

100 4. Bounds on the Parameters of Codes

of F . Recall from Problem 3.36 that an additive character of F is a nonzero
mapping χ : F → C that satisfies

χ(β + γ) = χ(β)χ(γ) for every β, γ ∈ F .

There are q distinct additive characters of F , including the trivial character,
which takes the value 1 for every field element. For every nontrivial additive
character χ of F we have χ(0) = 1 and∑

β∈F

χ(β) = 1 +
∑

β∈F ∗
χ(β) = 0 . (4.3)

Theorem 4.6 (MacWilliams’ Theorem) For every linear [n, k, d] code C
over F = GF(q),

WC⊥(z) =
1
|C| ·W

h
C (1 + (q−1)z, 1− z) . (4.4)

Proof. Let χ : F → C be a nontrivial additive character of F . It follows
from (4.3) that for every row vector u ∈ Fn,

∑
c∈C

χ(u · cT) =
{
|C| if u ∈ C⊥
0 otherwise

(indeed, a simple generalization of Problem 2.4 implies that when u �∈ C⊥,
each element of F is an image under the mapping c�→ u · cT of exactly qk−1

codewords c ∈ C).
Expressing the weight enumerator of C⊥ as

WC⊥(z) =
∑
u∈C⊥

zw(u) ,

we obtain

WC⊥(z) =
1
|C|

∑
u∈F n

(∑
c∈C

χ(u · cT)
)
· zw(u)

=
1
|C|

∑
c∈C

(∑
u∈F n

χ(u · cT) · zw(u)
)

.

Writing u = (u1 u2 . . . un) and c = (c1 c2 . . . cn), the definition of additive
characters implies that

χ(u · cT) = χ
(∑n

j=1 ujcj

)
=

n∏
j=1

χ(ujcj) .

4.4. MacWilliams’ identities 101

Hence,

WC⊥(z) =
1
|C|

∑
c∈C

∑
u∈F n

n∏
j=1

(
χ(ujcj) · zw(uj)

)
=

1
|C|

∑
c∈C

n∏
j=1

(∑
u∈F

χ(u · cj) · zw(u)
)

. (4.5)

Now, from (4.3) we have∑
u∈F ∗

χ(u · cj) =
{

q−1 if cj = 0
−1 otherwise

.

Therefore,∑
u∈F

χ(u · cj) · zw(u) = χ(0)+ z ·
∑

u∈F ∗
χ(u · cj) =

{
1 + (q−1)z if cj = 0

1− z otherwise
;

so, for every codeword c = (c1 c2 . . . cn) in C we get

n∏
j=1

(∑
u∈F

χ(u · cj) · zw(u)
)

= (1 + (q−1)z)n−w(c)(1− z)w(c) .

Combining the latter equality with (4.5) thus yields

WC⊥(z) =
1
|C|

∑
c∈C

(1 + (q−1)z)n−w(c)(1− z)w(c)

=
1
|C| ·W

h
C (1 + (q−1)z, 1− z) ,

as claimed.

Example 4.5 Letting C be the simplex code in Example 4.4, the weight
enumerator of the Hamming code of length n = (qm− 1)/(q− 1) over GF(q)
is given by

WC⊥(z) = (1 + (q−1)z)(q
m−1−1)/(q−1)

·
(

1
qm
· (1 + (q−1)z)qm−1

+
qm−1
qm

· (1− z)qm−1

)
.

When q = 2 this expression becomes

WC⊥(z) =
1

n+1
· (1 + z)(n−1)/2

(
(1 + z)(n+1)/2 + n · (1− z)(n+1)/2

)
.

See also Problem 4.8.

102 4. Bounds on the Parameters of Codes

Let (Wi)n
i=0 be the weight distribution of a linear [n, k, d] code C over

F = GF(q) and (W⊥
i)n

i=0 be the weight distribution of the dual code C⊥ of
C. We next use Theorem 4.6 to express each value W⊥

i as a (linear) function
of the values W0, W1, . . . , Wn.

For every i = 0, 1, . . . , n we can write

(1 + (q−1)z)n−i(1− z)i =
n∑

�=0

K�(i) z� , (4.6)

where

K�(i) = K�(i; n, q) =
�∑

r=0

(
i

r

)(
n−i

�−r

)
(−1)r(q−1)�−r

(we define a binomial coefficient
(
a
b

)
to be 0 if a < b). By Theorem 4.6 we

have
n∑

i=0

W⊥
i zi =

1
qk

n∑
i=0

Wi · (1 + (q−1)z)n−i(1− z)i . (4.7)

Substituting (4.6) into (4.7) yields
n∑

i=0

W⊥
i zi =

1
qk

n∑
i=0

Wi

n∑
�=0

K�(i) z�

or
n∑

�=0

W⊥
� z� =

1
qk

n∑
�=0

z�
n∑

i=0

K�(i) Wi .

For every � = 0, 1, . . . , n, the coefficients of z� on both sides of the last
equation must be equal. Hence,

W⊥
� =

1
qk

n∑
i=0

K�(i) Wi , 0 ≤ � ≤ n . (4.8)

Obviously, W⊥
� is nonnegative for 0 ≤ � ≤ n. Noting that

K�(0) =
(

n

�

)
(q−1)�

and recalling that

W0 = 1 and W1 = W2 = . . . = Wd−1 = 0 ,

we get from (4.8) that the values Wd, Wd+1, . . . , Wn must satisfy the following
set of inequalities:

n∑
i=d

K�(i) Wi ≥ −
(

n

�

)
(q−1)� , 0 ≤ � ≤ n .

4.4. MacWilliams’ identities 103

On the other hand, we have |C| = 1 +
∑n

i=d Wi. This, in turn, leads to
an upper bound on the size of every linear code of length n and minimum
distance d over GF(q): the size of such a code is at most

1 + max
n∑

i=d

wi , (4.9)

where the maximum is taken over all integers wd, wd+1, . . . , wn that satisfy
the following set of 2n−d+1 linear constraints:⎧⎪⎨⎪⎩

wi ≥ 0 , d ≤ i ≤ n
n∑

i=d

K�(i) wi ≥ −
(

n

�

)
(q−1)� , 1 ≤ � ≤ n

. (4.10)

Finding the maximizing integers wi in (4.9) under the constraints (4.10)
is an instance of a computational problem known as integer programming.
The general integer programming problem is known to be intractable (i.e.,
NP-hard). However, this impediment can be circumvented—at the expense
of weakening the computed bound—by letting the variables wi take ratio-
nal values rather than restricting them to be integers. We thus obtain an
instance of a bounding technique known as the linear programming bound .

We can expand the binomial coefficients in the definition of K�(i), in
which case we will end up with an expression that is a polynomial in the
integer variable i. If we now replace i by a real indeterminate y, we obtain
a real polynomial, K�(y), which is known as a Krawtchouk polynomial . The
first three Krawtchouk polynomials are

K0(y) = 1 ,

K1(y) = n(q−1)− qy , and
K2(y) =

(
n
2

)
(q−1)2 − 1

2((2n−1)(q−1) + 1)qy + 1
2q2y2 .

We end this section by presenting another set of identities that relates
the weight distribution of C with that of its dual code C⊥. Multiplying both
sides of (4.7) by z−n and substituting z = 1/(ξ + 1) yields

n∑
i=0

W⊥
i (ξ + 1)n−i = q−k ·

n∑
i=0

Wi · (q + ξ)n−iξi .

We now compare coefficients of every power of ξ in both sides of the equation,
thereby getting

n−�∑
i=0

(
n−i

�

)
W⊥

i = qn−k−�
�∑

i=0

(
n−i

�−i

)
Wi , 0 ≤ � ≤ n .

104 4. Bounds on the Parameters of Codes

Reversing the roles of C and C⊥ and noting that
(
n−i
�−i

)
=
(
n−i
n−�

)
, we obtain

the linear identities

n−�∑
i=0

(
n−i

�

)
Wi = qk−�

�∑
i=0

(
n−i

n−�

)
W⊥

i , 0 ≤ � ≤ n . (4.11)

Equations (4.4), (4.7), (4.8), and (4.11) are known by the collective name
MacWilliams’ identities.

Example 4.6 Let C be a linear [n, k, d] MDS code over F = GF(q). We
obtain by MacWilliams’ identities a complete characterization of the weight
distribution of C, as a function of n, k, and q. Clearly, W0 = 1 and Wi = 0
for 1 ≤ i ≤ n−k. Now, the dual code of C is also MDS (Problem 4.1) and,
so, W⊥

0 = 1 and W⊥
i = 0 for 1 ≤ i ≤ k. We thus get from (4.11),(

n

�

)
+

n−�∑
i=n−k+1

(
n−i

�

)
Wi = qk−�

(
n

�

)
, 0 ≤ � ≤ k ,

or
n−�∑
i=d

(
n−i

�

)
Wi =

(
n

�

)
(qk−� − 1) , 0 ≤ � < k .

As shown in Problem 4.18, this set of linear equations can be iteratively
solved for the values Wd,Wd+1, . . . , Wn to yield

Wi =
(

n

i

) i−d∑
s=0

(
i

s

)
(−1)s(qi+1−d−s − 1)

=
(

n

i

)
(q−1)

i−d∑
s=0

(
i−1
s

)
(−1)sqi−d−s , d ≤ i ≤ n .

It is interesting to observe that for any given n, k, and F = GF(q), all
linear [n, k] MDS codes over F have the same weight distribution, regardless
of the code construction.

4.5 Asymptotic bounds

Let C be an (n,M, d) code over an alphabet of size q. The relative minimum
distance of C is the ratio δ = d/n.

In this section, we derive asymptotic bounds: we find relations between δ
and the rate R = (logq M)/n as the code length tends to infinity. Hereafter,
o(1) stands for an expression that goes to zero as n→∞ (yet this expression
may depend on q or δ).

4.5. Asymptotic bounds 105

Starting with the Singleton bound, from

d ≤ n− (logq M) + 1

we obtain
δ ≤ 1−R + o(1)

or
R ≤ 1− δ + o(1) .

For the asymptotic versions of the sphere-packing bound and the Gilbert–
Varshamov bound, we will need estimates of the volume

Vq(n, t) =
t∑

i=0

(
n

i

)
(q − 1)i .

Those estimates will make use of the q-ary entropy function Hq : [0, 1] →
[0, 1], which is defined by

Hq(x) = −x logq x− (1− x) logq(1− x) + x logq(q−1) ,

where Hq(0) = 0 and Hq(1) = logq(q−1). One can verify that the function
x �→ Hq(x) is strictly ∩-concave, nonnegative, and attains a maximum value
of 1 at x = 1−(1/q). These properties allow us, in turn, to define the inverse
function z �→ H−1

q (z) on the interval [0, 1−(1/q)]. Note that for q = 2, the
function H2(x) coincides with the binary entropy function H(x), which was
defined in Section 1.4.3.

Lemma 4.7 For 0 ≤ t/n ≤ 1− (1/q),

Vq(n, t) ≤ qnHq(t/n) .

Proof. The case t = 0 is obvious. Assume now that t > 0 and write
θ = t/n. Then,

q−nHq(θ) · Vq(n, t)

= θt(1−θ)n−t(q − 1)−t ·
t∑

i=0

(
n

i

)
(q − 1)i

θ≤1−(1/q)

≤ θt(1−θ)n−t(q − 1)−t ·
n∑

i=0

(
n

i

)
(q − 1)i

(
θ

(1−θ)(q−1)

)i−t

=
n∑

i=0

(
n

i

)
θi(1−θ)n−i

= (θ + (1−θ))n = 1 ,

namely, Vq(n, t) ≤ qnHq(θ).

106 4. Bounds on the Parameters of Codes

Lemma 4.8 For integers 0 ≤ t ≤ n,

Vq(n, t) ≥
(

n

t

)
(q − 1)t ≥ 1

n+1
· qnHq(t/n) .

Proof. As the cases t = 0 and t = n are obvious, we assume hereafter
in the proof that 0 < t < n. Write θ = t/n and for i = 0, 1, . . . , n, define Ai

by

Ai =
(

n

i

)
θi(1−θ)n−i

(this expression is the probability of having i successes among n statistically
independent Bernoulli trials, each with probability θ of success).

We first show that Ai attains its maximum when i = t. Indeed,

Ai+1

Ai
=

(
n

i+1

)
θi+1(1−θ)n−i−1(

n
i

)
θi(1−θ)n−i

=
n−i

i+1
· θ

1−θ
.

So, Ai+1/Ai < 1 if and only if i ≥ t.
It follows that

(n+1) ·At ≥
n∑

i=0

Ai = (θ + (1−θ))n = 1

and, so,

At ≥
1

n+1
.

On the other hand,

q−nHq(θ) · Vq(n, t) ≥ q−nHq(θ) ·
(

n

t

)
(q − 1)t

= θt(1−θ)n−t(q − 1)−t ·
(

n

t

)
(q − 1)t

=
(

n

t

)
θt(1−θ)n−t = At .

Hence,

Vq(n, t) ≥
(

n

t

)
(q − 1)t = At · qnHq(t/n) ≥ 1

n+1
· qnHq(t/n) ,

as claimed.

We mention that by using the Stirling formula for bounding the factorial
of integers, one can improve Lemma 4.8 to(

n

t

)
(q − 1)t ≥ 1√

8t(1− (t/n))
· qnHq(t/n) .

However, for our purposes herein, Lemma 4.8 will suffice.

4.5. Asymptotic bounds 107

Theorem 4.9 (Asymptotic version of the sphere-packing bound) For
every (n, qnR, δn) code over an alphabet of q elements,

R ≤ 1− Hq(δ/2) + o(1) .

Proof. Write t = �(δn− 1)/2. By Theorem 4.3,

qnR · Vq(n, t) ≤ qn . (4.12)

Now, by Lemma 4.8,

Vq(n, t) ≥ 1
n+1

· qnHq(t/n) ≥ 1
n+1

· qnHq(δ/2−(1/n)) , (4.13)

where we have used the fact that the q-ary entropy function is increasing in
the range [0, 1/2). From (4.12) and (4.13) we get

R ≤ 1− Hq(δ/2− (1/n)) + o(1) ,

and the theorem now follows by the continuity of the entropy function.

Theorem 4.10 (Asymptotic version of the Gilbert–Varshamov bound)
Let F = GF(q), let n and nR be positive integers, and let δ be a real in
(0, 1−(1/q)] that satisfies

R ≤ 1− Hq(δ) .

Then there exists a linear [n, nR,≥δn] code over F .

Proof. By Theorem 4.4, such a code exists whenever

Vq (n, �δn� − 1) ≤ qn(1−R) .

The theorem now follows from Lemma 4.7.

Our next asymptotic bound, which will be stated in Theorem 4.12, im-
proves on the sphere-packing bound. A key ingredient in the proof of that
theorem is the following result, which presents a bound that is important
on its own (a somewhat related result is given also in Problem 4.23, and we
will use that problem in our next proof).

Proposition 4.11 (The Johnson bound) Let C be an (n,M, δn) code
over an Abelian group F of size q and suppose that there is a real θ ∈
(0, 1−(1/q)] such that each codeword in C has Hamming weight at most θn.
Then,

δ ≤ M

M−1
· (2θ − q

q−1θ2) .

108 4. Bounds on the Parameters of Codes

Proof. Let D be the average distance between the codewords in C; that
is,

D =
1

M(M−1)

∑
c,c′∈C : c �=c′

d(c, c′) .

Construct an M ×n array whose rows are the codewords of C, and for every
a ∈ F , let xa,j be the number of times that the element a appears in the jth
column of this array. By part 3 of Problem 4.23 we get∑

c,c′∈C : c�=c′
d(c, c′) =

n∑
j=1

(
M2 −

∑
a∈F

x2
a,j

)
.

Since
∑

a∈F xa,j = M for every column index j, we can eliminate the un-
known values x0,j to obtain

∑
c,c′∈C : c �=c′

d(c, c′) =
n∑

j=1

(
2M

(∑
a∈F ∗

xa,j

)
−
(∑

a∈F ∗
xa,j

)2
−
(∑

a∈F ∗
x2

a,j

))
,

(4.14)
where F ∗ = F \ {0}. On the other hand, each element of C has Hamming
weight at most θn. Therefore,

n∑
j=1

∑
a∈F ∗

xa,j ≤ Mθn . (4.15)

Assuming that θ ≤ 1− (1/q), the maximum of the right-hand side of (4.14)
over the real values xa,j that satisfy the constraint (4.15) is attained when
xa,j = Mθ/(q−1) for every a ∈ F ∗ (compare with part 2 of Problem 4.23).
Substituting these maximizing values into the right-hand side of (4.14) we
thus obtain∑

c,c′∈C : c �=c′
d(c, c′) ≤

n∑
j=1

(
2M2θ − q

q−1M2θ2
)

= M2 · (2θ − q
q−1θ2)n .

Hence,

D =
1

M(M−1)

∑
c,c′∈C : c �=c′

d(c, c′) ≤ M

M−1
· (2θ − q

q−1θ2)n .

The result now follows by observing that the minimum distance δn is
bounded from above by the average distance D.

Theorem 4.12 (The Elias bound) For every (n, qnR, δn) code with δ ≤
1− (1/q) over an alphabet of size q,

R ≤ 1− Hq

(
q−1

q

(
1−

√
1− q

q−1δ
))

+ o(1) .

4.5. Asymptotic bounds 109

Proof. Let C be an (n, qnR, δn) code over an alphabet F of q elements;
without loss of generality we can assume that F is an Abelian group. We
first show that for every t ∈ {0, 1, 2, . . . , n} there is a sphere S ⊆ Fn of
radius t such that the size M of the intersection S ∩ C satisfies

M = |S ∩ C| ≥ qn(R−1) · Vq(n, t) . (4.16)

There are qn spheres of radius t in Fn, and each codeword of C belongs to
Vq(n, t) spheres. Therefore,∑

S
|S ∩ C| =

∑
c∈C

|{S : c ∈ S}| = |C| · Vq(n, t) ,

where S ranges over all spheres of radius t in Fn. It follows that the average
number of codewords in a sphere equals

1
qn

∑
S
|S ∩ C| = 1

qn
· |C| · Vq(n, t) = qn(R−1) · Vq(n, t)

and, so, there must be at least one sphere of radius t that satisfies (4.16).
Now, for a given t = θn ≤ (1 − (1/q))n, let S be a sphere of radius t

that satisfies (4.16). By translating the code C, we can assume without loss
of generality that S is centered at 0. Noting that δ is bounded from above
by the relative minimum distance of the code S ∩C, we can obtain an upper
bound on δ by applying Proposition 4.11 to S ∩ C; that is,

δ ≤ M

M−1
· (2θ − q

q−1θ2) . (4.17)

We now select

t = θn =
⌈
nH−1

q

(
1−R + (2 logq(n+1))/n

)⌉
,

where we assume that R is at a sufficient margin from zero so that the
argument of the inverse function H−1

q (·) is less than 1 and θ is less than
1−(1/q) (otherwise, it would mean that R = o(1), in which case the theorem
trivially holds). Clearly,

Hq(θ) = 1−R + o(1) , (4.18)

and by (4.16) and Lemma 4.8 we also have M ≥ n+1. From (4.17) we
readily obtain

δ ≤ 2θ − q
q−1θ2 + o(1)

or
θ ≥ q−1

q

(
1−

√
1− q

q−1δ
)

+ o(1) .

The theorem follows by combining the latter inequality with (4.18).

110 4. Bounds on the Parameters of Codes

For δ = 1 − (1/q) the bound of Theorem 4.12 becomes R = o(1). This
implies that when δ ≥ 1− (1/q), the rate must go to zero as the code length
increases.

The asymptotic bounds that relate the largest attainable rate R to the
relative minimum distance δ can be verified to satisfy

q q

(
q−1

q 1 −
√

1 − q
q−1δ

))
q

whenever δ ≤ 1 − (1/q); namely,

Gilbert–Varshamov ≤ Elias ≤ Sphere-packing .

The Singleton bound, R ≤ 1− δ + o(1), is generally weaker than the sphere-
packing and Elias bounds for small values of q; on the other hand, when
q → ∞, it actually coincides with the Gilbert–Varshamov bound (up to an
additive term o(1)).

Specializing now to the binary case, the bounds are plotted in Figure 4.1
for q = 2. The Elias bound is not the best upper bound currently known.
We mention here without proof another bound, called the (first) McEliece–
Rodemich–Rumsey–Welch (MRRW) bound, which takes for F = GF(2) the
form (

1
2 −

√
δ(1 − δ)

)
+ o(1) .

This bound is shown in Figure 4.1 as a thin curve, and it is currently the
best known upper bound for values of δ that are greater than approximately
0.273. The MRRW bound is based on the linear programming technique,
which was mentioned in Section 4.4. (The Elias bound is better than this
bound for values of δ that are smaller than approximately 0.150; however, a
second upper bound due to McEliece et al. supersedes both their first bound
and the Elias bound for δ ∈ (0,≈0.273).)

In the preceding section, we studied the relationship between the code rate
and the relative minimum distance of the code. In this section, we con-
sider instead the relationship between the code rate and the decoding error
probability with respect to the q-ary symmetric channel.

Hereafter we assume that F is an Abelian group of size q and that
S = (F, F,Prob) is the memoryless q-ary symmetric channel with crossover
probability p ∈ (0, 1−(1/q)]. The capacity of S is defined by

cap(S) = 1 − Hq(p) . (4.19)

(To be more precise, the definition of the notion of capacity is more general,
as discussed in the notes on Section 1.4; but we have also shown there that the

≤ 1 − H (δ/2)1 − H (δ) ≤ 1 − H
(

R ≤ H

4.6 Converse Coding Theorem

4.6. Converse Coding Theorem 111

�

�

R

0

1

1/2 1
δ

Singleton upper bound

Sphere-packing upper bound

Elias upper bound

MRRW upper bound

Gilbert–Varshamov lower bound

Figure 4.1. Asymptotic bounds on the largest attainable rates of codes over GF(2).

general definition becomes (4.19) for the special case of the q-ary symmetric
channel S.)

The main result to be proved in this section is the Shannon Converse
Coding Theorem for the q-ary symmetric channel, which states that when
the code rate exceeds cap(S), the decoding error probability must approach
1 for sufficiently long codes. The range of rates below capacity will be
the subject of Section 4.7, where we state and prove the Shannon (Direct)
Coding Theorem. Both theorems were already mentioned in Section 1.4 for
the special case of the binary symmetric channel.

For θ ∈ [0, 1] define the (information) divergence (or Kullback–Leibler
distance) with respect to p by

Dq(θ‖p) = θ logq

(
θ

p

)
+ (1−θ) logq

(
1−θ

1−p

)
,

where Dq(0‖p) = − logq(1−p) and Dq(1‖p) = − logq p. (We again specialize
here from a broader term: information divergence is defined in general be-

112 4. Bounds on the Parameters of Codes

tween two distributions. In our case, those distributions are Bernoulli trials,
with probabilities θ and p, respectively, of success.)

By simple differentiation one can see that the function θ → Dq(θ‖p) is
strictly ∪-convex with a minimum at θ = p. At that minimum, the function
is zero, thereby implying that Dq(θ‖p) is strictly positive for all other values
of θ.

Denote by Sq(n, t) the set of all words in Fn of Hamming weight at most
t; for convenience, here we also allow t to take non-integer real values (and
the same applies to Vq(n, t), which equals |Sq(n, t)|).

The next lemma will play a key role in our subsequent analysis.

Lemma 4.13 (Large deviation estimates) Let e denote a random error
word in Fn that is generated by the channel S. Then the following conditions
hold for every real θ ∈ [0, 1]:

(i) For θ ≤ p,
Prob{ e ∈ Sq(n, θn) } ≤ q−nDq(θ‖p) .

(ii) For θ ≥ p,
Prob{ e �∈ Sq(n, θn) } ≤ q−nDq(θ‖p) .

Proof. We start with part (i). For every real z ∈ (0, 1] we have,

Prob{ e ∈ Sq(n, θn) } =
�θn	∑
i=0

(
n

i

)
pi(1−p)n−i

≤
n∑

i=0

(
n

i

)
pi(1−p)n−izi−θn

= z−θn ·
n∑

i=0

(
n

i

)
(pz)i(1−p)n−i

=
(
z−θ(pz + 1−p)

)n

(compare with the proof of Lemma 4.7). We now select

z =
θ(1−p)
p(1−θ)

,

in which case(
z−θ(pz + 1−p)

)n
=
(

pθ(1−p)1−θ

θθ(1−θ)1−θ

)n

= q−nDq(θ‖p)

(note that this holds also for θ = 0 if we define 00 to be 1).

4.6. Converse Coding Theorem 113

As for part (ii), observe that

Prob{ e �∈ Sq(n, θn) } ≤
�(1−θ)n	∑

i=0

(
n

i

)
(1−p)ipn−i .

Hence, by part (i) we have

Prob{ e �∈ Sq(n, θn) } ≤ q−nDq(1−θ‖1−p) .

But Dq(θ‖p) = Dq(1−θ‖1−p).

Lemma 4.7 can be seen as a special case of Lemma 4.13(i) obtained when
p = 1−(1/q), in which case the error word e that is generated by the channel
is uniformly distributed over Fn: here,

q−n · Vq(n, θn) = Prob{ e ∈ Sq(n, θn) } ≤ q−nDq(θ‖1−(1/q))

whenever θ ≤ 1− (1/q), and one can verify that

Dq(θ‖1−(1/q)) = 1− Hq(θ) .

As before, we use the notation o(1) to stand for an expression that goes
to zero as n→∞ (the expression may depend on q, p, or R).

Theorem 4.14 (Shannon Converse Coding Theorem for the q-ary sym-
metric channel) Let C be an (n, qnR) code over F where n and nR are integers
such that 1−Hq(p) < R ≤ 1, and let D : Fn → C ∪ {“e”} be a decoder for C
with respect to the channel S. Then the decoding error probability Perr of D
satisfies

Perr ≥ 1− q−n(Dq(θq(R)‖p)−o(1)) ,

where θq(R) = H−1
q (1−R).

Proof. For a codeword c ∈ C, let Y (c) be the set of pre-images of c
under D; namely,

Y (c) = {y ∈ Fn : D(y) = c } .

Since
∑

c∈C |Y (c)| = qn, it follows that there is a codeword c0 ∈ C such that

|Y (c0)| ≤ qn/|C| = qn(1−R) .

By applying the translation c�→ c− c0 to each codeword and, respectively,
replacing the decoder y �→ D(y) by its translation y �→ D(y + c0), we
can assume without loss of generality that c0 = 0. We point out that the
distribution of the error words that are generated by the channel does not

114 4. Bounds on the Parameters of Codes

depend on the input to the channel; therefore, such translations will not
affect the value of Perr.

Recall that
Perr = max

c∈C
Perr(c) ,

where Perr(c) is the probability that a codeword c will be decoded erro-
neously, given that c was transmitted. Thus, Perr ≥ Perr(0), where

1− Perr(0) =
∑
e∈Y

Prob{ e received | 0 transmitted }

=
∑
e∈Y

(p/(q−1))w(e)(1−p)n−w(e) ,

with Y standing for Y (0). Now, since p ≤ 1− (1/q), the value

(p/(q−1))w(1−p)n−w

is decreasing with w. It follows that if θ is such that Vq(n, θn) ≥ |Y |, then∑
e∈Y

(p/(q−1))w(e)(1−p)n−w(e) ≤
∑

e∈Sq(n,θn)

(p/(q−1))w(e)(1−p)n−w(e) .

If, in addition θ ≤ p, then we have by Lemma 4.13(i),

1− Perr(0) ≤
∑

e∈Sq(n,θn)

(p/(q−1))w(e)(1−p)n−w(e) ≤ q−nDq(θ‖p) . (4.20)

Take n sufficiently large so that

1−R + (logq(n+1))/n ≤ Hq(p− (1/n)) ,

and select θ to be

θ =
1
n

⌈
nH−1

q

(
1−R + (logq(n+1))/n

)⌉
.

For this value of θ and by Lemma 4.8 we indeed have

Vq(n, θn) ≥ 1
n+1

· qnHq(θ) ≥ qn(1−R) ≥ |Y | .

Furthermore, by the choice of n we guarantee that θ ≤ �np − 1�/n < p.
The theorem follows from (4.20) and the continuity of the function x �→
Dq(x‖p).

Theorem 4.9 can be obtained as a corollary from Theorem 4.14 as follows.
Let C be an (n, qnR, δn) code over an alphabet of size q and assume that

4.7. Coding Theorem 115

R > 1−Hq(δ/2). Write t = �(δn− 1)/2 and let the crossover probability p
of the channel be such that

1−R < Hq(p) < Hq(δ/2) ;

in particular, p < δ/2. By Lemma 4.13(ii) we have

Prob{ e �∈ Sq(n, t) } ≤ q−nDq(δ/2‖p) .

Since Dq(δ/2‖p) > 0, it follows that a nearest-codeword decoder for C will
fail to return the correct codeword with probability Perr = o(1). On the
other hand, by Theorem 4.14 we must have Perr = 1 − o(1). We conclude
that the assumed inequality, R > 1 − Hq(δ/2), can hold only for finitely
many values of n.

4.7 Coding Theorem

Theorem 4.14 states that the code rate cannot exceed the capacity of the
q-ary symmetric channel if information is to be transmitted through the
channel with a decoding error probability that is bounded away from 1.
The goal of the forthcoming discussion is to show that the capacity can be
approached from below while attaining a decoding error probability that is
arbitrarily small. In fact, we show that this can be achieved by linear codes
(assuming that q is such that there is a field of size q).

Our analysis starts with two lemmas, which hold for every additive chan-
nel in which the (input and output) alphabet is a given finite field F = GF(q).

For a code C ⊆ Fn and a word e ∈ Fn, let Perr(C|e) be the decoding
error probability of a nearest-codeword decoder D : Fn → C, conditioned
on the error word being e; that is, Perr(C|e) takes two possible values, as
follows:

Perr(C|e) =
{

1 if there is c ∈ C such that D(c + e) �= c
0 otherwise

.

Lemma 4.15 Given n, k, and e ∈ Sq(n, t), let Perr(C|e) denote the
average of Perr(C|e) over all linear [n, k] codes C over F = GF(q). Then,

Perr(C|e) < qk−n · Vq(n, t) .

Proof. Fix an error word e ∈ Sq(n, t) and assume a uniform distribution
over all k × n matrices G over F . Then, for every nonzero vector u ∈ F k,
the random vector uG is uniformly distributed over Fn. Therefore,

PG

{
e + uG ∈ Sq(n, t)

∣∣∣ e
}

= q−n · Vq(n, t) , (4.21)

116 4. Bounds on the Parameters of Codes

where the notation PG{ · |e} stands for the probability induced by the uni-
form distribution on G and conditioned on e being the error word generated
by the channel.

A k × n matrix G is “bad” with respect to e if either rank(G) < k or G
generates a linear [n, k] code for which e is not a coset leader (in particular,
the coset that contains e contains yet another element of Sq(n, t)). Then,

PG

{
G is bad w.r.t. e

∣∣∣ e
}

≤ PG

{
e + uG ∈ Sq(n, t) for some u ∈ F k \ {0}

∣∣∣ e
}

≤
∑

u∈F k\{0}
PG

{
e + uG ∈ Sq(n, t)

∣∣∣ e
}

< qk−n · Vq(n, t) ,

with the last inequality following from (4.21).
Observing that Perr(C|e) = 1 only if the generator matrices of C are bad

with respect to e (and recalling that all linear [n, k] codes have the same
number of generator matrices), it follows that

Perr(C|e) ≤ PG

{
G is bad w.r.t. e

∣∣∣ e
}

< qk−n · Vq(n, t) ,

as claimed.

For a code C ⊆ Fn we denote by Perr(C|Sq(n, t)) the decoding error prob-
ability of a nearest-codeword decoder for C with respect to a given additive
channel (F, F,Prob), conditioned on the error word e being in Sq(n, t). That
is,

Perr(C|Sq(n, t)) = max
c∈C

Perr(c|Sq(n, t)) ,

where Perr(c|Sq(n, t)) is the probability that the codeword c is decoded er-
roneously, given that c was transmitted and conditioned on the error word
e being in Sq(n, t).

Like the previous lemma, the result of the next lemma applies to every
additive channel (F, F,Prob) with alphabet F = GF(q).

Lemma 4.16 Given n, k, and t, let Perr(C|Sq(n, t)) denote the average
of Perr(C|Sq(n, t)) over all linear [n, k] codes C over F = GF(q). Then,

Perr(C|Sq(n, t)) < qk−n · Vq(n, t) .

Proof. Let the measure μ be defined for each e ∈ Sq(n, t) by the condi-
tional probability

μ(e) = Prob
{

e is the error word
∣∣∣ e ∈ Sq(n, t)

}

4.7. Coding Theorem 117

as induced by the channel. Then, for every code C ⊆ Fn,

Perr(C|Sq(n, t)) = max
c∈C

Perr(c|Sq(n, t))

= max
c∈C

∑
e∈Sq(n,t)

Perr(c|e) · μ(e)

≤
∑

e∈Sq(n,t)

max
c∈C

Perr(c|e) · μ(e)

=
∑

e∈Sq(n,t)

Perr(C|e) · μ(e) ,

where we have used the notation Perr(c|e) to indicate the decoding error
probability given that the transmitted codeword was c and conditioned on
the error word being e. We conclude that

Perr(C|Sq(n, t)) ≤
∑

e∈Sq(n,t)

Perr(C|e) · μ(e) < qk−n · Vq(n, t) ,

where the second inequality follows from Lemma 4.15.

In the next theorem, we specialize to the memoryless q-ary symmetric
channel with crossover probability p ∈ (0, 1−(1/q)) and (input and output)
alphabet F = GF(q). The decoding error probability Perr(C) is computed for
a code C with respect to this channel, assuming a nearest-codeword decoder.

Theorem 4.17 (Shannon Coding Theorem for the q-ary symmetric
channel) Let n and nR be integers such that R < 1 − Hq(p) and let Perr(C)
denote the average of Perr(C) over all linear [n, nR] codes C over F = GF(q).
Then,

Perr(C) < 2q−nEq(p,R) ,

where
Eq(p, R) = 1− Hq(θ∗q(p, R))−R

and

θ∗q(p,R) =
logq(1−p) + 1−R

logq(1−p)− logq(p/(q−1))
.

Proof. Let C be a code of length over F and θ be a real in [p, 1−(1/q)].
Given a codeword c in C, we can bound Perr(c) from above by partitioning
the error events into two classes, according to whether the error word e
belongs to Sq(n, θn). Specifically,

Perr(c) ≤ Perr(c|Sq(n, θn)) · Prob{ e ∈ Sq(n, θn) }+ Prob{ e �∈ Sq(n, θn) }
≤ Perr(c|Sq(n, θn)) + Prob{ e �∈ Sq(n, θn) }
≤ Perr(C|Sq(n, θn)) + q−nDq(θ‖p) ,

118 4. Bounds on the Parameters of Codes

where we have used Lemma 4.13(ii) in the last inequality. By maximizing
over c ∈ C we thus obtain

Perr(C) = max
c∈C

Perr(c) ≤ Perr(C|Sq(n, θn)) + q−nDq(θ‖p) .

Next, we take the average over all linear [n, nR] codes C over F and apply
Lemma 4.16; this yields

Perr(C) < qn(R−1) · Vq(n, θn) + q−nDq(θ‖p)

≤ q−n(1−Hq(θ)−R) + q−nDq(θ‖p) , (4.22)

where the last inequality follows from Lemma 4.7. Now, the function

x�→ 1− Hq(x)−R− Dq(x‖p)

takes the positive value 1 − Hq(p) − R when x = p and the negative value
−R − Dq(1−(1/q)‖p) when x = 1 − (1/q). Therefore, there must be a
value x in the interval [p, 1−(1/q)] for which this function is zero. A simple
computation reveals that x = θ∗q(p,R) is (the only) such value, in which case

1− Hq(θ∗q(p,R))−R = Dq(θ∗q(p,R)‖p) = Eq(p,R) .

Plugging θ = θ∗q(p,R) into (4.22) we obtain

Perr(C) < q−n(1−Hq(θ)−R) + q−nDq(θ‖p) = 2q−nEq(p,R) .

Note that since the value θ∗q(p,R) lies within the open interval (p, 1−(1/q)),
we have Eq(p,R) = Dq(θ∗q(p,R)‖p) > 0.

Corollary 4.18 Using the notation of Theorem 4.17, for every ρ ∈
(0, 1], all but a fraction less than ρ of the linear [n, nR] codes C over F
satisfy

Perr(C) < (1/ρ) · 2q−nEq(p,R) .

Proof. Consider the set B of codes C for which Perr(C) ≥ (1/ρ) ·
2q−nEq(p,R), and suppose to the contrary that B forms at least a fraction
ρ of the linear [n, nR] codes over F . Then,

Perr(C) ≥ ρ · 1
|B|

∑
C∈B

Perr(C) ≥ 2q−nEq(p,R) ,

thereby contradicting Theorem 4.17.

Corollary 4.18 states that “most” linear codes attain the Shannon Coding
Theorem. Yet, the result does not suggest an efficient algorithm for finding
those codes.

Problems 119

In many cases of linear [n, nR, δn] codes, a nearest-codeword decoder has
a known efficient implementation only when the number of errors does not
exceed �(δn − 1)/2. Given a crossover probability p > 0 of the channel,
it follows from Lemma 4.13 that if such algorithms are to operate in their
efficient range, then δ should be at least 2p + o(1). However, by the Elias
bound (Theorem 4.12), this would force the rate to be bounded away from
the capacity 1− Hq(p). To see this, refer to Figure 4.1 and let the abscissa
stand for 2p instead of δ: the sphere-packing curve then coincides with the
capacity curve 2p → 1 − Hq(p), whereas the Elias bound lies strictly below
it unless p = 0.

Problems

[Section 4.1]

Problem 4.1 Let C be a linear [n, k, d] code over F .

1. Show that C is MDS if and only if every set of k columns in its generator
matrix is linearly independent.

Hint: See Problem 2.8.

2. Show that C is MDS if and only if its dual code is (assuming that k < n).

Problem 4.2 Let G = (I |A) be a systematic generator matrix of a linear [n, k, d]
code C over F . Show that C is MDS if and only if every square sub-matrix of A is
nonsingular.

Problem 4.3 Let C be a linear [n, k>1, d] over F = GF(q) with a generator matrix
of the form

G =

(
0 0 . . . 0 1 1 . . . 1

G1 G2

)
where the number of 1’s in the first row equals the minimum distance d of C.
Let C1 be the linear [n1=n−d, k1, d1] over F which is spanned by the rows of the
(k−1)× (n−d) matrix G1.

1. Show that rank(G1) = k−1 and, therefore, k1 = k−1.

Hint: Show that otherwise there would be a linear combination of the last
k−1 rows of G that would result in a nonzero codeword c ∈ C whose first
n−d entries are zero. Then consider linear combinations of the codeword c
with the first row of G.

2. Let c1 be a codeword of C1. Show that there are exactly q words c2 ∈ F d

such that the concatenation (c1 | c2) is a codeword of C.

3. Let c1 be a nonzero codeword of C1. Show that there is a word c2 ∈ F d of
Hamming weight at most d− �d/q� such that (c1 | c2) is a codeword of C.

120 4. Bounds on the Parameters of Codes

4. Show that d1 ≥ �d/q�.
Hint: Select in part 3 a codeword c1 ∈ C1 of Hamming weight d1.

Problem 4.4 (The Griesmer bound) Denote by Nq(k, d) the length of a shortest
linear code of dimension k and minimum distance d over F = GF(q).

1. Based on Problem 4.3, show that Nq(k, d) ≥ d + Nq(k−1, �d/q�) for every
k > 1.

2. Show by induction on k that

Nq(k, d) ≥
k−1∑
i=0

⌈ d

qi

⌉
.

3. Derive from part 2 the Singleton bound for linear codes.

4. Show that the following codes meet the bound in part 2:

(a) The simplex code over F = GF(q), which is defined for every positive
integer m and length n = (qm−1)/(q−1) as the [n,m, qm−1] dual code
of the Hamming code over F (see Problem 2.18).

(b) The first-order Reed–Muller code over F , which is defined as the linear
[qm,m+1, qm−1(q−1)] code over F with an (m+1)×qm generator matrix
whose columns range over all the vectors in Fm+1 with a first entry
equaling 1 (see Problem 2.17).

(c) The shortened first-order Reed–Muller code over F , which is defined
as the linear [qm−1,m, qm−1(q−1)] code over F with an m × (qm−1)
generator matrix whose columns range over all the nonzero vectors in
Fm.

[Section 4.2]
Problem 4.5 Let F be an alphabet of size q and let n be a positive integer. Con-
sider the sphere S of radius t in Fn that is centered at some word x ∈ Fn. Show
that

Vq(n, t) = |S| =
t∑

i=0

(
n

i

)
(q − 1)i .

Hint: Given a subset J ⊆ {1, 2, . . . , n}, how many words in Fn differ from x exactly
on the coordinates that are indexed by J?

Problem 4.6 Show that the minimum distance of a perfect code must be odd.

Problem 4.7 Let F = GF(q) and let n be a prime such that gcd(n, q) = 1. Denote
by e the multiplicative order of (the field integer) q in GF(n) (see Section 3.6).

1. Show that there exists a perfect linear [n, k] code over F only if e divides
n−k.

Hint: Show that n divides Vq(n, t)− 1 whenever t < n.

Problems 121

2. Find all the values of k that satisfy the necessary condition of part 1 in the
following two cases:

(a) q = 2 and n = 23.

(b) q = 3 and n = 11.

Problem 4.8 Let F = GF(q) and let C be a Hamming code of length n = (qm −
1)/(q − 1) over F . For i = 0, 1, . . . , n, denote by Wi the number of codewords in C
of Hamming weight i.

1. Let D be a nearest-codeword decoder for C and let c be a codeword of Ham-
ming weight t in C. For each of the following values of i, find the number of
words of Hamming weight i in Fn that will be decoded by D to c:

(a) i = t−1.

(b) i = t+1.

(c) i = t.

Hint: Recall that C is perfect with minimum distance 3.

2. Show that for 0 < i < n,

(i+1) ·Wi+1 + (i(q−2) + 1) ·Wi + (n−i+1)(q−1) ·Wi−1 =
(

n

i

)
(q − 1)i ,

where W0 = 1 and W1 = 0.

3. Show that W3 = 1
6 · n(n−1)(q−1)2.

Problem 4.9 Let C be a perfect (n,M, d=2t+1) code over F = GF(q) and suppose
that C contains the all-zero codeword. Show that the number, W2t+1, of codewords
of Hamming weight 2t+1 in C is given by

W2t+1 =

(
n

t+1

)
(q−1)t+1(
2t+1

t

) .

Hint: Given a codeword c of Hamming weight 2t+1 in C, show that there are
exactly

(
2t+1

t

)
words of Hamming weight t+1 in Fn that are decoded to c by a

nearest-codeword decoder.

Problem 4.10 (Constant-weight codes with d = w) An (n,M, d) code over an
Abelian group F is called an (n, M, d; w) constant-weight code if each codeword in
the code has Hamming weight w.

Let C be an (n,M, d=2t+1; w=2t+1) constant-weight code over F = GF(q).

1. Show that

M ≤
(

n
t+1

)
(q−1)t+1(
2t+1

t

) .

Hint: For every codeword c ∈ C there are
(
2t+1

t

)
words y of Hamming weight

t+1 in Fn such that d(y, c) = t. And given a word y of Hamming weight
t+1 in Fn, how many codewords c ∈ C are there such that d(y, c) = t?

122 4. Bounds on the Parameters of Codes

2. Show that the bound in part 1 can be attained whenever there exists a perfect
code of length n and minimum distance 2t+1 over F .

Hint: See Problem 4.9.

Problem 4.11 Let C0 be the [n, n−1, 2] parity code over F = GF(q) and denote
by X the complement set Fn \ C0. For a word c ∈ Fn, define the set S(c) by

S(c) = {y ∈ X : d(y, c) ≤ 1} .

1. Show that for every c ∈ C0,

|S(c)| = n(q−1) .

Suppose that n = qm and let C1 be the linear [n, n−m−1] code over F that is defined
by an (m+1) × n parity-check matrix whose columns range over all the elements
of Fm+1 whose first entry equals 1 (that is, C1 is the dual code of the first-order
Reed–Muller code).

2. Show that S(c) ∩ S(c′) = ∅ for every two distinct codewords c, c′ ∈ C1.
Hint: Show that the minimum distance of C1 is at least 3.

3. Show that ∑
c∈C1

|S(c)| = (q−1) · qn−1 = |X| ,

and deduce that
{S(c) : c ∈ C1}

forms a partition of X into qn−m−1 subsets of size n(q−1).

Problem 4.12 Recall from Problem 2.21 that a burst of length � is the event of
having errors in a codeword such that the locations i and j of the first (leftmost)
and last (rightmost) errors, respectively, satisfy j−i = �−1.

Let C be a linear [n, k>0] code over F = GF(q) and suppose that there exists a
decoder for C that corrects every burst of length t or less.

1. Show that in every nonzero codeword c in C, the locations i and j of the first
and last nonzero entries in c must satisfy j−i ≥ 2t.

2. (The Reiger bound: a Singleton-like bound for burst-correcting codes) Show
that

n− k ≥ 2t .

3. (A sphere-packing-like bound for burst-correcting codes) Show that

qn−k ≥ 1 + n(q − 1) + (q − 1)2
t−2∑
i=0

(n−i−1)qi .

(The bounds in parts 2 and 3 hold, in fact, also for nonlinear (n,M>1) codes over
an alphabet of size q, with k taken as logq M .)

Problems 123

Problem 4.13 Let C be an (n,M, d) code over an alphabet F of size q. The
Hamming distance of a word y ∈ Fn from C, denoted by d(y, C), is defined as the
Hamming distance between y and a nearest codeword in C to y; that is,

d(y, C) = min
c∈C

d(y, c) .

The covering radius of C, denoted by r, is the largest distance from C of any word
in Fn; namely,

r = max
y∈F n

d(y, C) .

1. Find the covering radii of the repetition code and of the Hamming code over
F = GF(q).

2. (The sphere-covering bound) Show that

M · Vq(n, r) ≥ qn .

3. Show that r ≥ (d−1)/2 and that equality holds if and only if C is perfect.

4. Show that if C is a linear [n, k, d] code over GF(q) then r ≤ n−k.

5. Show that if C is a linear [n, k, d] code over F = GF(q) then r is the largest
among the Hamming weights of the coset leaders of C in Fn.

6. Show that if C is a linear [n, k, d] code over F = GF(q) and H is an (n−k)×n
parity check of C, then r is the smallest nonnegative integer such that every
vector in Fn−k can be expressed as a linear combination of up to r columns
in H.

7. An (n,M, d) code is called maximal if the addition of any new codeword to
C reduces its minimum distance. Show that if C is maximal then r < d.

8. Let C be a linear [n, k, d] code over F such that any lengthening of C obtained
by adding a column to an (n−k) × n parity-check matrix H of C generates
d−1 dependent columns in H (i.e., the minimum distance drops below d).
Show that r < d−1.

Problem 4.14 A soccer betting form contains a list of 13 matches. Next to each
listed match there are three fill-in boxes which correspond to the following three
possible guesses: “first team wins,” “second team wins,” or “tied match.” The
bettor checks one box for each match.

Describe a strategy for filling out the smallest number of forms so that at least
one of the forms contains at least 12 correct guesses. How many forms need to be
filled out under this strategy?

Hint: Consider a perfect code of length 13 and minimum distance 3 over GF(3).

[Section 4.3]
Problem 4.15 (Variant of Theorem 4.5) Let F = GF(q) and let n, k, and d be
positive integers where k ≤ n−d+1. Consider the ensemble of all (n−k)×n matrices
over F of the form

H =
(

A I
)

,

124 4. Bounds on the Parameters of Codes

and define a probability distribution on this ensemble that is induced by assuming
a uniform distribution over the (n−k)× k matrices A over F .

1. Show that for every nonzero vector y ∈ Fn,

Prob
{

HyT = 0
}

=
{

0 if the first k entries in y are zero
qk−n otherwise .

2. Show that

Prob {H contains d−1 dependent columns } ≤ ρ ,

where

ρ = qk−n · Vq(n, d−1)− Vq(n−k, d−1)
q − 1

= qk−n ·
d−1∑
i=1

((
n

i

)
−
(

n−k

i

))
(q − 1)i−1 .

Deduce that all but a fraction at most ρ of the systematic linear [n, k] codes
over F have minimum distance at least d.

[Section 4.4]

Problem 4.16 (Alternative form of Krawtchouk polynomials) Show that

K�(i; n, q) =
�∑

r=0

(
i

r

)(
n−r

�−r

)
(−q)r(q−1)�−r .

Hint: Write

(1 + (q−1)z)n−i(1− z)i = (1 + (q−1)z)n

(
1− qz

1 + (q−1)z

)i

=
i∑

r=0

(
i

r

)
(1 + (q−1)z)n−r(−qz)r

and identify the coefficient of z�.

Problem 4.17 (Alternative form of MacWilliams’ identities) Let (Wi)n
i=0 be the

weight distribution of a linear [n, k, d] code C over F = GF(q) and (W⊥
i)n

i=0 be the
weight distribution of the dual code C⊥ of C. Show that

n∑
i=�

(
i

�

)
Wi = qk−�

�∑
i=0

(
n−i

n−�

)
(q−1)�−i(−1)i W⊥

i , 0 ≤ � ≤ n .

Hint: Substitute z = ξ + 1 in (4.7).

Problems 125

Problem 4.18 Let n, k, d, and q be positive integers such that d = n−k+1
and consider the following set of linear equations in the k real unknown values
Wd, Wd+1, . . . ,Wn:

n−�∑
i=d

(
n−i

�

)
Wi =

(
n

�

)
(qk−� − 1) , 0 ≤ � < k .

1. Show that the solution to this set of equations is unique and verify by sub-
stitution that the solution is given by

Wi =
(

n

i

) i−d∑
s=0

(
i

s

)
(−1)s(qi+1−d−s − 1) , d ≤ i ≤ n .

Hint: Use the identities
(
n−i

�

)(
n
i

)
=
(
n
�

)(
n−�

i

)
and

(
n−�

i

)(
i
s

)
=
(
n−�

j

)(
n−�−j

s

)
,

where j stands for the difference i−s.

2. Show that the solution can also be written as

Wi =
(

n

i

)
(q−1)

i−d∑
s=0

(
i−1
s

)
(−1)sqi−d−s , d ≤ i ≤ n .

Hint: Use the identity
(

i
s

)
=
(
i−1
s

)
+
(

i−1
s−1

)
.

Problem 4.19 Let F = GF(q) and consider transmission through a memoryless
q-ary symmetric channel with crossover probability p. For a linear [n, k, d] code C
over F , let DMLD : Fn → C be a maximum-likelihood decoder for C with respect to
this channel. Show that the decoding error probability, Perr, of DMLD is bounded
from above by

Perr ≤ WC
(
2
√

p(1−p)/(q−1) + (p(q−2)/(q−1))
)
− 1 .

Hint: See Problem 1.9.

Problem 4.20 Let F = GF(q) and consider transmission through a memoryless
q-ary symmetric channel with crossover probability p. For a linear [n, k, d] code C
over F , let D : Fn → C ∪ {“e”} be the decoder

D(y) =
{

y if y ∈ C
“e” otherwise .

Define the decoding misdetection probability Pmis(C) of D by

Pmis(C) = max
c∈C

Pmis(c) ,

where
Pmis(c) =

∑
y :D(y) �∈{c,“e”}

Prob{y received | c transmitted } .

126 4. Bounds on the Parameters of Codes

(Note the difference between the decoding misdetection probability and the decod-
ing error probability: while the former is the probability of only decoding to a wrong
codeword, the latter includes also the probability that the decoder detects errors
without correcting them.) Show that

Pmis(C) = W h
C (1−p, p/(q−1))− (1−p)n .

Problem 4.21 Let F = GF(q) and consider transmission through a memoryless
q-ary erasure channel with input alphabet F , output alphabet Φ = F ∪ {?}, and
erasure probability p (see Example 1.10). For a linear [n, k, d] code C over F , let
D : Φn → C ∪ {“e”} be the decoder

D(y) =
{

c if y agrees with exactly one c ∈ C on the entries in F
“e” otherwise .

The decoding error probability, Perr, of D is given by

Perr = max
c∈C

∑
y :D(y)=“e”

Prob{y received | c transmitted } .

1. Show that
Perr ≤ WC(p)− 1 .

2. Assuming a uniform distribution over the codewords of C, a random codeword
c is selected from C and transmitted through the erasure channel. Show that

Prob { received word y is in {0, ?}n } =
1
qk
·WC(p) .

Problem 4.22 Let C be a linear [n, k, d] code over F = GF(q) whose generator
matrix does not contain an all-zero column. Fix an integer t in the range 0 <
t < (1− (1/q))n, and denote by Yt the number of codewords in C whose Hamming
weight is t or less.

1. Show that
W ′

C(1) = n · (q−1) · qk−1 ,

where W ′
C(z) stands for the derivative of WC(z) with respect to z.

Hint: See Problem 2.6.

2. Show that
Yt ≤ inf

z∈(0,1]
z−tWC(z) .

Hint: For every z ∈ (0, 1], verify that Yt is related to the weight distribution
(Wi)n

i=0 of C by

Yt =
t∑

i=0

Wi ≤
n∑

i=0

Wiz
i−t .

Problems 127

3. Show that the polynomial

Qt(z) = zW ′
C(z)− tWC(z)

has a unique real positive root z0 and that this root belongs to the interval
(0, 1).

Hint: First, verify that Qt(0) < 0 and Qt(1) > 0 and deduce that there exists
z0 ∈ (0, 1) such that Qt(z0) = 0.
Next, write Qt(z) =

∑n
i=0 Qt,iz

i and observe that Qt,i ≤ 0 when i < t and
Qt,i ≥ 0 otherwise. Use this to show that if z0 is a positive root of Qt(z)
then Q′

t(z0) > 0. Finally, argue that if a polynomial has two or more positive
roots, then such a polynomial cannot be increasing at all of these roots.

4. Show that
Yt ≤ z−t

0 WC(z0) ,

where z0 is the unique positive root of the polynomial Qt(z) in part 3.

[Section 4.5]

Problem 4.23 (The Plotkin bound) Let C be an (n,M, d) code over an alphabet
F of size q.

1. Let T = (Ti,j) be an M × n array whose rows are the codewords of C. For
a column index j ∈ {1, 2, . . . , n} and an element a ∈ F , denote by xa,j the
number of times the element a appears in the jth column of T . Let Pj

denote the number of (ordered) pairs of row indexes (r, s) ∈ {1, 2, . . . ,M} ×
{1, 2, . . . ,M} such that Tr,j = Ts,j . Show that for every column index j,

Pj =
∑
a∈F

x2
a,j .

2. Show that
Pj ≥M2/q .

Hint: Given the constraint
∑

a∈F xa,j = M , show that the minimum of∑
a∈F x2

a,j over the reals is attained when xa,j = M/q; or, show that∑
a∈F

x2
a,j = M2/q +

∑
a∈F

(xa,j − (M/q))2 .

3. Show that ∑
c1,c2∈C

d(c1, c2) =
n∑

j=1

(M2 − Pj) .

4. Based on the previous parts, show that

M(M−1)d ≤
n∑

j=1

(M2 − Pj) ≤ nM2(1− (1/q))

128 4. Bounds on the Parameters of Codes

and obtain the upper bound

d

n
≤ 1− (1/q)

1− (1/M)
.

(Note that when C is linear, this bound becomes the bound in Problem 2.7.)

5. Verify that the following codes attain the bound in part 4:

(a) The repetition code.

(b) The simplex code over F = GF(q) (see part 4 of Problem 4.4).

(c) The shortened first-order Reed–Muller code over F = GF(q).

6. Show that the bound in part 4 is attained only if M−1 divides n(q−1). (In
particular, this implies M ≤ 1 + n(q−1).)

Hint: The expression Mn(q−1)/((M−1)q) must be an integer.

7. Show that a linear [n, k, d] code over F = GF(q) attains the bound in part 4
only if n = � · (qk − 1)/(q − 1) for some positive integer �.

8. Conversely, show that for every two positive integers k and � there is a linear
[n, k, d] code over F = GF(q) of length n = � · (qk − 1)/(q − 1) that attains
the bound in part 4.

Hint: Consider a linear code whose generator matrix consists of � copies of a
generator matrix G of the simplex code.

9. A (n,M, d) code is called equidistant if the Hamming distance between every
two distinct codewords in the code equals d. Show that a code C attains the
bound in part 4 only if C is equidistant.

10. Show that the condition in part 9 is also sufficient when C is a linear [n, k, d]
code over F = GF(q) and no coordinate in C is identically zero.

Hint: Use Problem 2.6.

Problem 4.24 Show that the Johnson bound in Proposition 4.11 is attained by
the following codes:

1. The code obtained by removing the all-zero codeword from a simplex code
over GF(q) (see part 4 of Problem 4.4).

2. The code obtained by removing the all-zero codeword from a shortened first-
order Reed–Muller code over GF(q).

Problem 4.25 Let M and q be positive integers and θ be a rational in (0, 1−(1/q)]
such that Mθ is an integer multiple of q−1. Let F be an Abelian group of size q,
and consider an M × n array T = (Ti,j) over F whose columns exhaust all the
distinct words w in FM with the property that each nonzero element of F appears
in w exactly Mθ/(q−1) times. (Thus, the Hamming weight of each column in T
is Mθ, and the number of columns, n, is uniquely determined by M , q, and θ.)
Denote by C the (n,M) code over F whose codewords are given by the rows of T .
Show that C attains the Johnson bound in Proposition 4.11.

Problems 129

Hint: Verify that the inequalities in the proof of Proposition 4.11 all hold with
equality. In particular, use the symmetry among the rows of T to claim that C is
equidistant (see part 9 of Problem 4.23).

Problem 4.26 (Quadratic integer expressions) For a positive integer m, an integer
s, and a real number v, define

B(m, s, v) = min
z1,z2,...,zm

m∑
i=1

(zi − v)2 ,

where the minimum is taken over all integers z1, z2, . . . , zm such that

m∑
i=1

zi = s .

Write s = mc− t where c = �s/m�.

1. Show that

B(m, s, v) = m(c−v)2 + 2(v−c)t + t

= mv2 − 2
((

c
2

)
m + s(v−c + 1

2)
)

,

and that this minimum is attained when exactly t of the values zi equal c−1
while the remaining m−t values equal c.

Hint: Show that if zj ≥ z� + 2, then reducing zj by 1 and increasing z� by 1
will decrease the sum

∑m
i=1(zi − v)2.

2. Show that

B(m, s, v) ≤ B(m, s−1, v) when s ≤ m�v + 1
2

and
B(m, s, v) > B(m, s−1, v) when s > m�v + 1

2

(that is, for fixed m and v, the value B(m, s, v) is smallest when s = m�v+ 1
2).

Problem 4.27 (Improvements on the Johnson bound) For integers M > 1 and
q > 1 and a real θ ∈ [0, 1], define

J (M, θ, q) =
(M−ρ−σ+1)Mθ +

(
ρ
2

)
+
(
σ
2

)
(q−1)(

M
2

) ,

where ρ = �Mθ� and σ = �ρ/(q−1)�.
Let C be an (n,M, δn) code over an Abelian group of size q and let θn be the

largest Hamming weight of any codeword in C.

1. Show that
σ = �Mθ/(q−1)�

(even when Mθ is not an integer).

130 4. Bounds on the Parameters of Codes

2. Show that if θ ≤ 1− (1/q) then

δ ≤ J (M, θ, q) .

Hint: Break the right-hand side of (4.14) into a sum of the following two
expressions:

n∑
j=1

(
2M1

(∑
a∈F∗

xa,j

)
−
(∑

a∈F∗
xa,j

)2
)

and
n∑

j=1

∑
a∈F∗

(
2M2 xa,j − x2

a,j

)
,

where M1 and M2 are reals such that

M1 ≥ �Mθ� − 1
2 , M2 ≥ �Mθ/(q−1)� − 1

2 , and M1 + M2 = M .

Fix the sum
n∑

j=1

∑
a∈F∗

xa,j

to be equal to some integer x ≤ Mθn, then apply part 1 of Problem 4.26
twice: once with

m ← n , s ← x , v ← M1 , and zi ←
∑

a∈F∗
xa,j ,

and then with

m ← n(q−1) , s ← x , v ←M2 , and zi ← xa,j .

Deduce that

δ ≤ nM2
1 + n(q−1)M2

2 −B(n, x,M1)−B(n(q−1), x,M2)
M(M−1)n

.

Next, use part 2 of Problem 4.26 to claim that

δ ≤ nM2
1 + n(q−1)M2

2 −B(n, Mθn, M1)−B(n(q−1), Mθn, M2)
M(M−1)n

and, finally, derive the result from the latter inequality.

3. Show that when Mθ is an integer multiple of q−1, the bound δ ≤ J (M, θ, q)
takes the form

δ ≤ M

M−1
· (2θ − q

q−1θ2)

(which is the expression in Proposition 4.11).

Problems 131

4. Given fixed positive integers M and q, consider the function

θ �→ J (M, θ, q) ,

which is defined over the real interval [0, 1]. Show that this function is:

(a) continuous on the interval [0, 1];

(b) linear on each interval [ρ−1
M , ρ

M] with slope 2
(
1− �ρq/(q−1)	−2

M−1

)
for ρ =

1, 2, . . . , M ;
(c) ∩-concave on the interval [0, 1];

(d) strictly increasing for 0 < θ < 1− �M/q	
M ;

(e) strictly decreasing for 1−
M/q�
M < θ < 1;

(f) flat for 1− �M/q	
M < θ < 1−
M/q�

M .

Problem 4.28 Let F be an Abelian group of size q, let M be an integer greater
than 1, and let θ be a rational in (0, 1−(1/q)]. Show that for some integer n, there
is an (n,M, δn) code over F whose codewords all have Hamming weight θn and

δ = J (M, θ, q) ,

where J (M, θ, q) is as defined in Problem 4.27.

Hint: Select � to be an integer such that Mθ� is an integer multiple of q−1. Con-
struct an M×� array U over F by filling in its entries, row by row, with Mθ�/(q−1)
copies of some nonzero element of F , followed by Mθ�/(q−1) copies of some other
nonzero element of F , and so on. The M(1−θ)� remaining entries of U are then
filled with zeros. Next, consider the M ! arrays obtained by all possible permutations
of the rows of U (different permutations can result in identical arrays): concate-
nate these arrays to produce an M × n array T over F , where n = M !�. Based
on Problem 4.26, show that the values xa,j that are associated with T attain the
minimum in (4.14) (over the integers) under the constraint (4.15). Conclude the
proof by arguing that the rows of T form an equidistant code.

Problem 4.29 (Improvements on the Plotkin bound) Show that for every (n,M, d)
code over an alphabet of size q,

d

n
≤

(
M−r+1

2

)
+
(
r
2

)
(q−1)(

M
2

) ,

where r = �M/q�.
Hint: Show that d/n is bounded from above by the maximum value of the function
θ �→ J (M, θ, q) in Problem 4.27; then compute that maximum.

[Sections 4.6 and 4.7]
Problem 4.30 Let F be an Abelian group of size q. Fix θ to be a real in
(0, 1−(1/q)] and δ to be any real such that

0 < δ < 2θ − q
q−1θ2 .

132 4. Bounds on the Parameters of Codes

The purpose of this problem is to show via probabilistic arguments that for increas-
ing values of n, there exist (n,M, >δn) codes over F that consist only of codewords
whose Hamming weight is θn or less, while the code sizes M grow exponentially
with n. (Thus, if δ is made arbitrarily close to 2θ − (q/(q−1))θ2, these codes ap-
proach the Johnson bound in Proposition 4.11; see also Problem 4.25.)

Let n be a positive integer and p be a real such that

p < θ and δ < 2p− q
q−1p2

(why does such p exist?). Define the following probability distribution over Fn: the
entries in each word e1e2 . . . en in Fn are statistically independent, and for every
a ∈ F and 1 ≤ j ≤ n,

Prob{ ej = a } =
{

1− p if a = 0
p/(q−1) if a �= 0

(this distribution coincides with that of the error words of length n in the q-ary
symmetric channel with crossover probability p). Assume hereafter in this problem
that all random selections of words in Fn are made according to this distribution.

1. Let e1e2 . . . en and e′1e
′
2 . . . e′n be two randomly selected words in Fn. Show

that for every a ∈ F and 1 ≤ j ≤ n,

Prob{ ej − e′j = a } =
{

1− π if a = 0
π/(q−1) if a �= 0 ,

where
π = 2p− q

q−1p2 .

2. Let e and e′ be two randomly selected words in Fn. Show that

Prob{ d(e, e′) ≤ δn } ≤ q−nDq(δ‖π) .

Hint: Use Lemma 4.13.

3. Let M be an integer greater than 1 such that

M · q−nDq(θ‖p) +
(

M

2

)
· q−nDq(δ‖π) < 1 .

Show that there exists an (n,M, >δn) code over F in which each codeword
has Hamming weight at most θn.

Hint: Bound from above the probability that a randomly selected set of M
words of Fn does not form such a code.

4. Show that as n increases, the integer M in part 3 can be chosen so that it
grows exponentially with n.

Problem 4.31 (Shannon Coding Theorem while allowing error detection) The
purpose of this problem is to show that when error detection is allowed, there is
an attainable trade-off between the decoding error probability and the misdetection
probability (see Problem 4.20).

Problems 133

Let F = GF(q) and consider transmission through a q-ary symmetric channel
(F, F, Prob) with crossover probability p. For a linear [n, nR] code C over F and a
nonnegative real s, let Ds : Fn → C ∪ {“e”} be the following decoder:

Ds(y)=
{

c if ∃c ∈ C such that d(y, c′) > d(y, c) + s for every c′ ∈ C \ {c}
“e” otherwise .

Define the decoding misdetection probability Pmis(C) of Ds by

Pmis(C) = max
c∈C

Pmis(c) ,

where
Pmis(c) =

∑
y :Ds(y)∈C\{c}

Prob{y received | c transmitted }

(note that the decoding error probability, Perr, is still defined as

Perr(C) = max
c∈C

Perr(c) ,

where
Perr(c) =

∑
y :Ds(y) �=c

Prob{y received | c transmitted } ;

in particular, the summation is taken also over values y for which Ds(y) = “e”).
The notations Perr(C|e), Perr(C|Sq(n, t)), Perr(C), and their averages extend

from the respective definitions made, for a nearest-codeword decoder, in Section 4.7.
Similar notations will now be used also for Pmis.

Assume hereafter that p ∈ (0, 1−(1/q)) and R < 1− Hq(p).

1. Show that for every real t ≥ 0,

Perr(C|Sq(n, t)) < qn(R−1) · Vq(n, t + s)

and
Pmis(C|Sq(n, t)) ≤ qn(R−1) · Vq(n, t− s) .

2. Denote by σ the ratio s/n. Show that for every θ1 ∈ [p, 1−(1/q)−σ],

Perr(C) < q−n(1−Hq(θ1+σ)−R) + q−nDq(θ1‖p) ,

and for every θ2 ∈ [p, 1−(1/q)+σ],

Pmis(C) ≤ q−n(1−Hq(θ2−σ)−R) + q−nDq(θ2‖p) ,

where Hq(x) is taken as −∞ when x < 0 and Dq(x‖p) is taken as +∞ when
x > 1.

3. Let H′
q(x) and D′

q(x‖p) be the derivatives of the functions x �→ Hq(x) and
x�→ Dq(x‖p), respectively. Show that

Hq(θ + ε) < Hq(θ) + H′
q(θ)ε

and
Dq(θ + ε‖p) > Dq(θ‖p) + D′

q(θ‖p)ε

for every θ ∈ (0, 1) and |ε| > 0 such that θ + ε ∈ (0, 1).

Hint: Use convexity.

134 4. Bounds on the Parameters of Codes

4. Let θ∗ be the value θ∗q (p,R) in Theorem 4.17. Define A = H′
q(θ∗) and B =

D′
q(θ

∗‖p). Show that both A and B are strictly positive.

5. Let Eq(p,R) be as in Theorem 4.17 and denote by γ = γq(p,R) the value
AB/(A + B). Show that

Perr(C) < 2q−nEq(p,R) · qγs

and
Pmis(C) < 2q−nEq(p,R) · q−γs .

Hint: Let Δ = (Aσ)/(A+B) and select θ1 = θ∗−Δ and θ2 = θ∗+Δ in part 2.
Verify that θ2 ∈ [p, 1−(1/q)+σ], and assume that θ1 ∈ [p, 1−(1/q)−σ]. Then
apply the inequalities in part 3. (When θ1 �∈ [p, 1−(1/q)−σ], the upper
bound on Perr in part 2 becomes vacuous: for either boundary value, θ1 = p
or θ1 = 1−(1/q)−σ, that bound is greater than 1. Hence, so is the bound
2q−nEq(p,R) · qγs.)

6. Conclude that there is a mapping s�→ Kq(p,R, s) from the nonnegative reals
onto [1,∞) such that, when ranging over all linear [n, nR] codes C over F ,
the decoder Ds : Fn → C satisfies

Perr(C) < 2 ·Kq(p,R, s) · q−nEq(p,R)

and
Pmis(C) < 2 · (Kq(p,R, s))−1 · q−nEq(p,R)

for every given s ≥ 0.

Problem 4.32 (Shannon Converse Coding Theorem for the q-ary erasure channel)
The purpose of this problem is to show that 1 − p is the largest possible rate at
which information can be transmitted reliably through the memoryless q-ary erasure
channel with erasure probability p.

Denote by F the input alphabet (of size q) of the channel and by Φ = F ∪ {?}
the output alphabet. Let C be an (n, qnR) code over F where n and nR are integers
such that 1 − p < R ≤ 1. Also, let D : Φn → C ∪ {“e”} be a decoder for C with
respect to the q-ary erasure channel.

For a word y ∈ Φn, denote by T (y) the set of indexes of the erased entries in
y. A word x ∈ Fn is said to agree with y ∈ Φn if x and y agree on all their entries
except those that are indexed by T (y). Denote by C(y) the set of codewords in C
that agree with y.

1. Let J be a subset of {1, 2, . . . , n}. Show that∑
y∈Φn : T (y)=J

∣∣∣{ c ∈ C(y) : D(y) �= c
}∣∣∣

≥
∑

y∈Φn : T (y)=J

(|C(y)| − 1) = qnR − qn−|J| .

Problems 135

2. Show that for every subset J ⊆ {1, 2, . . . , n} of size |J | ≥ θn,∑
c∈C

∑
y :D(y) �=c

Prob
{

y received
∣∣∣ c transmitted and T (y) = J

}
≥ qnR − qn(1−θ) .

3. Show that for every θ ∈ [0, 1], there is at least one codeword c ∈ C for which∑
y :D(y) �=c

Prob
{

y received
∣∣∣ c transmitted and |T (y)| ≥ θn

}
≥ 1− qn(1−θ−R) .

4. Show that for every θ ∈ [0, p], the decoding error probability Perr of D satisfies

Perr ≥ (1− qn(1−θ−R))(1− q−nDq(θ‖p)) .

5. Show that
Perr > 1− 2q−nDq(θ‖p) ,

where θ = θq(p,R) is a solution to the equation

θ − Dq(θ‖p) = 1−R

in the open interval (1−R, p). Verify that such a solution indeed exists and
that it is unique.

Problem 4.33 (Shannon Coding Theorem for the q-ary erasure channel) The pur-
pose of this problem is to show that when F = GF(q), the bound in Problem 4.32
can be approached by linear codes over F . The error probabilities herein are all
defined with respect to the memoryless q-ary erasure channel with input alphabet
F = GF(q), output alphabet Φ = F ∪ {?}, and erasure probability p.

1. Let k and r be positive integers such that r ≥ k. Show that all but a fraction
less than qk−r of the k × r matrices over F have rank k.

Hint: Assume a uniform distribution over all k × r matrices G and consider
the probability that uG = 0 for at least one u ∈ F k \ {0}. Alternatively,
show that there are

k−1∏
i=0

(qr − qi)

k × r matrices over F that have rank k.

2. For a linear [n, k] code C over F , let D : Φn → C ∪ {“e”} be the following
decoder:

D(y) =
{

c if y agrees with exactly one c ∈ C on the entries in F
“e” otherwise .

For a set J ⊆ {1, 2, . . . , n}, let Perr(C|J) be the decoding error probability of
D conditioned on the erasures being indexed by J . Show that the average,
Perr(C|J), of Perr(C|J) over all linear [n, k] codes C over F satisfies

Perr(C|J) < qk−n+|J| .

136 4. Bounds on the Parameters of Codes

Hint: Decoding will be successful if the columns of the generator matrix of C
that are not indexed by J form a matrix whose rank is k.

3. For a linear [n, nR] code C, let Perr(C) be the decoding error probability of
the decoder D defined in part 2. Show that when R < 1 − p, the average,
Perr(C), of Perr(C) over all linear [n, nR] codes C over F satisfies

Perr(C) < 2q−nDq(θ‖p) ,

where θ = θ̃q(p,R) is a solution to

θ + Dq(θ‖p) = 1−R

in the open interval (p, 1−R). Verify that such a solution indeed exists and
that it is unique.

Notes

[Section 4.1]
The Singleton bound (Theorem 4.1) is named after Singleton’s paper [339], where
the linear case was stated. Yet, the bound had been known already in the early
1950s. MDS codes will be discussed in more detail in Chapter 11.

The Griesmer bound (part 2 of Problem 4.4) was obtained in [163].

[Section 4.2]
The sphere-packing bound (Theorem 4.3) was obtained by Hamming in [169].

The binary Golay code is a linear [23, 12, 7] code over GF(2) whose 12 × 23
generator matrix has the echelon form

G =

⎛⎜⎜⎜⎜⎝
g0 g1 . . . gr

g0 g1 . . . gr 0
0 · · · . . .

g0 g1 . . . gr

⎞⎟⎟⎟⎟⎠ , (4.23)

where r = 11 and

(g0 g1 . . . g11) = (1 0 1 0 1 1 1 0 0 0 1 1) .

The ternary Golay code is a linear [11, 6, 5] code over GF(3) whose 6×11 generator
matrix has the form (4.23) where now r = 5 and

(g0 g1 . . . g5) = (2 0 1 2 1 1) .

These two codes were introduced by Golay in [149]. Golay codes have been among
the most-studied codes in coding theory, as they possess rather unique combina-
torial properties. See MacWilliams and Sloane [249, Chapter 20] and Pless [280,
Chapter 10].

Notes 137

It is known that the Golay codes and the odd-length binary repetition code in
Example 4.1 are the only perfect codes with minimum distance d > 3 over finite
fields; see van Lint [233], Tietäväinen [364], and Zinov’ev and Leont’ev [399]. As
for perfect codes with minimum distance d = 3, the Hamming codes are the only
such codes that are linear, yet there are nonlinear constructions of perfect codes for
d = 3 which are inequivalent to Hamming codes; see Etzion and Vardy [117] and
the references therein.

Burst errors (Problem 4.12, and see also Problems 2.21 and 2.22) are a common
model for describing the error patterns in many communication systems. For more
on burst errors, see the books by Lin and Costello [230, Chapter 9] and Peterson
and Weldon [278, Chapter 14]. The Reiger bound was obtained in [292].

There is an extensive literature on the covering radius of codes (Problem 4.13).
The book by Cohen et al. [81] contains a thorough treatment of this subject. See
also Cohen et al. [82], Cohen et al. [83], and Graham and Sloane [161]. It was shown
by Goblick in [148] that (the asymptotic version of) the sphere-covering bound is
attained by linear codes. Blinovskii then showed in [55] that all but a small fraction
of these code attain this bound. See also Delsarte and Piret [100].

[Section 4.3]

The Gilbert–Varshamov bound (Theorem 4.4) was obtained by Gilbert [146], Var-
shamov [372], and Sacks [311]. Theorem 4.5 is an example of a random coding
result, in that it states a property that holds for all but a (small) fraction of codes
in a given code ensemble; yet, it does not provide an efficient algorithm for find-
ing even one instance that satisfies the stated property. The proof of Theorem 4.5
makes use of an inequality of the form

Prob
{
∪u∈UAu

}
≤
∑
u∈U

Prob {Au} ,

where Au denotes an event that is indexed by u ∈ U (specifically in that proof, Au

stands for the event “uG ∈ S”). This inequality is commonly referred to as the
union bound .

[Section 4.4]

Theorem 4.6 was obtained by MacWilliams [247], [248]. The exposition here of
MacWilliams’ Theorem makes use of dual codes and, as such, it applies to linear
codes. However, the concept of a dual weight distribution can be generalized to
nonlinear codes, and MacWilliams’ Theorem can be extended accordingly.

Krawtchouk polynomials were defined in [219], and a summary of their prop-
erties can be found in MacWilliams and Sloane [249, Section 5.7], Nikiforov et
al. [270], and Szegő [351, pp. 35–37]. One obvious property is that degK�(y) = �
and, so, every polynomial λ(y) ∈ Rn+1[y] can be expressed uniquely in the form
λ(y) =

∑n
�=0 λ�K�(y) for some reals λ�.

On integer and linear programming see Luenberger [242], Nemhauser and
Wolsey [268], and Schrijver [324]. It follows from the duality theorem of linear
programming [242, Chapter 4] that solving the rational version of (4.9) and (4.10)

138 4. Bounds on the Parameters of Codes

is equivalent to solving the dual linear programming problem

1 + min
n∑

�=1

(
n

�

)
(q−1)� λ� , (4.24)

where the minimum is taken over all rationals λ1, λ2, . . . , λn such that⎧⎪⎨⎪⎩
λ� ≥ 0 , 1 ≤ � ≤ n

n∑
�=1

K�(i)λ� ≤ −1 , d ≤ i ≤ n
. (4.25)

The application of linear programming to bounding code parameters was intro-
duced by Delsarte [93]–[95]. In particular, as shown by Delsarte, the dual linear
programming problem (4.24)–(4.25) can be recast in the following manner.

Theorem 4.19 (Delsarte’s linear programming bound) Given F = GF(q) and
positive integers n and d, let the polynomial λ(y) ∈ Rn+1[y] have a Krawtchouk
expansion

λ(y) = 1 +
n∑

�=1

λ�K�(y;n, q)

such that λ� ≥ 0 for 1 ≤ � ≤ n. Suppose in addition that the values

λ(d), λ(d+1), . . . , λ(n)

are all nonpositive. Then the size of every (linear) code of length n and minimum
distance d over F is bounded from above by λ(0).

[Section 4.5]

As seen from Problem 4.15, Theorem 4.10 holds even if we restrict it to linear
codes that have systematic (nR)×n generator matrices over GF(q); the size of this
ensemble of codes is qn2R(1−R). Clearly, the theorem only becomes stronger if we
can reduce the ensemble size even further. Indeed, it will follow from Problem 12.10
that Theorem 4.10 holds also when the linear codes are assumed to be generated by
(nR)× n matrices of the form (4.23), where r = n(1−R) and g0 + g1x + . . . + grx

r

is a monic irreducible polynomial over GF(q). The size of this ensemble is less than
qn(1−R). Other ensembles of comparable sizes will be presented in Section 12.4 and
Problem 12.11.

Using tools from algebraic geometry, Tsfasman et al. [365] obtained a construc-
tion of an infinite family of linear [n, nR, δn] codes over fields GF(q) with q square,
such that

R ≥ 1− 1
√

q − 1
− δ − o(1) .

These codes exceed the bound of Theorem 4.10 for field sizes q ≥ 49. The time com-
plexity of the fastest algorithm currently known for computing generator matrices
of such codes is proportional to (n logq n)3. See Brigand [66], Katsman et al. [208],
and Shum et al. [338].

Notes 139

The Plotkin bound (part 4 of Problem 4.23) appeared in [282]. It follows from
the Plotkin bound that given an alphabet F of size q and a fixed δ ∈ (1−(1/q), 1],
all (n,M,≥δn) codes over F must satisfy

M ≤
(

1− 1− (1/q)
δ

)−1

.

That is, the code size is bounded from above by a constant that is independent
of n. Equivalently, the code rate is bounded from above by c/n for a constant c
that depends only on q and δ. On the other hand, when δ = 1 − (1/q), one can
obtain codes whose rate is already (1+logq n)/n. The first-order Reed–Muller code
(Problem 2.17) is an example of such a code.

The Johnson bound (Proposition 4.11) was obtained in [198]. This bound,
which is one of several bounds in coding theory that are named after Johnson, is
commonly stated for constant-weight codes (see Problem 4.10), where each code-
word has Hamming weight exactly θn. Problem 4.25 demonstrates that the bound
in Proposition 4.11 is attainable for a fairly dense set of triples (M, θ, q) (see also
Problem 4.30, which is taken from Goldreich et al. [151, Section 4.3]). The improve-
ment on Proposition 4.11 in Problem 4.27 is achieved by optimizing over integer
values rather than over the reals. We will present an application of the improved
bound in Section 9.8.

The Elias bound (Theorem 4.12) can be found in Shannon et al. [331]. For the
McEliece–Rodemich–Rumsey–Welch (MRRW) bound, see [260].

[Sections 4.6 and 4.7]

The Channel Coding Theorem and its converse were first proved by Shannon
in [330], and Theorems 4.17 and 4.14 are special cases of his theorems for the q-ary
symmetric channel. Shannon’s theorems can be found in any textbook on infor-
mation theory. See, for instance, Cover and Thomas [87], Csiszár and Körner [88],
Gallager [140], McEliece [259], and Viterbi and Omura [374]. We mention that
Theorem 4.17 does not provide the best—namely, fastest—exponential decay of
the decoding error probability; see Gallager [140] (and the exposition below) and
Viterbi and Omura [374, Section 3.10].

In Lemma 4.13 (and also in Lemma 4.7 and Problem 4.22) we used a bound-
ing technique known as the Chernoff bound ; see, for example, Gallager [140, Sec-
tion 5.4]. One variant of this bound is given next.

Proposition 4.20 (Chernoff bound) Let X1, X2, . . . , Xn be real random vari-
ables that are statistically independent and identically distributed. Then,

Prob{X1 + X2 + . . . + Xn ≤ θn } ≤ αn
θ ,

where
αθ = inf

z∈(0,1]
z−θEX{zX} ,

and EX{·} = EXj{·} denotes expected value with respect to the distribution of Xj.

140 4. Bounds on the Parameters of Codes

Proof. For every z ∈ (0, 1] we have,

Prob{X1 + X2 + . . . + Xn ≤ θn } ≤ EX1,X2,...,Xn

{
zX1+X2+...+Xn−θn

}
= z−θn · EX1,X2,...,Xn

{ n∏
j=1

zXj

}
= z−θn ·

n∏
j=1

EXj

{
zXj

}
=

(
z−θEX{zX}

)n
.

The result is obtained by taking the infimum over z.

Lemma 4.13(i) can be thought of as a special case of Proposition 4.20 where
the random variables {Xj}j are independent Bernoulli trials taking values in {0, 1},
and Xj = 1 if and only if the jth coordinate of the error word e is nonzero.

The trade-off between the decoding error probability and the decoding misde-
tection probability (Problem 4.31) can be found in Forney [129, Appendix A].

In the remaining part of the notes on this chapter, we present the Channel
Coding Theorem for an arbitrary discrete memoryless channel. Our exposition is
based on the work of Gallager [140, Chapter 5].

Let S = (F, Φ,Prob) be a channel and let n and M be positive integers. We
consider the following model of random codes of length n and size M over F . Fix a
probability distribution Pn : Fn → [0, 1] and a messages set U of size M . A random
(n,M) encoder over F (with respect to Pn) is a random mapping E : U → Fn whose
value at any message u ∈ U has the distribution Pn, independently of the values
at all other messages. In other words, we assume a distribution PE on the random
encoders where for every mapping ε : U → Fn,

PE {E = ε} =
∏
u∈U

Pn(ε(u)) .

We then say that PE is induced by Pn. While PE denotes hereafter the distribution
of E , we will also make use of the conditional distribution Prob of the channel S,
with the shorthand notation

Prob(y|x) = Prob{y received | x transmitted } .

The set of images of E forms a (random) (n,M) code C over F , with the addi-
tional twist that C is allowed to be a multi-set: distinct messages may be mapped
by E to the same codeword. Thus, it will be more appropriate to define a decoder
(for an encoder E with respect to S) as a mapping D : Φn → U , where the images
of D are now messages rather than codewords. Consequently, an MLD for E with
respect to S is a function DMLD : Φn → U such that for every y ∈ Φn, the value
DMLD(y) equals the message u ∈ U that maximizes the conditional probability

Prob{y received | E was selected and E(u) transmitted }

(this probability does not depend on the probability measure PE assumed on E).

Notes 141

The next theorem provides an upper bound on the average decoding error prob-
ability (per transmitted message) of an MLD for a random encoder with respect to
an arbitrary channel S = (F, Φ,Prob).

Theorem 4.21 Given a channel S = (F, Φ, Prob), a code length n, a message
set U of size M , a message u ∈ U , and a distribution Pn : Fn → [0, 1], let Perr(u|ε)
be the decoding error probability of an MLD for a random (n,M) encoder E, con-
ditioned on u being the transmitted message and on using a prescribed instance
ε : U → Fn of E for the encoding. Denote by Perr(u) the expected value of the
random variable Perr(u|E), namely,

Perr(u) =
∑

ε

PE{E=ε} · Perr(u|ε) ,

where PE is the distribution of E induced by Pn. Then for every real � ∈ [0, 1],

Perr(u) ≤ (M−1)�
∑

y∈Φn

(∑
x∈F n

Pn(x) · (Prob(y|x))1/(�+1)
)�+1

.

Proof. For c ∈ Fn and y ∈ Φn, denote by Perr(u | E(u)=c,y) the expected
decoding error probability of an MLD for a random (n,M) encoder E , conditioned
on all the following three events: (i) having u as the transmitted message, (ii) having
E(u) = c, and (iii) receiving y at the output of the channel. Clearly,

Perr(u) =
∑

y∈Φn

∑
c∈F n

PE{E(u) = c} · Prob(y|c) · Perr(u | E(u)=c,y)

=
∑

y∈Φn

∑
c∈F n

Pn(c) · Prob(y|c) · Perr(u | E(u)=c,y) . (4.26)

Now,

Perr(u | E(u)=c,y)

≤ PE

{
Prob(y|E(u′)) ≥ Prob(y|c) for some u′ ∈ U \ {u}

∣∣∣ E(u)=c,y
}

≤ min
{ ∑

u′∈U\{u}
PE

{
Prob(y|E(u′)) ≥ Prob(y|c)

∣∣∣ E(u)=c,y
}

, 1
}

= min
{ ∑

u′∈U\{u}
PE

{
Prob(y|E(u′)) ≥ Prob(y|c)

}
, 1
}

,

with the (last) equality following from the fact that for u′ �= U \ {u}, the value
E(u′) is statistically independent of E(u) and, obviously, it is also independent of
y. Hence, for every c ∈ Fn, y ∈ Φn, and � ∈ [0, 1],

Perr(u | E(u)=c,y) ≤
(∑

u′∈U\{u}
PE

{
Prob(y|E(u′)) ≥ Prob(y|c)

})�

. (4.27)

142 4. Bounds on the Parameters of Codes

Next, we bound each term in the sum in (4.27): for every u′ ∈ U \ {u}, c ∈ Fn,
y ∈ Φn, and σ > 0 we have

PE

{
Prob(y|E(u′)) ≥ Prob(y|c)

}
=

∑
x∈F n:

Prob(y|x)≥Prob(y|c)

Pn(x)

≤
∑

x∈F n

Pn(x) ·
(

Prob(y|x)
Prob(y|c)

)σ

,

and combining with (4.27) yields

Perr(u | E(u)=c,y) ≤
(

(M−1)
∑

x∈F n

Pn(x) ·
(

Prob(y|x)
Prob(y|c)

)σ
)�

.

Finally, we substitute the latter inequality into (4.26) to obtain

Perr(u) ≤
∑

y∈Φn

∑
c∈F n

Pn(c) · Prob(y|c) ·
(

(M−1)
∑

x∈F n

Pn(x) ·
(

Prob(y|x)
Prob(y|c)

)σ
)�

= (M−1)�
∑

y∈Φn

(∑
c∈F n

Pn(c) · (Prob(y|c))1−�σ

)(∑
x∈F n

Pn(x) · (Prob(y|x))σ

)�

.

The result follows by selecting σ so that 1− �σ = σ, namely, σ = 1/(� + 1).

Hereafter, we specialize to the case where S is a discrete memoryless channel
(in short, DMC), namely, it satisfies

Prob(y1y2 . . . yn|x1x2 . . . xn) =
n∏

j=1

Prob(yj |xj)

for every x1x2 . . . xn ∈ Fn and y1y2 . . . yn ∈ Φn (see Problem 1.8). We further
assume that the probability distribution Pn takes the form

Pn(x1x2 . . . xn) =
n∏

j=1

P (xj)

for a probability distribution P : F → [0, 1]. Denoting |F | by q, the bound of
Theorem 4.21 then becomes

Perr(u) ≤ (M−1)�

(∑
y∈Φ

(∑
x∈F

P (x) · (Prob(y|x))1/(�+1)
)�+1

)n

≤ q−n(ES(�,P)−�R) , (4.28)

where R can be any positive real such that qnR ≥ M−1 (e.g., R is the rate
(logq M)/n) and

ES(�, P) = − logq

(∑
y∈Φ

(∑
x∈F

P (x) · (Prob(y|x))1/(�+1)
)�+1

)
.

Notes 143

Obviously, the upper bound (4.28) will be tightest if we maximize the expression
ES(�, P)− �R over � and P . Thus,

Perr(u) ≤ q−nES(R) ,

where
ES(R) = max

0≤�≤1

{
max

P
{ES(�, P)} − �R

}
(4.29)

and the inner maximization is taken over all distribution functions P over F .
The value ES(R) is called Gallager’s random coding error exponent . It is easy

to see that this exponent is strictly positive for every rate R in the range

0 ≤ R < max
0≤�≤1

max
P

ES(�, P)
�

.

In particular, it is positive whenever

0 ≤ R < max
P

lim
�→0

ES(�, P)
�

.

Noting that ES(0, P) = 0, we can apply L’Hôpital rule to yield

lim
�→0

ES(�, P)
�

=
∂

∂�
ES(�, P)

∣∣∣
�=0

=
∑
y∈Φ

∑
x∈F

P (x) · Prob(y|x) · logq

(
Prob(y|x)∑

z∈F P (z) · Prob(y|z)

)
.

Given a DMC S and a probability distribution P : F → [0, 1], let Q : F × Φ →
[0, 1] be the probability distribution Q(x, y) = P (x) · Prob(y|x); also, for y ∈ Φ,
denote by Ψ(y) the marginal distribution

∑
x∈F Q(x, y). Using this notation, we

can write

lim
�→0

ES(�, P)
�

=
∑
y∈Φ

∑
x∈F

Q(x, y) · logq

(
Q(x, y)

P (x)Ψ(y)

)
,

with the right-hand side being identified as the mutual information I(Q), which
was defined in the notes on Section 1.4. We also recall from there that the capacity
of the DMC S is given by

cap(S) = max
P

I(Q) ,

where P ranges over all probability distributions on the elements of F and Q(x, y) =
P (x) · Prob(y|x). We conclude that ES(R) > 0 whenever

0 ≤ R < max
P

lim
�→0

ES(�, P)
�

= max
P

I(Q) = cap(S) .

Hence, for this range of R, the average decoding error probability per message,
Perr(u), in Theorem 4.21 decays to zero exponentially with n.

Observe, however, that we cannot infer from our analysis that such an expo-
nential decay applies also to the average of the (overall) decoding error probability
maxu∈U Perr(u). Still, we can make such an inference if—instead of the average
performance—we are interested only in an existence result. We demonstrate this in
the next theorem.

144 4. Bounds on the Parameters of Codes

Theorem 4.22 Let S = (F, Φ,Prob) be a discrete memoryless channel where
|F | = q and let the real R be in the range 0 ≤ R < cap(S). For every positive
integer n there exists an (n, M=�qnR�) code C over F whose MLD (with respect to
S) has decoding error probability Perr(C) that satisfies

Perr(C) < 4q−nES(R) ,

where ES(R) is given by (4.29).

Proof. Let (�, P) be the pair of arguments of ES(·, ·) for which (4.29) is maxi-
mized and let U be a set of size 2M−2 (hereafter we exclude the trivial case M = 1;
we can also assume that � > 0, or else ES(R) = ES(0, P) = 0). We apply Theo-
rem 4.21 to the DMC S, where E is a random (n, 2M−2) encoder whose distribution
is induced by Pn(x1x2 . . . xn) =

∏
j P (xj); this yields

Perr(u) ≤ (2M−3)� · q−nES(�,P) for every u ∈ U . (4.30)

Denote by α the average of Perr(u) over all u ∈ U , i.e.,

α =
1

2M−2

∑
u∈U

Perr(u) =
1

2M−2

∑
ε

PE{E=ε}
∑
u∈U

Perr(u|ε) .

From (4.30), we can bound α from above by

α ≤ (2M−3)� · q−nES(�,P) .

We next claim that there must be a subset U0 ⊆ U of size M and an instance
ε0 of the random (n, 2M−2) encoder E such that

Perr(u|ε0) ≤ 2α for every u ∈ U0 ;

otherwise, every instance ε of E would satisfy Perr(u|ε) > 2α for at least half the
elements u of U , which, in turn, would yield the contradiction

α =
1

2M−2

∑
ε

PE{E=ε}
∑
u∈U

Perr(u|ε)

≥ 1
2M−2

∑
ε

PE{E=ε}
∑

u : Perr(u|ε)>2α

Perr(u|ε)︸ ︷︷ ︸
>(M−1)·2α

> α .

Having ε0 and U0 at hand, we let C be the (n,M) code over F that is given by
the set {ε0(u) : u ∈ U0} (when α < 1/4, the restriction of ε0 to the domain U0

is necessarily one-to-one; if this were not so, there would be a message u′ ∈ U0 for
which (2α ≥) Perr(u′|ε0) ≥ 1/2). We have,

Perr(C) ≤ 2α ≤ 2 · (2M−3)� · q−nES(�,P)

< 4 · (M−1︸ ︷︷ ︸
<qnR

)� · q−nES(�,P) < 4 · q−n(ES(�,P)−�R) = 4 · q−nES(R) .

Notes 145

Example 4.7 Let S be the memoryless q-ary symmetric channel with crossover
probability p. We compute ES(R) using (4.29), by first finding the probability
distribution P : F → [0, 1] that maximizes ES(�, P), for any fixed �. This is
equivalent to minimizing the expression

q−ES(�,P) =
∑
y∈Φ

(∑
x∈F

P (x) · (Prob(y|x))1/(�+1)
)�+1

=
∑
y∈Φ

(
(1−p)1/(�+1)P (y) + (p/(q−1))1/(�+1)

∑
x∈F\{y}

P (x)
)�+1

over all the nonnegative real vectors (P (x))x∈F that satisfy the constraint∑
x∈F

P (x) = 1 .

The minimum is attained (rather expectedly) when P (x) = 1/q for every x ∈ F ,
and for this distribution we get

q−ES(�,P) = q−�
(
(1−p)1/(�+1) + ((q−1)�p)1/(�+1)

)�+1

or
ES(�, P) = �− (�+1) logq (τ(�) + ω(�)) ,

where

τ(�) = τ(�, p) = (1−p)1/(�+1) and ω(�) = ω(�, p, q) = ((q−1)�p)1/(�+1) .

Turning again to (4.29), the value of ES(R) equals the maximum of the expression

ES,R(�) = �(1−R)− (�+1) logq (τ(�) + ω(�))

over all � ∈ [0, 1]. So, we write

dES,R(�)
d�

= 0

and, consequently, end up with the equality

1−R = Hq

(
ω(�)

τ(�) + ω(�)

)
. (4.31)

Let θ = θ(R) denote the value H−1
q (1−R). We can solve (4.31) for � to obtain

� =
log ((1−p)/p)− log ((1−θ)/θ)

log (q−1) + log ((1−θ)/θ)
.

One can see that this solution increases with θ and, therefore, decreases with R.
Yet, this solution for � is valid as long as it lies within the interval [0, 1]: the upper
boundary of this interval, � = 1, is obtained as a solution when

θ =
1

1 +
√

(1−p)/(p(q−1))
,

146 4. Bounds on the Parameters of Codes

and the respective rate value, 1 − Hq(θ), is called the critical rate and is denoted
by Rcr. The lower boundary, � = 0, is obtained as a solution when θ = p, and thus
corresponds to the rate value R = 1− Hq(p) = cap(S).

For rates R in the range [Rcr, cap(S)), we can plug the solution for � into ES,R(�)
to yield

ES(R) = ES,R(�) = Dq (θ(R)‖p) .

On the other hand, for R ∈ [0, Rcr), we need to substitute � = 1 in ES,R(�), thereby
yielding the following expression for ES(R) (which is a linear function in R):

ES(R) = ES,R(1) = 1− 2 logq

(√
1−p +

√
p(q−1)

)
−R .

Summarizing, we have

ES(R) =

⎧⎨⎩ 1− 2 logq

(√
1−p +

√
p(q−1)

)
−R if 0 ≤ R < Rcr

Dq

(
H−1

q (1−R)‖p
)

if Rcr ≤ R < cap(S)
,

where

Rcr = 1− Hq

(
1

1 +
√

(1−p)/(p(q−1))

)
.

Figure 4.2 depicts the curve R �→ ES(R) for q = 2 and p = 0.1; for these
parameters,

cap(S) = 1− H2(0.1) ≈ 0.5310 , Rcr = 1− H2(0.25) ≈ 0.1887 ,

and
ES(0) = ES,0(1) = 1− 2 log2(

√
0.9 +

√
0.1) ≈ 0.3219 .

We remark that—except for trivial cases—Gallager’s exponent ES(R) is larger
than the exponent Eq(p,R) of random linear codes that was obtained in Theo-
rem 4.17 and Corollary 4.18. Yet, Eq(p,R) can be improved to be equal to ES(R)
and even to surpass it for low rates; see Barg and Forney [27], Gallager [140, Sec-
tion 6.2], Peterson and Weldon [278, Section 4.2], and Viterbi and Omura [374,
Section 3.10].

�

�

R

ES(R)

0

0.1

0.1 cap(S)Rcr

ES(0)

Figure 4.2. Gallager’s random coding error exponent for the binary symmetric
channel with crossover probability p = 0.1.

Chapter 5

Reed–Solomon and Related
Codes

Generalized Reed–Solomon (in short, GRS) codes and their derivative codes
are probably the most extensively-used codes in practice. This may be at-
tributed to several advantages that these codes have. First, GRS codes are
maximum distance separable, namely, they attain the Singleton bound. Sec-
ondly, being linear codes, they can be encoded efficiently; furthermore, as we
see in this chapter, encoders for the sub-class of conventional Reed–Solomon
(in short, RS) codes can be implemented by particularly simple hardware
circuits. Thirdly, we will show in Chapters 6 and 9 that GRS codes can also
be decoded efficiently.

As their names suggest, RS codes pre-dated their GRS counterparts.
Nevertheless, we find it more convenient herein to define GRS codes first
and prove several properties thereof; we then present RS codes as a special
class of GRS codes.

One seeming limitation of GRS codes is the fact that their length is
bounded from above by the size of the field over which they are defined.
This could imply that these codes might be useful only when the application
calls for a field size that is relatively large, e.g., when the field is GF(28) and
the symbols are bytes. Still, we show that GRS codes can serve as building
blocks to derive new codes over small alphabets as well. We present two
methods for doing so. The first technique is called concatenation and is
based on two stages of encoding, the first of which is a GRS encoder. In
the second method, we first construct a GRS code over a sufficiently large
extension field of the target field F ; we then extract from this code only the
codewords that lie wholly in F . The codes over F thus obtained are called
alternant codes, and when the underlying GRS code is an RS code then the
resulting codes are called Bose–Chaudhuri–Hocquenghem (in short, BCH)
codes.

147

148 5. Reed–Solomon and Related Codes

5.1 Generalized Reed–Solomon codes

5.1.1 Definition

Let F = GF(q), let α1, α2, . . . , αn be distinct nonzero elements of F , and let
v1, v2, . . . , vn be nonzero elements of F (which do not have to be distinct).
A generalized Reed–Solomon (in short, GRS) code over F is a linear [n, k, d]
code CGRS over F with a parity-check matrix

HGRS =

⎛⎜⎜⎜⎜⎜⎝
1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αn−k−1
1 αn−k−1

2 . . . αn−k−1
n

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

v1

v2 0
0 . . .

vn

⎞⎟⎟⎟⎠ . (5.1)

The elements αj are called code locators and the values vj are called column
multipliers. The definition of GRS codes requires that the length n be at
most q−1. (The requirement that the code locators be nonzero is not neces-
sary for many of the properties of GRS codes; yet, the decoding algorithm
that we will present in Chapter 6 assumes that each code locator has a mul-
tiplicative inverse in F .) The matrix HGRS is called a canonical parity-check
matrix of CGRS.

We remark that, typically, the same GRS code can be defined through
more than one list of code locators (see Problem 5.4); therefore, a canonical
parity-check matrix is not unique—not even up to scaling of the column
multipliers.

We have already established in Proposition 4.2 the following result.

Proposition 5.1 Every [n, k, d] GRS code over F is MDS, namely, d =
n−k+1.

(Strictly speaking, we assumed in Proposition 4.2 that the column mul-
tipliers are all 1. However, multiplying each column of a parity-check matrix
by a nonzero element of F does not affect the minimum distance of the code.)

Next, we turn to the dual codes of GRS codes. We know from Prob-
lem 4.1 that a code is MDS if and only if its dual code is. Therefore, the
dual code of a GRS code is necessarily MDS. In fact, we can make an even
stronger statement.

Proposition 5.2 The dual code of an [n, k<n] GRS code is an [n, n−k]
GRS code; furthermore, both codes can be defined through the same list of
code locators.

5.1. Generalized Reed–Solomon codes 149

Proof. Let CGRS be an [n, k] GRS code over F and let a canonical
parity-check matrix HGRS of CGRS be given by (5.1). Consider the k × n
matrix

GGRS =

⎛⎜⎜⎜⎜⎜⎝
1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αk−1
1 αk−1

2 . . . αk−1
n

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

v′1
v′2 0

0 . . .
v′n

⎞⎟⎟⎟⎠ ,

where each v′j is an element of F . We prove that there is a choice of nonzero
values v′j such that GGRSH

T
GRS = 0. This will show that the dual code

C⊥GRS is a GRS code, with the same code locators as CGRS and with column
multipliers v′j .

For each i = 0, 1, . . . , k−1 and � = 0, 1 . . . , n−k−1, we require that the
scalar product of row i in GGRS and row � in HGRS be zero, namely,

n∑
j=1

vjv
′
jα

i+�
j = 0 . (5.2)

Now, i + � ranges between 0 and n−2. Hence, GGRSH
T
GRS = 0 if and only if

n∑
j=1

vjv
′
jα

r
j = 0 , 0 ≤ r ≤ n−2 ,

or, in matrix notation,⎛⎜⎜⎜⎜⎜⎝
1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αn−2
1 αn−2

2 . . . αn−2
n

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

v1

v2 0
0 . . .

vn

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

v′1
v′2
...

v′n

⎞⎟⎟⎟⎠ = 0 .

The possible solutions for (v′1 v′2 . . . v′n) are therefore the nonzero codewords
of an [n, 1, n] GRS code over F (that has the same code locators and column
multipliers as CGRS). These codewords all have Hamming weight n, i.e., each
v′j is nonzero.

We will identify certain GRS codes by special names.
When n = q−1, we say that the GRS code is primitive. In this case, the

code locators range over all the nonzero elements of F .
A GRS code is called normalized if its column multipliers are all equal

to 1.

150 5. Reed–Solomon and Related Codes

In a narrow-sense GRS code, each column multiplier is equal to the
respective code locator, i.e., vj = αj for all 1 ≤ j ≤ n.

When one of the code locators is allowed to be zero, the resulting code
is called a (singly-)extended GRS code. The longest such code has length
q, in which case it is referred to as a singly-extended primitive GRS code.
Note that we cannot allow the zero element to be among the code locators
of a narrow-sense GRS code (or else the parity-check matrix would have an
all-zero column).

Example 5.1 Let v1, v2, . . . , vn be the column multipliers of a primitive
GRS code over F = GF(q). We verify that the dual GRS code has column
multipliers αj/vj . Let α be a primitive element in F . Substituting v′j =
αj/vj in the left-hand side of (5.2), for every 0 ≤ r ≤ n−2 we get

n∑
j=1

vjv
′
jα

r
j =

n∑
j=1

αr+1
j =

n∑
j=1

α(j−1)(r+1) =
αn(r+1) − 1
αr+1 − 1

= 0 ,

where the last equality follows from αn = αq−1 = 1 (see Problem 3.22). In
particular, the dual code of a normalized primitive GRS code is a narrow-
sense primitive GRS code.

5.1.2 Polynomial interpretation of GRS codes

Let CGRS be an [n, k, d] GRS code with a generator matrix

GGRS =

⎛⎜⎜⎜⎜⎜⎝
1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αk−1
1 αk−1

2 . . . αk−1
n

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

v′1
v′2 0

0 . . .
v′n

⎞⎟⎟⎟⎠ ,

and suppose we encode an information word u = (u0 u1 . . . uk−1) using the
mapping

u�→ uGGRS .

We associate with u the polynomial u(x) = u0+u1x+. . .+uk−1x
k−1 ∈ Fk[x]

and write
uGGRS =

(
v′1u(α1) v′2u(α2) . . . v′nu(αn)

)
. (5.3)

That is, the entries of the codeword associated with u are obtained by eval-
uating the polynomial u(x) at the code locators αj , where each value u(αj)
is scaled by v′j (the scaling does not depend on u).

This representation of GRS codes provides yet another argument why
these codes are MDS. If u(x) is a nonzero polynomial in Fk[x], then it has at

5.2. Conventional Reed–Solomon codes 151

most k−1 distinct zeros in F . Therefore, there are at most k−1 zero entries
in the codeword (5.3) and, so, the minimum distance of the code is at least
n− (k−1).

Suppose that d = 2t + 1 for some integer t, in which case n = k + 2t.
The decoding problem of up to (d−1)/2 errors when using GRS codes can be
formulated as follows: given the word in the right-hand side of (5.3), possibly
with up to t altered entries, reconstruct the word u. For the case t = 0
(and n = k), this is known as the polynomial interpolation problem: every
polynomial in Fk[x] can be reconstructed from its values at k distinct points
(see Problem 3.14). For general t we have a noisy interpolation problem:
every polynomial in Fk[x] can be reconstructed from its values at k + 2t
distinct points, even when at most t of those values are wrong.

5.2 Conventional Reed–Solomon codes

Conventional Reed–Solomon (in short, RS) codes over F = GF(q) are special
cases of GRS codes obtained as follows. Let n be a positive integer dividing
q−1 and let α be an element of multiplicative order n in F . Also, let b be
an integer. An [n, k] RS code over F is a GRS code CRS with code locators

αj = αj−1 , 1 ≤ j ≤ n ,

and column multipliers

vj = αb(j−1) , 1 ≤ j ≤ n .

A canonical parity-check matrix of an RS code is given by

HRS =

⎛⎜⎜⎜⎝
1 αb . . . α(n−1)b

1 αb+1 . . . α(n−1)(b+1)

...
...

...
...

1 αb+d−2 . . . α(n−1)(b+d−2)

⎞⎟⎟⎟⎠
(the number of rows in HRS is d−1 = n−k).

Associate each word

c = (c0 c1 . . . cn−1)

in Fn with the polynomial

c(x) = c0 + c1x + . . . + cn−1x
n−1

in Fn[x]. Clearly, for every c ∈ Fn,

c ∈ CRS ⇐⇒ HRScT = 0 ,

152 5. Reed–Solomon and Related Codes

and from the special form of HRS we thus obtain the following characteriza-
tion of CRS:

c ∈ CRS ⇐⇒ c(α�) = 0 for � = b, b+1, . . . , b+d−2 . (5.4)

The elements αb, αb+1, . . . , αb+d−2 are called the roots of CRS, and (5.4) can
be rephrased as follows: c ∈ CRS if and only if the roots of CRS are all roots
of c(x).

Define the generator polynomial g(x) of CRS by the product

g(x) = (x− αb)(x− αb+1) · · · (x− αb+d−2) .

By (5.4) it follows that for every c ∈ Fn,

c ∈ CRS ⇐⇒ g(x) | c(x) .

This leads to yet another characterization of (the polynomial representations
of the codewords of) the code CRS:

CRS = {u(x)g(x) : u(x) ∈ Fk[x] } . (5.5)

Note that deg g(x) = d−1 = n−k and, so, u(x)g(x) ∈ Fn[x] for every u(x) ∈
Fk[x].

We also mention that every root of g(x) is also a root of xn−1. Therefore,
each one of the (distinct) linear factors of g(x) divides xn − 1 and, hence,
g(x) |xn − 1.

The terms primitive, normalized, and narrow-sense RS codes inherit
their meanings from their GRS counterparts. In particular, normalized and
narrow-sense RS codes correspond to b = 0 and b = 1, respectively. A
(singly-)extended RS code is an extended GRS code whose parity-check ma-
trix is obtained from HRS by adding the column (1 0 0 . . . 0)T .

5.3 Encoding of RS codes

We can encode GRS codes—and hence RS codes—as any other linear [n, k, d]
code over F by mapping a vector u ∈ F k to uG, where G is a generator
matrix of the code.

In the special case of RS codes, we can also use their characteriza-
tion (5.5) for encoding: we can define an encoding mapping Fk[x] → CRS by
u(x) �→ u(x)g(x), where g(x) is the generator polynomial of CRS. Writing
g(x) = g0 + g1x + . . . + gn−kx

n−k (where gn−k = 1), such a mapping can be
represented as u �→ uG, where G is the (non-systematic) k × n generator

5.3. Encoding of RS codes 153

matrix

G =

⎛⎜⎜⎜⎝
g0 g1 . . . gn−k

g0 g1 . . . gn−k 0
0 · · · . . .

g0 g1 . . . gn−k

⎞⎟⎟⎟⎠ .

An implementation of the mapping u(x) �→ u(x)g(x) is given by the
multiplication circuit in Figure 5.1. Each of the n−k boxes represents a
delay unit, which can store an element of F and is initially reset to zero.
The delay units are synchronous through the control of a clock. A circle
labeled gi represents a multiplication by the constant gi, and the circled
“+” represents addition in F . The encoding process lasts n clock ticks
and produces for every polynomial u(x) = u0 + u1x + . . . + uk−1x

k−1 a
codeword c(x) = c0 + c1x + . . . + cn−1x

n−1 = u(x)g(x) as follows. At the
�th clock tick, the encoder is fed with the coefficient uk−� (or with zero if
� > k). Given that the contents of the delay units (from left to right) at
that time are uk−�+1, uk−�+2, . . . , un−� (where ui = 0 for i < 0), the encoder
then generates the output cn−� =

∑n
i=k ui−�gn−i. And cn−� is indeed the

coefficient of xn−� in the product u(x)g(x).

u0u1 . . . uk−1 → � � � �

� � �

· · ·

� �
gn−k gn−k−1 gn−k−2 · · · g1 g0

�
	�
�

+

�
c0c1 . . . cn−1 →

Figure 5.1. Multiplication circuit.

A second encoding scheme for RS codes can be obtained by remaindering .
For every u(x) ∈ Fk[x], let ru(x) be the unique polynomial in Fn−k[x] such
that

xn−ku(x) ≡ ru(x) (mod g(x)) .

Clearly, for every u(x) ∈ Fk[x], the polynomial xn−ku(x) − ru(x) is a
codeword in CRS. It is easy to see that the encoding mapping defined by
u(x) �→ xn−ku(x)− ru(x) is a linear systematic mapping from Fk[x] to CRS;

154 5. Reed–Solomon and Related Codes

that is, it can be represented as u�→ uG, where G is a systematic generator
matrix of CRS.

An encoding circuit that implements the mapping u(x) �→ xn−ku(x) −
ru(x) is shown in Figure 5.2. In addition to the components that we have
seen in Figure 5.1, this circuit also contains two switches that can be in one
of two positions, marked A and B. The n−k delay units are initially reset to
zero. The encoding process again lasts n clock ticks. During the first k clock
ticks, both switches are in position A; this means that the output equals the
input and the feedback line is closed. One can show that for � = 1, 2, . . . , k,
the contents of the n−k delay units right after the �th clock tick equal the
remainder obtained when dividing the polynomial xn−k

∑�
i=1 uk−ix

�−i by
g(x) (Problem 5.16). In the remaining n−k clock ticks, both switches are
in position B and the input is assumed to be zero (as the multipliers by gi

are now disconnected, their output is assumed to be zero also); during that
period, the contents of the delay units are flushed to the output.

+ + · · · + +

g0 g1 g2 · · · gn−k−1 −1

� � � � � � � �

� � � �

� � �
�

�

· · ·
A

B

u0u1...uk−1→

�
B

�
�A

�
c0c1...cn−1→

Figure 5.2. Remaindering circuit.

5.4 Concatenated codes

Recall that the length of GRS codes must be smaller than the field size. Still,
we can construct codes over small fields using GRS codes as building blocks.

Let Cin be a linear [n, k, d] code over F = GF(q) and let Cout be a linear
[N, K, D] code over Φ = GF(qk); namely, the extension degree [Φ : F] equals
the dimension of Cin. A (linearly-)concatenated code with an inner code Cin

and an outer code Cout is a code Ccont over F that is defined as follows. Fix
some one-to-one (and onto) mapping

Ein : Φ → Cin

that is linear over F ; such a mapping can be specified through a basis Ω =

5.4. Concatenated codes 155

(ω1 ω2 . . . ωk) of Φ over F and a generator matrix Gin of Cin by

Ein(ΩuT) = uGin , u ∈ F k . (5.6)

The code Ccont consists of all words in FnN of the form

(Ein(z1) | Ein(z2) | . . . | Ein(zN)) ,

where (z1 z2 . . . zN) ranges over all the codewords in Cout.
This definition implies a two-step encoder for Ccont, by which the informa-

tion word is first mapped to a codeword (zj)N
j=1 of Cout using some encoder of

Cout; a second encoding step then maps each entry zj to the codeword Ein(zj)
of Cin. The generated sequence of codewords of Cin is then transmitted—as
one codeword of Ccont—through the channel. Thus, the adjectives “inner”
and “outer” describe the positions of the encoders of Cin and Cout, as seen
by the channel.

Example 5.2 Let Cin be the [7, 3, 4] simplex code over F = GF(2): this
code, which was presented in Problem 2.18, is the dual code of the binary
[7, 4, 3] Hamming code and is therefore generated by the matrix

Gin =

⎛⎝ 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎞⎠ . (5.7)

Let Φ be the field F [ξ]/(ξ3 + ξ + 1) and Cout be the [6, 2, 5] GRS code
over Φ with a generator matrix

GGRS =
(

1 1 1 1 1 1
ξ ξ2 ξ3 ξ4 ξ5 ξ6

)
.

We now define Ccont to be the concatenated code Ccont over F , with Cin as the
inner code and Cout as the outer code, where Ein is specified by (5.6) using
the basis Ω = (1 ξ ξ2) of Φ over F and the generator matrix Gin in (5.7).

To encode to a codeword of Ccont, we first map the information word to
a codeword of Cout, say to the codeword

(z1 z2 . . . z6) = (ξ 1)GGRS = (0 ξ+ξ2 ξ+ξ3 ξ+ξ4 ξ+ξ5 ξ+ξ6)

(see Figure 5.3). Next, for j = 1, 2, . . . , 6, we compute Ein(zj) by first solving

zj = ΩuT
j

for the unique representation uj ∈ F 3. From Table 3.2 we obtain

u1 = (000) , u2 = (011) , u3 = (100) , u4 = (001) ,

u5 = (101) , and u6 = (111) .

156 5. Reed–Solomon and Related Codes

Codeword
of Cout

−→

zj︷ ︸︸ ︷
0 ξ+ξ2 ξ+ξ3 ξ+ξ4 ξ+ξ5 ξ+ξ6

� � � � � �
0000000 1100110 0001111 1010101 1011010 1101001︸ ︷︷ ︸

Ein(zj)

Codeword
of Ccont

−→

Figure 5.3. Codeword of a concatenated code.

We then compute the respective sub-blocks Ein(zj) = ujGin (which are all
codewords of Cin); this results in

0000000︸ ︷︷ ︸
Ein(0)

, 1100110︸ ︷︷ ︸
Ein(ξ+ξ2)

, 0001111︸ ︷︷ ︸
Ein(ξ+ξ3)

, 1010101︸ ︷︷ ︸
Ein(ξ+ξ4)

, 1011010︸ ︷︷ ︸
Ein(ξ+ξ5)

, and 1101001︸ ︷︷ ︸
Ein(ξ+ξ6)

.

Finally, the concatenation of these sub-blocks yields a codeword of Ccont of
length 7 · 6 = 42 over F .

We now state several properties of Ccont. Clearly, Ccont is a code of length
nN over F . In addition, the definition of Ccont induces in effect a one-to-one
correspondence between codewords of Cout and codewords of Ccont; therefore,
both of these codes have the same size. Furthermore, one can verify that
Ccont is a linear code over F (Problem 5.17). As such, its dimension is given
by

logq |Ccont| = logq |Cout| = kK .

Turning to the minimum distance of Cout, a nonzero codeword

(Ein(z1) | Ein(z2) | . . . | Ein(zN))

of Ccont contains at least D nonzero sub-blocks Ein(zj), and each such sub-
block has Hamming weight at least d. Hence, the minimum distance of Ccont

is at least dD. We therefore summarize that Ccont is a linear [nN, kK,≥dD]
code over F .

To maximize D, the code Cout is typically taken as a GRS code, which is
possible whenever N ≤ qk (equality is attained by singly-extended primitive
GRS codes). So, even when q is fixed, we can obtain arbitrarily long codes. A
special case of the concatenated code construction is where Cin is taken as the
[n, n, 1] code Fn: here we can assume without loss of generality that Gin is
the n×n identity matrix and, so, Ein maps the entries z1, z2, . . . , zN of a given
codeword of Cout to their respective vector representations u1,u2, . . . ,uN in
Fn, according to some basis of Φ = GF(qn) over F = GF(q). The resulting
codeword of Ccont is then the concatenation of these representations, namely,

5.5. Alternant codes 157

(u1 |u2 | . . . |uN). The code Ccont in this case is a linear [nN, nK,≥D] code
over F .

Example 5.3 Let Ccont be the concatenated code over GF(2) as in Ex-
ample 5.2. From the parameters of Cin and Cout, which are [n, k, d] = [7, 3, 4]
and [N, K,D] = [6, 2, 5], we get that Ccont is a linear [42, 6,≥20] code over
GF(2). Here the minimum distance is exactly 20, since the codeword shown
in Example 5.2 has Hamming weight 20. In fact, no linear [42, 6] code over
GF(2) can have minimum distance greater than 20: by the Griesmer bound
(see part 2 of Problem 4.4), the shortest linear code of dimension 6 and mini-
mum distance 21 over GF(2) must have length at least

∑5
i=0

⌈
21/2i

⌉
= 44.

A more comprehensive treatment of concatenated codes will be given
in Chapter 12; in particular, we present there an efficient decoding algo-
rithm for correcting any error pattern whose Hamming weight is less than
dD/2. We also demonstrate the following theoretical significance of con-
catenated codes: a sequence of such codes can be effectively constructed for
increasing lengths, where both the rate (kK)/(nN) and (the lower bound
on) the relative minimum distance (dD)/(nN) remain bounded away from
zero. Moreover, we show that by using two levels of concatenation, one
can effectively realize codes with the properties guaranteed by the Shannon
Coding Theorem for the q-ary symmetric channel (Theorem 4.17).

5.5 Alternant codes

We present in this section a second construction that is derived from GRS
codes.

Let F = GF(q) and let CGRS be an [N, K, D] GRS code over Φ = GF(qm).
The intersection CGRS ∩ FN is called an alternant code and is denoted by
Calt.

The code Calt is a linear [n, k] code over F with length n = N ; fur-
thermore, if k > 0 then the minimum distance of Calt is at least D. The
parameter D is called the designed minimum distance of Calt.

The attributes primitive, normalized, or narrow-sense are carried over
to alternant codes from their underlying GRS codes. Similarly, we define
a (singly-)extended alternant code over F as the intersection of an [N, K]
singly-extended GRS code with FN .

We next show how a parity-check matrix of Calt can be obtained from a
parity-check matrix of the underlying GRS code CGRS. Let

H = (Hi,j)D−1
i=1

N
j=1

158 5. Reed–Solomon and Related Codes

be a (D−1)×N parity-check matrix over Φ of CGRS (say, H is a canonical
parity-check matrix HGRS). Then, by the definition of Calt, a word c =
(c1 c2 . . . cn) over F is a codeword in Calt if and only if

HcT = 0 ,

or, in scalar notation,

n∑
j=1

Hi,jcj = 0 , 1 ≤ i ≤ D−1 . (5.8)

Fix Ω = (ω1 ω2 . . . ωm) to be a basis of Φ over F and for each entry Hi,j

of H, let the column vector hi,j ∈ Fm be the representation of that entry
according to the basis Ω, namely, Hi,j = Ωhi,j . Then, condition (5.8) can
be re-written as

n∑
j=1

(Ωhi,j)cj = 0 , 1 ≤ i ≤ D−1 ,

or

Ω
(n∑

j=1

hi,jcj

)
= 0 , 1 ≤ i ≤ D−1 .

Yet, the m entries of Ω are linearly independent over F ; therefore, (5.8) is
equivalent to

n∑
j=1

hi,jcj = 0 , 1 ≤ i ≤ D−1 . (5.9)

Shifting back to matrix notation, the left-hand side of (5.9) can be re-written
as a product of the m×n matrix (hi,1 hi,2 . . . hi,n) by the vector cT (both
the matrix and the vector are over F); thus, (5.9) is equivalent to

(hi,1 hi,2 . . . hi,n)cT = 0 , 1 ≤ i ≤ D−1 ,

or to
HaltcT = 0 ,

where Halt is the following ((D−1)m)× n matrix over F :

Halt =

⎛⎜⎜⎜⎝
h1,1 h1,2 . . . h1,n

h2,1 h2,2 . . . h2,n
...

...
...

...
hD−1,1 hD−1,2 . . . hD−1,n

⎞⎟⎟⎟⎠ .

In other words, a parity-check matrix Halt of Calt can be obtained from H by
replacing every entry in H with a representation of that entry as a column
vector in Fm, according to some fixed basis of Φ over F .

5.5. Alternant codes 159

Since the redundancy of Calt is bounded from above by the number of
rows in Halt, we obtain the inequality

n− k ≤ (D−1)m , (5.10)

which readily implies the following lower bound on the dimension of Calt:

k ≥ n− (D−1)m .

Example 5.4 Let F be the field GF(2) and Φ be the extension field
F [ξ]/(ξ4 + ξ +1); recall from Example 3.8 that ξ is a primitive element in Φ.
Let CGRS be an [N=15, K=13, D=3] primitive GRS code over Φ whose code
locators and column multipliers are given by αj = ξj−1 and vj = ξ3(j−1),
respectively (CGRS is, in fact, a conventional RS code). A canonical parity-
check matrix of CGRS is given by

HGRS =
(

1 ξ3 ξ6 ξ9 ξ12 1 ξ3 ξ6 ξ9 ξ12 1 ξ3 ξ6 ξ9 ξ12

1 ξ4 ξ8 ξ12 ξ ξ5 ξ9 ξ13 ξ2 ξ6 ξ10 ξ14 ξ3 ξ7 ξ11

)
.

We now construct a primitive alternant code Calt over F by taking the in-
tersection CGRS ∩ F 15. A parity-check matrix of Calt can be obtained by
replacing the entries in HGRS with their column-vector representations in
F 4 according to the basis (say) Ω = (1 ξ ξ2 ξ3). On doing that, we get from
Table 3.3 the following parity-check matrix of Calt:

Halt =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 1 0 0 0 1 1 0 0 0 1
0 0 0 1 1 0 0 0 1 1 0 0 0 1 1
0 0 1 0 1 0 0 1 0 1 0 0 1 0 1
0 1 1 1 1 0 1 1 1 1 0 1 1 1 1
1 1 1 1 0 0 0 1 0 0 1 1 0 1 0
0 1 0 1 1 1 1 0 0 0 1 0 0 1 1
0 0 1 1 0 1 0 1 1 1 1 0 0 0 1
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The matrix Halt has (D−1)m = 2 · 4 = 8 rows and, so, the dimension of Calt

is at least 15− 8 = 7. The minimum distance of Calt is at least D = 3 (the
true minimum distance turns out to be 5 in this case; in fact, it follows from
Problem 5.25 that Calt is the same code as in Example 3.11).

When designing an alternant code, the specifications provided are the
field size q, the code length n, and the desired minimum distance. We use
the latter as the value of the designed minimum distance D. We now need to
select an extension degree m and an [n, n−D+1, D] GRS code over GF(qm).
Based on the upper bound (5.10) on the redundancy, we will tend to select

160 5. Reed–Solomon and Related Codes

values of m as small as possible. Since we must also have n ≤ qm, the
smallest possible m is �logq n�.

The upper bound (5.10) can be improved in certain (interesting) cases,
as we show in the next examples.

Example 5.5 Suppose that F = GF(2) and that the designed minimum
distance D is odd. We construct an [n, k, d≥D] narrow-sense alternant code
using an [n, n−D+1, D] narrow-sense GRS code CGRS over Φ = GF(2m).
Letting HGRS be a canonical parity-check of CGRS, for every c ∈ Fn,

c ∈ Calt ⇐⇒ HGRScT = 0

or, equivalently,

c ∈ Calt ⇐⇒
n∑

j=1

cjα
i
j = 0 for i = 1, 2, 3, . . . , D−1 . (5.11)

Recall, however, that

n∑
j=1

cjα
i
j = 0 ⇐⇒

n∑
j=1

c2
jα

2i
j = 0 ⇐⇒

n∑
j=1

cjα
2i
j = 0 .

This means that the equalities in (5.11) for even values of i are redundant,
since they are implied by the equalities that correspond to odd values of i.
So, (5.11) is equivalent to

c ∈ Calt ⇐⇒
n∑

j=1

cjα
i
j = 0 for i = 1, 3, 5, . . . , D−2 .

It follows that a parity-check of Calt can be obtained by replacing every entry
in the matrix ⎛⎜⎜⎜⎜⎜⎜⎝

α1 α2 . . . αn

α3
1 α3

2 . . . α3
n

α5
1 α5

2 . . . α5
n

...
...

...
...

αD−2
1 αD−2

2 . . . αD−2
n

⎞⎟⎟⎟⎟⎟⎟⎠
with its representation as a column vector in Fm, according to some fixed
basis of Φ over F . This, in turn, implies the inequality

n− k ≤ (D−1)m
2

,

which applies to every binary narrow-sense alternant code with an odd de-
signed minimum distance D.

5.5. Alternant codes 161

The double-error-correcting code that was studied in Section 3.8 coin-
cides with the code in Example 5.5 for D = 5.

Example 5.6 Suppose now that F = GF(2) and that the designed min-
imum distance D is even. We construct an [n, k, d≥D] normalized alternant
code using an [n, n−D+1, D] normalized GRS code CGRS over Φ = GF(2m).
A parity-check matrix Halt (over F) of the respective code Calt can be ob-
tained by representing the entries in the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1
α1 α2 . . . αn

α3
1 α3

2 . . . α3
n

α5
1 α5

2 . . . α5
n

...
...

...
...

αD−3
1 αD−3

2 . . . αD−3
n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
as column vectors in Fm. Notice that the elements of the first row will all
be represented in Halt by the same (nonzero) vector in Fm. Thus, the first
m rows in Halt form an m × n matrix over F whose rank is 1 and, so, the
rank of Halt is bounded from above by (D/2 − 1)m + 1. This leads to the
inequality

n− k ≤ 1 +
(D

2
− 1

)
m ,

which holds for every binary (possibly singly-extended) normalized alternant
code with an even designed minimum distance.

Example 5.7 We construct an extended primitive alternant code Calt

of length n = 64 and designed minimum distance 12 over F = GF(2).
We take m = 6 (so that n = 2m) and select the underlying [64, 53, 12]
extended primitive GRS code to be normalized. By the improved bound of
Example 5.6 it follows that the redundancy of Calt is bounded from above
by 1 + (D/2− 1)m = 31.

For the code at hand we can tighten the bound on the redundancy even
further, as we show next. Letting {α1, α2, . . . , α64} be the elements of Φ =
GF(26), a parity-check matrix Halt of Calt is obtained by representing the
entries in the matrix

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1
α1 α2 . . . α64

α3
1 α3

2 . . . α3
64

α5
1 α5

2 . . . α5
64

α7
1 α7

2 . . . α7
64

α9
1 α9

2 . . . α9
64

⎞⎟⎟⎟⎟⎟⎟⎟⎠
as column vectors in F 6.

162 5. Reed–Solomon and Related Codes

As pointed out in Example 5.6, the first row in H contributes only 1 to
the rank of Halt. Consider now the last row in H. Each nonzero entry in that
row has a multiplicative order which is either 1 or 7. Therefore, those entries
and the zero element are roots (in Φ) of the polynomial Q(x) = x8−x. Since
the mapping x �→ Q(x) is linear over F and the size of its kernel is at most
deg Q(x) = 8, it follows that the roots of Q(x) form a linear space over F
with dimension at most 3; in fact, those roots form the field GF(23) as a
subfield of Φ. Hence, when representing the last row in H as column vectors
in F 6, those vectors will span a linear space whose dimension is (at most)
3. This means that the last six rows in Halt contribute at most 3 to its rank
and, so, the redundancy of Calt is at most 28. We thus conclude that Calt is
a linear [64,≥36,≥12] code over GF(2).

The bound (5.10) is useful only when D is relatively small: when D grows
with n faster than n/ logq n (≥ n/m), then this bound becomes trivial. And
the same applies also to the improved bounds in Examples 5.5 and 5.6. On
the other hand, while D serves as a lower bound on the minimum distance
of an alternant code, the true minimum distance may sometimes be much
larger. In fact, there exist alternant codes that attain the Gilbert–Varshamov
bound (see Problem 5.29).

5.6 BCH codes

Bose–Chaudhuri–Hocquenghem (in short, BCH) codes are alternant codes
whose underlying GRS codes are conventional RS codes. That is, if F =
GF(q) and CRS is an [N,K, D] RS code over Φ = GF(qm), then CRS ∩FN is
a BCH code, which we denote by CBCH.

Recall from Section 5.2 that N must divide qm−1, which readily implies
that gcd(N, q) = 1. Conversely, if gcd(N, q) = 1, then q (or rather its
remainder upon division by N) belongs to the multiplicative group modulo
N (see Problem A.17). So, given a code length n = N , the smallest possible
value of m is the order of q in that group.

We can summarize the definition of BCH codes as follows. Let F =
GF(q) and let n be a positive integer such that gcd(n, q) = 1. Let m be
[the smallest] positive integer such that n | qm−1 and α be an element of
multiplicative order n in Φ = GF(qm). Also, let b and D be integers where
0 < D ≤ n. Given those parameters, a BCH code CBCH consists of all
polynomials c(x) = c0 + c1x + . . . + cn−1x

n−1 ∈ Fn[x] such that

c(α�) = 0 for � = b, b+1, . . . , b+D−2 .

The list
αb, αb+1, . . . , αb+D−2 ,

Problems 163

which consists of the roots of the underlying RS code, is called the consecutive
root sequence of CBCH. Like for every alternant code, the parameter D is the
designed minimum distance of CBCH.

Example 5.8 We design a BCH code of length n = 85 over F = GF(2)
that can correct three errors. We take the value of m to be the smallest
positive integer such that 85 divides 2m−1, resulting in m = 8. We select
b = 1 so that the code is of the narrow-sense type, thereby allowing us to
use the improved bound of Example 5.5. The designed minimum distance is
D = 7 and the code redundancy is at most (D−1)m/2 = 24. Therefore, the
resulting BCH code is a linear [85,≥61,≥7] code over F . Letting α be an
element of multiplicative order 85 in GF(28), a 24× 85 parity-check matrix
of the code can be obtained by representing the entries in the matrix⎛⎝ 1 α α2 . . . αj . . . α83 α84

1 α3 α6 . . . α3j . . . α79 α82

1 α5 α10 . . . α5j . . . α75 α80

⎞⎠
as column vectors in F 8.

Example 5.9 Let α be a primitive element in GF(26). The code in
Example 5.7 becomes an extended primitive BCH code over GF(2) if we
order the code locators so that αj = αj−1 for 1 ≤ j ≤ 63 and α64 = 0.

We will learn more about the properties of BCH codes in Chapter 8.

Problems

[Section 5.1]
Problem 5.1 Show that the dual code of a [q, k<q] singly-extended normalized
primitive GRS code over GF(q) is a [q, q−k] singly-extended normalized primitive
GRS code.

Problem 5.2 (Doubly-extended GRS codes) Let C be a linear [n, k=n−r, d] code
over F defined by a parity-check matrix

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1 0
α1 α2 . . . αn−1 0
α2

1 α2
2 . . . α2

n−1 0
...

...
...

...
...

αr−2
1 αr−2

2 . . . αr−2
n−1 0

αr−1
1 αr−1

2 . . . αr−1
n−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
v1

v2 0
0 . . .

vn

⎞⎟⎟⎟⎟⎠ ,

where α1, α2, . . . , αn−1 are distinct elements of F and v1, v2, . . . , vn are nonzero
elements of F . (The code C is called a doubly-extended GRS code, and the last
column in H is said to correspond to the code locator∞, i.e., the “infinity” element.)

164 5. Reed–Solomon and Related Codes

1. Show that C is MDS.

2. Assuming that k < n, show that the dual code C⊥ is an [n, n−k] doubly-
extended GRS code that can be defined through the same code locators as C.

Problem 5.3 Let C be a linear [n, k=n−r, d] code over F defined by a parity-check
matrix

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1 0
α1 α2 . . . αn−1 0
α2

1 α2
2 . . . α2

n−1 0
...

...
...

...
...

αr−3
1 αr−3

2 . . . αr−3
n−1 0

αr−2
1 αr−2

2 . . . αr−2
n−1 1

αr−1
1 αr−1

2 . . . αr−1
n−1 δ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where α1, α2, . . . , αn−1 are distinct elements of F and δ ∈ F . The purpose of this
problem is to find conditions on δ so that C is MDS.

1. Consider the r × r matrix

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1 0
β1 β2 . . . βr−1 0
β2

1 β2
2 . . . β2

r−1 0
...

...
...

...
...

βr−3
1 βr−3

2 . . . βr−3
r−1 0

βr−2
1 βr−2

2 . . . βr−2
r−1 1

βr−1
1 βr−1

2 . . . βr−1
r−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where β1, β2, . . . , βr−1 are elements of F . Show that

det(B) = −
(r−1∑

i=1

βi

) ∏
(i,j):

1≤i<j<r

(βj − βi)

(a product over an empty set is defined as 1).

Hint: Show that det(B) is the coefficient of xr−2 in the polynomial b(x) ∈
Fr[x] defined by

b(x) = det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1 1
β1 β2 . . . βr−1 x

β2
1 β2

2 . . . β2
r−1 x2

...
...

...
...

...
βr−2

1 βr−2
2 . . . βr−2

r−1 xr−2

βr−1
1 βr−1

2 . . . βr−1
r−1 xr−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
(r−1∏

i=1

(x−βi)
) ∏

(i,j):
1≤i<j<r

(βj−βi) .

(See also Problem 3.13.)

Problems 165

2. Show that C is MDS if and only if there are no r−1 distinct elements in
{α1, α2, . . . , αn−1} whose sum is δ.

3. Show that the condition in part 2 still applies when the “infinity” column
(0 0 . . . 0 1)T is appended to H.

4. What is the minimum distance d of C when it is not MDS?

5. (Triply-extended GRS codes) Show that when F = GF(q) and q is even, there
is a linear [q+2, q−1] MDS code over F .

Problem 5.4 Let CGRS be an [n, k] GRS code over F with code locators
α1, α2, . . . , αn and column multipliers v1, v2, . . . , vn.

1. Fix μ, ν, and η to be elements of F where μ, η �= 0. Show that CGRS is
identical to the [n, k] GRS code C′GRS over F defined by the code locators

α′
j = μαj + ν , j = 1, 2, . . . , n ,

and column multipliers

v′
j = ηvj , j = 1, 2, . . . , n .

(Given μ, there are certain choices of ν for which C′GRS will in fact be singly-
extended, i.e., one of the code locators α′

j will be zero; still, if n < |F |, one
can select ν so that each α′

j is nonzero, even when CGRS is singly-extended.)

Hint: Show that each row in a canonical parity-check matrix of C′GRS can
be written as a linear combination of some rows in a canonical parity-check
matrix of CGRS.

2. Show that CGRS is identical to an [n, k] GRS code over F with code locators
α−1

1 , α−1
2 , . . . , α−1

n (and with properly selected column multipliers). Verify
that this holds also when CGRS is singly-extended or doubly-extended (see
Problem 5.2), i.e., when the code locators of CGRS include the zero element
or the “infinity” element, regarding one to be the multiplicative inverse of the
other.

3. Let μ, ν, σ, and τ be elements of F such that μτ �= σν. Based on parts 1
and 2, show that CGRS is identical to an [n, k] GRS code over F with code
locators

α′
j =

μαj + ν

σαj + τ
, j = 1, 2, . . . , n ,

and with properly selected column multipliers. Verify that this applies to
singly-extended and doubly-extended codes as well (with αj = ∞ being
mapped to α′

j = μ/σ and αj = −τ/σ to α′
j =∞).

Problem 5.5 Let CGRS be an [n, k, d] GRS code over F with 1 < k < n.

1. Show that CGRS is a proper subset (sub-code) of an [n, k+1, d−1] GRS code
over F .

2. The Hamming distance of a word y ∈ Fn from CGRS is defined as the Ham-
ming distance between y and a nearest codeword in CGRS to y. Show that
there is a word in Fn whose Hamming distance from CGRS is at least d−1.

166 5. Reed–Solomon and Related Codes

3. Show that the covering radius of CGRS, which is the largest distance from
CGRS of any word in Fn, equals d−1 (see Problem 4.13).

Hint: Show that the covering radius of every MDS code must be smaller than
its minimum distance.

Problem 5.6 Let α1, α2, . . . , αn be distinct elements in a field F and define the
n× n Vandermonde matrix X by

X =

⎛⎜⎜⎜⎜⎜⎝
1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αn−1
1 αn−1

2 . . . αn−1
n

⎞⎟⎟⎟⎟⎟⎠ .

For � = 1, 2, . . . , n, let b�(x) =
∑n−1

i=0 b�,ix
i be the polynomial in Fn[x] that is defined

by

b�(x) = b�,0 + b�,1x + . . . + b�,n−1x
n−1 =

∏
1≤j≤n:

j �=�

x− αj

α� − αj
;

notice that b�(x) is the unique polynomial in Fn[x] that interpolates through the n
points

{(α�, 1)} ∪ {(αj , 0) : 1 ≤ j ≤ n , j �= �}

(see Problem 3.14), namely,

b�(αj) =
{

1 if j = �
0 otherwise .

Let B be the n × n matrix obtained from the coefficients of the polynomials
b�(x) by

B =

⎛⎜⎜⎜⎝
b1,0 b1,1 . . . b1,n−1

b2,0 b2,1 . . . b2,n−1

...
...

...
...

bn,0 bn,1 . . . bn,n−1

⎞⎟⎟⎟⎠ .

1. Show that
B = X−1 .

2. Let Ψ(x) denote the polynomial
∏n

j=1(x − αj) over F and let Ψ′(x) be the
formal derivative of Ψ(x) (see Section 3.7 and Problem 3.38). Show that

b�(x) =
Ψ(x)

Ψ′(α�)(x− α�)
, 1 ≤ � ≤ n ,

and deduce that the entries along the last column of B are given by

b�,n−1 =
1

Ψ′(α�)
, 1 ≤ � ≤ n .

Problems 167

Problem 5.7 Let CGRS be an [n, k, d] normalized GRS code with code locators
α1, α2, . . . , αn over F and let

HGRS = (αi
j)d−2

i=0
n

j=1 and GGRS = (v′jα
i
j)k−1

i=0
n

j=1

be a parity-check matrix and a generator matrix of CGRS, respectively. Define the
n× n matrices X and B for the elements α1, α2, . . . , αn as in Problem 5.6.

1. Based on Problem 5.6, show that the values v′
j can be taken as

v′j =
1

Ψ′(αj)
=
(∏

1≤m≤n:
m �=j

(αj − αm)
)−1

, 1 ≤ j ≤ n .

Is this choice unique?

Hint: Let X̂ denote the (n−1)× n matrix that consists of the first n−1 rows
of X. Recall from the proof of Proposition 5.2 that the elements v′

j satisfy

X̂

⎛⎜⎜⎜⎝
v′
1

v′
2
...

v′n

⎞⎟⎟⎟⎠ = 0 .

Then compute the product of X̂ with the last column of B.

2. Find the value of each of the last k columns in the (d−1)×n matrix HGRSB.

3. Show that the last k rows in BT form a generator matrix of CGRS.

4. Suppose now that CGRS is not necessarily normalized, and let v1, v2, . . . , vn

be the column multipliers of CGRS. Show that in this case, the values v′
j can

be taken as

v′
j =

1
vjΨ′(αj)

=
(
vj

∏
1≤m≤n:

m �=j

(αj − αm)
)−1

, 1 ≤ j ≤ n .

Problem 5.8 (Systematic generator matrices of GRS codes) Let CGRS be an [n, k]
GRS code over F (possibly singly-extended) with a (canonical) generator matrix

GGRS =
(
v′jα

i
j

)
k−1
i=0

n
j=1 .

Let (I |A) be a systematic generator matrix of CGRS, where A is a k × (n−k)
matrix.

1. Based on Problem 5.6, show that the (i, j)th entry in A is given by

v′j+k

v′
i

·
∏

1≤s≤k:
s �=i

αj+k − αs

αi − αs
, 1 ≤ i ≤ k , 1 ≤ j ≤ n−k .

168 5. Reed–Solomon and Related Codes

2. Define
ηi = v′i ·

∏
1≤s≤k:

s �=i

(αi − αs) , 1 ≤ i ≤ k ,

and
ηj = v′

j ·
∏

1≤s≤k

(αj − αs) , k < j ≤ n .

Show that the (i, j)th entry in A is given by

ηj+k/ηi

αj+k − αi
, 1 ≤ i ≤ k , 1 ≤ j ≤ n−k .

3. Let C′GRS be an [n+1, k] doubly-extended GRS code whose generator matrix
is obtained by appending the “infinity” column ηn+1 · (0 0 . . . 0 1)T to
GGRS for some nonzero element ηn+1 in F (see Problem 5.2). Show that a
systematic generator matrix of C′GRS is given by (I |B), where B is obtained
from A by appending the column

ηn+1 ·
(
η−1
1 η−1

2 . . . η−1
k

)T
.

Problem 5.9 A (generalized) Cauchy matrix over a field F is a k×r matrix whose
(i, j)th entry is given by

ηj+k/ηi

αj+k − αi
, 1 ≤ i ≤ k , 1 ≤ j ≤ r ,

where α1, α2, . . . , αr+k are distinct elements of F and η1, η2, . . . , ηr+k are nonzero
elements of F .

A k × (r+1) extended Cauchy matrix is obtained from a Cauchy matrix by
appending the column

ηr+k+1 ·
(
η−1
1 η−1

2 . . . η−1
k

)T

for some nonzero element ηr+k+1 in F .

1. Based on Problem 5.8, show that the following two conditions are equivalent:

(i) A is a Cauchy matrix or an extended Cauchy matrix.

(ii) (I |A) is a generator matrix of a GRS code, possibly singly-extended
or doubly-extended.

2. Show that every square sub-matrix of a Cauchy matrix is nonsingular.

Hint: This can be shown by combining the MDS property of GRS codes with
Problem 4.2. Alternatively, one can show that when k = r and ηi = 1 for all
1 ≤ i ≤ 2k, the determinant of a k × k Cauchy matrix is given by

k∏
i=1

∏k
j=i+1((αi − αj)(αj+k − αi+k))∏k

j=1(αj+k − αi)
.

Problems 169

Similarly, the determinant of a k × k extended Cauchy matrix (with ηi = 1
for all i) is equal to

k∏
i=1

(∏k
j=i+1(αi − αj)

)(∏k−1
j=i+1(αj+k − αi+k)

)
∏k−1

j=1 (αj+k − αi)
.

3. Let A be a k×r matrix over F such that all the entries in A are nonzero. Let
Ac be the k×r matrix whose (i, j)th entry is the multiplicative inverse of the
(i, j)th entry of A. Show that the following two conditions are equivalent:

(i) A is a Cauchy matrix or an extended Cauchy matrix.
(ii) Every 2× 2 sub-matrix of Ac is nonsingular and every 3× 3 sub-matrix

of Ac is singular (the latter condition on Ac is equivalent to saying that
the rank of Ac is at most 2).

Problem 5.10 Let γ be a primitive element in F = GF(q) and consider the fol-
lowing triangular array over F :

1 1 1 1 · · · 1 1 1
1 a1 a2 a3 · · · aq−3 aq−2

1 a2 a3 · · · aq−3 aq−2

1 a3 · · · aq−3 aq−2

... · · · aq−3 aq−2

1 aq−3 aq−2

1 aq−2

1

,

where
ai =

1
1− γi

, 1 ≤ i ≤ q−2 .

Show that every square sub-matrix in the array is nonsingular.

Hint: Identify the square sub-matrices as (possibly extended) Cauchy matrices
(Problem 5.9).

Problem 5.11 Let CGRS be an [n, k] GRS code over F with (nonzero) code locators
α1, α2, . . . , αn and column multipliers v1, v2, . . . , vn. Also, let

f(x) = f0 + f1x + . . . + fn−kxn−k

be a polynomial of degree n−k over F .

1. Show that for every selection of the coefficients f1, f2, . . . , fn−k of f(x) there
exists at least one value for f0 in F such that f(αj) �= 0 for all 1 ≤ j ≤ n.

Hereafter in this problem assume that f(x) is such that f(αj) �= 0 for all 1 ≤ j ≤ n,
and define ϑj(x) by

ϑj(x) = − f(x)− f(αj)
f(αj)(x− αj)

, 1 ≤ j ≤ n .

170 5. Reed–Solomon and Related Codes

2. Show that for 1 ≤ j ≤ n,

ϑj(x) = − 1
f(αj)

n−k−1∑
�=0

x�
n−k∑

i=�+1

fiα
i−�−1
j .

3. Show that for 1 ≤ j ≤ n,

(x− αj)ϑj(x) ≡ 1 (mod f(x)) .

4. Show that a word (c1 c2 . . . cn) ∈ Fn is a codeword of CGRS if and only if

n∑
j=1

cjvjf(αj) · ϑj(x) = 0 .

Hint: Consider the parity-check matrix

H = −

⎛⎜⎜⎜⎜⎜⎝
fn−k 0 0 . . . 0

fn−k−1 fn−k 0 . . . 0
...

...
. 0

f2 f3 . . . fn−k 0
f1 f2 . . . fn−k−1 fn−k

⎞⎟⎟⎟⎟⎟⎠HGRS ,

where HGRS is a canonical parity-check matrix of CGRS, and relate the con-
tents of the jth column of H with the coefficients of ϑj(x).

5. Show that a word (c1 c2 . . . cn) ∈ Fn is a codeword of CGRS if and only if

n∑
j=1

cjvjf(αj)
x− αj

≡ 0 (mod f(x)) ,

where 1/(x − αj) denotes the multiplicative inverse of x − αj in the ring
F [x]/f(x) (i.e., the ring of residues of polynomials in F [x] modulo f(x)).

Hint: See parts 3 and 4.

6. Suppose that the column multipliers are given by

vj =
1

f(αj)
, 1 ≤ j ≤ n .

Show that a word (c1 c2 . . . cn) ∈ Fn is a codeword of CGRS if and only if
f(x) divides the polynomial

n∑
j=1

cj

∏
1≤m≤n:

m �=j

(x− αm) .

7. Suppose that the column multipliers are now given by

vj =
(
f(αj)

∏
1≤m≤n:

m �=j

(αj − αm)
)−1

, 1 ≤ j ≤ n .

Problems 171

With every word c = (c1 c2 . . . cn) in Fn, associate the interpolation poly-
nomial

λc(x) =
n∑

j=1

cj

∏
1≤m≤n:

m �=j

x− αm

αj − αm

(that is, λc(x) is the unique polynomial in Fn[x] that satisfies λc(αj) = cj

for 1 ≤ j ≤ n; see Problem 3.14). Show that

c ∈ CGRS ⇐⇒ f(x) |λc(x) .

Hint: This can be proved based on part 5. Alternatively, use (5.3) and part 4
of Problem 5.7 to show that the codewords of CGRS take the form(

f(α1)u(α1) f(α2)u(α2) . . . f(αn)u(αn)
)

,

where u(x) ranges over the elements of Fk[x]. Find the relation between the
polynomials u(x) and λc(x) that are associated with the same codeword c.

Problem 5.12 Let CGRS be an [n, k, 3] normalized GRS code with code locators
α1, α2, . . . , αn over F .

1. A codeword of CGRS is transmitted through an additive channel (F, F, Prob)
and a word y ∈ Fn is received with one error at location j. Let (S0 S1)T be
the syndrome of y with respect to a canonical parity-check matrix of CGRS.
Show that

αj = S1/S0

and that the error value is equal to S0.

2. A codeword c = (c1 c2 . . . cn) of CGRS is transmitted through an erasure
channel (F, F ∪ {?}, Prob) and a word y = (y1 y2 . . . yn) ∈ (F ∪ {?})n is
received, where “?” stands for an erasure. The word y contains two erasures
whose locations are denoted by i and j.

The syndrome of y is computed as in part 1 where, for the purpose of this
computation, the value 0 is substituted for yi and yj . Show that the entries
of c at the erased locations are given by

ci =
S1 − αjS0

αj − αi
and cj =

S1 − αiS0

αi − αj
.

Problem 5.13 Let CGRS be an [n, k, 4] normalized GRS code with code locators
α1, α2, . . . , αn over F . A codeword (c1 c2 . . . cn) of CGRS is transmitted through
an erasure channel (F, F ∪ {?}, Prob) and a word y = (y1 y2 . . . yn) ∈ (F ∪ {?})n

is received. The word y contains one erasure at location i and one error at location
j �= i.

Let (S0 S1 S2)T be the syndrome of y with respect to a canonical parity-check
matrix of CGRS where, for the purpose of computing the syndrome, the value 0 is
substituted for yi.

172 5. Reed–Solomon and Related Codes

1. Show that αj is related to S0, S1, S2, and αi by

αj =
S2 − αiS1

S1 − αiS0
.

2. Show that the error value, ej = yj − cj , at location j is given by

ej =
S1 − αiS0

αj − αi
=

(S1 − αiS0)2

S2 − 2αiS1 + α2
i S0

.

[Section 5.2]

Problem 5.14 Let CRS be a [9, 6] normalized RS code over F = GF(26) defined
by an element α in F of multiplicative order 9.

1. Find all the roots of CRS; express them as powers of α.

2. Find the values of the code locators and the column multipliers in a canonical
parity-check matrix of CRS.

3. Find the values of the code locators and the column multipliers in a canonical
generator matrix of CRS (i.e., in a canonical parity-check matrix of the dual
code of CRS).

4. Show that (1 α3 α−3 1 α3 α−3 1 α3 α−3) is a codeword of CRS.

Problem 5.15 Let CRS be a [17, 15] normalized RS code over F = GF(2m) defined
by an element α in F of multiplicative order 17.

1. Find the smallest possible value of m for which this construction is possible.

2. Write the generator polynomial of CRS as a function of α.

[Section 5.3]

Problem 5.16 The circuit in Figure 5.2 is used for encoding an [n, k] RS code with
a generator polynomial g(x) =

∑n−k
i=0 gix

i. Show by induction on � = 1, 2, . . . , k
that right after the �th clock tick, the contents of the n−k delay units in the figure
equal the remainder obtained when dividing the polynomial xn−k

∑�
i=1 uk−ix

�−i

by g(x).

Hint: See Problem 3.9.

[Section 5.4]

Problem 5.17 Let Cin be a linear [n, k, d] code over F = GF(q) and let Φ be
the field GF(qk). A concatenated code Ccont is constructed by a linear one-to-one
mapping Ein : Φ → Cin over F and a linear outer code Cout over Φ. Show that Ccont

is a linear code over F .

Problems 173

Problem 5.18 Let Ccont be a concatenated code over F = GF(q) obtained by
taking an [N,K, D] narrow-sense RS code over GF(qm) as an outer code and the
[m,m, 1] code Fm as an inner code. Show that Ccont contains codewords of Hamming
weights N, 2N, 3N, . . . , mN .

Hint: Show that the outer code contains the codeword (1 1 1 . . . 1).

Problem 5.19 Let Ccont be a concatenated code over K = GF(22) consisting of
the following codes: the outer code is a [9, 7] normalized RS code Cout over the
smallest extension field Φ of K for which such a code exists, and the inner code is
a linear code Cin of length 5 and minimum distance 3 over K.

1. Identify the field Φ.

2. Find the dimension of Cin.

3. Suggest a code that can serve as the code Cin.

4. Find the length and dimension of Ccont.

5. Show that the minimum distance of Ccont allows one to recover correctly any
pattern of up to four errors that occur in a codeword of Ccont.

A codeword of Ccont has been transmitted through an additive channel S =
(K, K, Prob) and a word

y = (y1 |y2 | . . . |y9) ∈ K45

has been received with at most four errors, where each sub-block yj is in K5. A
nearest-codeword decoder for Cin is applied to each sub-block yj , thereby producing
the word

x = (x1 |x2 | . . . |x9) ∈ K45 ,

where each sub-block xj is a codeword of Cin.

6. Assume that each sub-block yj contains at most one error. Show that x is
the correct transmitted codeword.

7. Assume now that at most one sub-block yj contains two or more errors.
Explain how the errors in y can be recovered from x while using the decoder
for Cout in part 1 of Problem 5.12.

8. Next, assume that there are two sub-blocks yj containing two errors each.
Show how the errors in y can be corrected while using the decoder in part 2
of Problem 5.12.

9. How can the receiving end determine which of the three assumptions—in
part 6, 7, or 8—is the one that actually took place?

Problem 5.20 Consider a concatenated code Ccont over F = GF(2) obtained by
taking a [15, 11] GRS code over GF(24) as an outer code and the [4, 4, 1] code F 4

as an inner code.

1. Find the length and dimension of Ccont.

2. Find a lower bound on the minimum distance of Ccont.

174 5. Reed–Solomon and Related Codes

3. Recall from Problem 2.21 that a burst of length � is the event of having errors
in a codeword such that the locations i and j of the first (leftmost) and last
(rightmost) errors, respectively, satisfy j−i = �−1. Show that there is a
decoder for Ccont that can correct every burst of length 5 (note that the burst
length is measured in elements of F , since the code Ccont and the errors are
over F).

Problem 5.21 Repeat Problem 5.20 where now the inner code is a [7, 4, 3] Ham-
ming code over F = GF(2). Show that with this inner code, every burst of length
11 or less can be corrected.

Problem 5.22 Repeat Problem 5.20 where now the inner code is a [8, 4, 4] ex-
tended Hamming code over F = GF(2). Show that with this inner code, every
burst of length 13 or less can be corrected.

[Section 5.5]

Problem 5.23 Let C be a linear [n, k, d] code over F = GF(q) where d ≥ 3.
Show that there exists an [n, n−1, 2] GRS code CGRS over GF(qn−k) such that
C = CGRS ∩Fn; that is, C can be seen as an alternant code with designed minimum
distance 2.

Problem 5.24 Let CGRS be an [N,N−1, 2] narrow-sense GRS code over Φ =
GF(2m) and let Calt be the alternant code over F = GF(2) defined by CGRS ∩ FN .
Show that there exists an [N, N−2, 3] narrow-sense GRS code C′GRS over Φ such
that

Calt ⊆ C′GRS ⊂ CGRS .

Problem 5.25 Let Calt be the alternant code over F = GF(2) as in Example 5.4.
Show that Calt can be written as the intersection C′GRS ∩ F 15, where C′GRS is an
[N=15,K ′=11, D′=5] narrow-sense primitive GRS code over Φ = GF(24) whose
code locators are αj = ξj−1.

Hint: For every word (c0 c1 . . . c14) in F 15,

14∑
�=0

c�ξ
4� = 0 ⇐⇒

14∑
�=0

c�ξ
8� = 0 ⇐⇒

14∑
�=0

c�ξ
� = 0 ⇐⇒

14∑
�=0

c�ξ
2� = 0 .

Problem 5.26 (Generalizing Example 5.5 to arbitrary finite fields) Let CGRS be
an [N,N−D+1, D] narrow-sense GRS code over Φ = GF(qm) and let Calt be the
[n=N, k,≥D] alternant code over F = GF(q) that is given by CGRS ∩ FN . Show
that

k ≥ n−
⌈

q−1
q (D−1)

⌉
m .

Problem 5.27 (Subfield sub-codes) Let F = GF(q) and Φ = GF(qm), and let C be
a linear [N, K,D] code over Φ. The subfield sub-code of C over F is the intersection
C ∩ FN .

Problems 175

1. Show that C ∩ FN is a linear [n=N, k] code over F with

k ≥ N −m(N−K) = mK − (m−1)N

and that the minimum distance of C ∩ FN is at least D whenever k > 0.

Denote by T(x) = TΦ:F (x) the trace polynomial over Φ with respect to F , as
defined in Problem 3.31. For a vector z = (z1 z2 . . . zN) over Φ, define

T(z) = (T(z1) T(z2) . . . T(zN)) .

Extend the definition to codes C ⊆ ΦN by

T(C) =
{
x ∈ FN : x = T(z) for some z ∈ C

}
(note that distinct codewords of C may be mapped by T to the same x ∈ Fn).

Let C be a linear [N, K, D] code over Φ.

2. Show that T(C) is a linear code over F .

3. (Dual codes of subfield sub-codes) Show that

C ∩ FN =
(
T(C⊥)

)⊥
.

Hint: To show the containment C ∩ FN ⊆
(
T(C⊥)

)⊥, verify that for every
c ∈ C ∩ FN and z ∈ C⊥,

c · (T(z))T = T(c · zT) = 0 .

To show the converse containment
(
T(C⊥)

)⊥ ⊆ C ∩ FN , let (β1 β2 . . . βm)
be a basis of Φ over F and let (λ1 λ2 . . . λm) be the respective dual basis, as
defined in Problem 3.35. Assume that c ∈

(
T(C⊥)

)⊥ and justify the following
claims:

(i) c · (T(λiz))T = 0 for every z ∈ C⊥ and i = 1, 2, . . . , m,

(ii) c ·
∑m

i=1 βi(T(λiz))T = 0 for every z ∈ C⊥, and

(iii) c · zT = 0 for every z ∈ C⊥.

4. (Dual codes of alternant codes) Let CGRS be an [N, N−D+1, D] GRS
code over Φ with code locators α1, α2, . . . , αN and column multipliers
v1, v2, . . . , vN . Show that the dual code of the alternant code Calt = CGRS∩FN

is given by

C⊥alt =
{(

T(v1u(α1)) T(v2u(α2)) . . . T(vNu(αN))
)

: u(x) ∈ ΦD−1[x]
}

.

Problem 5.28 Let F = GF(q) and Φ = GF(qm), and let α1, α2, . . . , αn be n
distinct nonzero elements in Φ. Show that for every D in the range 1 ≤ D ≤ n, there
exists an [n, n−D+1, D] GRS code over Φ with code locators α1, α2, . . . , αn (and a
certain selection of column multipliers) such that the alternant code CGRS ∩Fn has
minimum distance (exactly) D.

176 5. Reed–Solomon and Related Codes

Problem 5.29 Let F = GF(q) and Φ = GF(qm), and let n and D be positive
integers such that (D−1)m < n < qm. Also, let α1, α2, . . . , αn be fixed nonzero
elements in Φ. For every vector v = (v1 v2 . . . vn) ∈ (Φ∗)n, denote by CGRS(v)
the [n, n−D+1, D] GRS code over Φ with code locators α1, α2, . . . , αn and col-
umn multipliers v1, v2, . . . , vn. The respective alternant code Calt(v) is defined by
CGRS(v) ∩ Fn.

The purpose of this problem is to show that while the codes Calt(v) all have
designed minimum distance D, the true minimum distance may be much larger;
in particular, at least one of these codes approaches the Gilbert–Varshamov bound
(for D = 2, this result already follows from Problem 5.23).

1. Let c be a nonzero word in Fn. Show that there exist at most

(qm − 1)n−D+1

vectors v ∈ (Φ∗)n for which c ∈ Calt(v).

Hint: First argue that it suffices to consider words c whose Hamming weight
is at least D. Then assume without loss of generality that the last D−1
entries in c are nonzero. Show that for every assignment of values to the first
n−D+1 entries in v, there is at most one way to set its remaining entries so
that c ∈ Calt(v).

2. Show that if d is a positive integer satisfying

Vq(n, d−1) ≤ (qm − 1)D−1

(where Vq(n, d−1) =
∑d−1

i=0

(
n
i

)
(q−1)i) then there exists a vector v ∈ (Φ∗)n

such that the minimum distance of Calt(v) is at least d.

Hint: Using part 1, show that such a vector v exists if

(qm − 1)n−D+1(Vq(n, d−1)− 1) < |Φ∗|n .

3. Write

R = 1− (D−1)m
n

and let δ be a real in (0, 1−(1/q)] that satisfies

Hq(δ) ≤ (1−R)(1− ε(m, q)) ,

where Hq(·) is the q-ary entropy function (defined in Section 4.5) and

ε(m, q) = −(1/m) logq(1− q−m)

(notice that limm→∞ ε(m, q) = 0). Show that there exists an [n, k≥nR, d≥δn]
alternant code over F .

[Section 5.6]
Problem 5.30 Let CRS be a [21, 17] normalized RS code over an extension field Φ
of F = GF(2) and let CBCH be the BCH code CRS ∩ F 21 over F .

1. Find the smallest possible size of Φ.

2. Show that the dimension of CBCH is at least 8.

3. Show that the minimum distance of CBCH is at least 6.

Notes 177

Notes

[Sections 5.1 and 5.2]
Generalized Reed–Solomon codes were studied as combinatorial objects already in
the early 1950s (see Bush [72]). As codes, they were first introduced by Reed and
Solomon in [289], where the characterization of the codewords was given in the
form (5.3). (More precisely, the definition in [289] yields a singly-extended normal-
ized primitive GRS code over fields of even characteristic. The general definition
was suggested by Delsarte in [96].)

One can encode a given [n, k] GRS code CGRS over F by the mapping u �→
uGGRS, where GGRS is a canonical generator matrix of CGRS (namely, GGRS is a
canonical parity-check matrix of the dual code of CGRS). By (5.3), the encoding
process is equivalent in this case to evaluating the information polynomial u(x) ∈
Fk[x] at the code locators α1, α2, . . . , αn of CGRS, and then multiplying each value
u(αj) by the respective column multiplier. The simultaneous evaluation of u(x) ∈
Fk[x] at n elements of F , in turn, can be carried out using O(n log2 n log log n)
arithmetic operations in F ; see Aho et al. [6, Section 8.5] and von zur Gathen and
Gerhard [144, Section 10.1]. While the encoder u�→ uGGRS is non-systematic, one
can attain essentially the same time complexity also with a systematic encoder (see
the notes on Section 6.6).

Problem 5.3 is taken from Roth and Lempel [300]. The codes considered in
the problem were used by Khachiyan [212] and Vardy [370] as an ingredient when
showing that finding the minimum distance of a code is an NP-complete problem.

The systematic form of the generator matrices of GRS codes in Problems 5.8
and 5.9 is taken from Roth and Lempel [301] and Roth and Seroussi [303]. See also
Dür [111].

The interpretation of GRS decoding as a noisy interpolation problem, which
was discussed in Section 5.1.2, can be applied also to Reed–Muller codes (see Prob-
lem 2.19). We demonstrate this next.

Let x = (x0 x1 . . . xm−1) be a vector of m indeterminates over a field F , and
denote by Ft[x] = Ft[x0, x1, . . . , xm−1] the set of all multivariate polynomials over
F in the indeterminates x0, x1, . . . , xm−1, such that the power of each instance of
every indeterminate is less than t; namely,

Ft[x] =
{

u(x) =
∑

euexe : e ∈ {0, 1, 2, . . . , t−1}m, ue ∈ F
}

,

where xe stands for the monomial
∏m−1

i=0 xei
i . We define the total degree of such a

monomial by
deg xe =

∑
i

ei ,

and the total degree of the multivariate polynomial u(x) =
∑

e uexe is given by

deg u(x) = max
e : ue �=0

deg xe .

We let Ft,h[x] denote the set {u(x) ∈ Ft[x] : deg u(x) < h}.
Now, recall from Problem 2.19 that the rth order Reed–Muller code of length

2m over F = GF(2) is defined by

CRM(m, r) = { (u(a))a∈F m : u(x) ∈ F2,r+1[x] } .

178 5. Reed–Solomon and Related Codes

Thus, the problem of decoding Reed–Muller codes is equivalent to the problem of
interpolating a multivariate polynomial in F2,r+1[x] from its values at the elements
of Fm, where some of these values may be erroneous. This generalizes in a natural
manner to any finite field GF(q): the rth order (generalized) Reed–Muller code of
length qm over F = GF(q) is defined by

CRM(m, r) = { (u(a))a∈F m : u(x) ∈ Fq,r+1[x] }

(note that CRM(1, r) is a [q, r+1] singly-extended normalized primitive GRS code
over F). By arguments that are similar to those used in Example 5.1, it can
be shown that (CRM(m, r))⊥ = CRM(m, (q−1)m−r−1). For further properties
of Reed–Muller codes over non-binary alphabets—including the computation of
their dimension and minimum distance—see Assmus and Key [18, Section 5.5] and
Berlekamp [36, Section 15.3].

[Section 5.3]

Among GRS codes, conventional RS codes (and codes that are obtained by short-
ening RS codes at a set of consecutive coordinates) are the most commonly used
in practice, especially because they can be encoded efficiently: the multiplication
circuit in Figure 5.1 and the remaindering circuit in Figure 5.2 lend themselves
to fast implementations—either in hardware or in software. The fastest algorithms
currently known for polynomial multiplication and polynomial remaindering require
O(n log n log log n) arithmetic field operations; see Aho et al. [6, Section 8.3] and
von zur Gathen and Gerhard [144, Sections 8.3 and 9.1].

For the application of shortened RS codes in optical storage, see the books by
Immink [192, Chapter 2] and Pohlmann [283, Chapter 3].

[Section 5.4]

Concatenated codes were introduced by Forney in [129]. The decoding algorithm
in Problem 5.19 exhibits an instance of a method for decoding concatenated codes,
which is known as generalized minimum distance (in short, GMD) decoding. This
method will be presented in detail in Section 12.2.

Let C1 be a linear [n1, k1, d1] code over F = GF(q) and let C2 be a linear
[n2, k2, d2] code over the same field F . The product code C1 ∗ C2 is defined as the
set of all words

c = (c1,1 c1,2 . . . c1,n1 | c2,1 c2,2 . . . c2,n1 | cn2,1 cn2,2 . . . cn2,n1) (5.12)

in Fn1n2 such that:

• (ci,1 ci,2 . . . ci,n1) ∈ C1 for i = 1, 2, . . . , n2 and

• (c1,j c2,j . . . cn2,j) ∈ C2 for j = 1, 2, . . . , n1.

Equivalently, associate with each word c as in (5.12) an n2 × n1 matrix Γ(c) over
F whose ith row is given by the ith sub-block (ci,1 ci,2 . . . ci,n1); then c ∈ C1 ∗ C2
if and only if each row in Γ(c) is a codeword of C1 and each column is a codeword
of C2. These codes were presented in Problem 2.21, where it was assumed without

Notes 179

real loss of generality that C1 and C2 have systematic generator matrices. It was
also demonstrated therein that C1 ∗ C2 is a linear [n1n2, k1k2, d1d2] code over F .

We next verify that C1 ∗C2 is, in fact, a concatenated code. Let G2 be a k2×n2

generator matrix of C2 and let Cout be the linear [n2, k2] over Φ = GF(qk1) that
is generated by G2. Fix a basis Ω = (ω1 ω2 . . . ωk1) of Φ over F ; note that the
codewords of Cout are given by

k1∑
j=1

ωj(a1,j a2,j . . . an2,j) , (a1,j a2,j . . . an2,j) ∈ C2 .

In matrix notation, these codewords take the form ΩAT , where A = (ai,j) n2
i=1

k1
j=1

ranges over all n2×k1 arrays over F whose columns are codewords of C2. We denote
this set of arrays by Ck1

2 .
We now select an arbitrary generator matrix Gin of C1 and define the one-to-one

linear mapping Ein : Φ → C1 by

Ein(ΩuT) = uGin , u ∈ F k1 .

When this mapping is applied to each of the n2 coordinates of ΩAT , we obtain the
n2 rows of an n2×n1 array AGin over F , and the concatenation of these rows forms
a word c ∈ Fn1n2 which, by definition, is a codeword of the concatenated code Ccont

over F that is defined by the mapping Ein : Φ → C1 and the outer code Cout. At
the same time, each row (respectively, column) in AGin (= Γ(c)) is a codeword of
C1 (respectively, C2) and, so, c ∈ C1 ∗ C2. Finally, since the linear spaces Ck1

2 , Ccont,
and C1 ∗ C2 all have the same dimension—namely, k1k2—over F , we conclude that
Ccont = C1 ∗ C2.

For more on product codes and concatenated codes see Blokh and Zyablov [57],
[58], Elias [114], Farrell [121], Hirasawa et al. [178]–[180], Kasahara et al. [205], Lin
and Costello [230, Section 9.6], MacWilliams and Sloane [249, Sections 10.11, 18.2,
and 18.5], Roth and Seroussi [305], Sugiyama et al. [350], Zinov’ev [397], [398], and
Zinov’ev and Zyablov [400]–[402].

[Section 5.5]
Alternant codes were introduced and studied by Helgert [174].

The characterization of the dual codes of alternant codes in Problem 5.27 is
due to Delsarte [96]. We next present properties of the weight distribution of the
dual codes of certain primitive alternant codes, for the special case where the field
size is a prime p. Letting ω be a root of order p of unity in the complex field C,
we recall from Problem 3.36 that the additive characters of Φ = GF(pm) are the
mappings x �→ ωT(μx), where T(x) is the trace polynomial over Φ with respect to
F = GF(p) and μ ranges over the elements of Φ (with μ = 0 corresponding to the
trivial character).

We quote without proof the following theorem by Carlitz and Uchiyama [73],
which refines a well-known theorem of Weil [379] on character sums (see Lidl and
Niederreiter [229, Section 5.4]).

Theorem 5.3 (The Carlitz–Uchiyama bound) Let Φ be the field GF(pm) where
p is a prime, and let u(x) be a polynomial in Φr[x] that is not of the form (f(x))p−

180 5. Reed–Solomon and Related Codes

f(x)+b for any f(x) ∈ Φ[x] and b ∈ Φ. Then for every nontrivial additive character
χ : Φ → C, ∣∣∣∑

β∈Φ

χ(u(β))
∣∣∣ ≤ r · pm/2 .

The Carlitz–Uchiyama bound leads to the following result.

Theorem 5.4 Let F be the field GF(p) where p is a prime, and let Calt be
a singly-extended normalized primitive alternant code over F with an underlying
[pm, pm−D+1, D] singly-extended GRS code over Φ = GF(pm). Then every code-
word c ∈ C⊥alt is either a multiple of the all-one vector, or∣∣(p−1)pm−1 − w(c)

∣∣ ≤ (D−1) · (p−1) · p(m/2)−1 .

In particular, the minimum distance of C⊥alt is at least p−1
p

(
pm − (D−1) · pm/2

)
.

Proof. Denote by α1, α2, . . . , αpm the code locators of Calt and let c = (cj)
pm

j=1

be a codeword of C⊥alt. By part 4 of Problem 5.27, there exists a polynomial u(x) ∈
ΦD−1[x] such that

cj = T(u(αj)) , 1 ≤ j ≤ pm .

We distinguish between two cases.
Case 1: u(x) = (f(x))p− f(x)+ b for some f(x) ∈ Φ[x] and b ∈ Φ. In this case,

cj = T((f(αj))p)− T(f(αj)) + T(b) = (T(f(αj)))
p − T(f(αj)) + T(b) = T(b) ,

i.e., c is a multiple of the all-one vector.
Case 2: u(x) �= (f(x))p − f(x) + b for every f(x) ∈ Φ[x] and b ∈ Φ. Letting ω

be a root of order p of unity in C, we know that∑
a∈F∗

ωa·cj =
{

p−1 if cj = 0
−1 otherwise .

Therefore,

∑
a∈F∗

pm∑
j=1

ωa·cj =
pm∑
j=1

(∑
a∈F∗

ωa·cj

)
= (p−1)(pm − w(c))− w(c)

= (p−1)pm − p · w(c) .

On the other hand, by Theorem 5.3 we have

∣∣∣ ∑
a∈F∗

pm∑
j=1

ωa·cj

∣∣∣ =
∣∣∣ ∑
a∈F∗

∑
β∈Φ

ωa·T(u(β))
∣∣∣

≤
∑

a∈F∗

∣∣∣∑
β∈Φ

ωa·T(u(β))
∣∣∣

≤ (p−1) · (D−1) · pm/2 .

Notes 181

We conclude that

|(p−1)pm − p · w(c)| ≤ (D−1) · (p−1) · pm/2 ,

thereby yielding the desired result.

It is fairly easy to see that the dual code of a (non-extended) normalized prim-
itive alternant code is obtained from the code C⊥alt in Theorem 5.4 by puncturing
at the coordinate that corresponds to the code locator 0 (Problem 2.3). Similarly,
the dual code of a narrow-sense primitive alternant code is obtained from C⊥alt by
shortening at that coordinate (Problem 2.14). So, for example, in the narrow-sense
primitive case, we can state the following corollary.

Corollary 5.5 Let F = GF(p) where p is a prime, and let Calt be a narrow-
sense primitive alternant code over F with an underlying [pm−1, pm−D,D] GRS
code over GF(pm). Then every nonzero codeword c ∈ C⊥alt satisfies∣∣(p−1)pm−1 − w(c)

∣∣ ≤ D · (p−1) · p(m/2)−1 .

In particular, the minimum distance of C⊥alt is at least p−1
p

(
pm −D · pm/2

)
.

Clearly, the bounds in Theorem 5.4 and Corollary 5.5 are meaningful only when
the designed minimum distance D is small, namely, when D < pm/2 + 1. In Prob-
lem 8.12, we demonstrate that in this range of D, we can write an exact expression
for the dimension of C⊥alt: in the singly-extended normalized case of Theorem 5.4,
that dimension equals

1 +
⌈

p−1
p (D−2)

⌉
m ,

while in the narrow-sense case (Corollary 5.5) we get⌈
p−1

p (D−1)
⌉

m .

Finally, we point out that the choice of column multipliers may have a signif-
icant effect on the true minimum distance of Calt and C⊥alt. Specifically, it follows
from Problem 5.28 that for certain column multipliers, the minimum distance of an
alternant code equals its designed minimum distance. On the other hand, Prob-
lem 5.29 demonstrates that for properly selected column multipliers, alternant codes
attain the Gilbert–Varshamov bound (see also Problem 12.11 in Chapter 12). As
for C⊥alt, we see that in the cases covered by Theorem 5.4 and Corollary 5.5, the
relative minimum distance of C⊥alt is close to (p−1)/p, provided that the designed
minimum distance of Calt is small. On the other hand, if all but one of the column
multipliers are selected to have trace 0, then we get from part 4 of Problem 5.27
that C⊥alt contains a codeword whose Hamming weight is 1.

[Section 5.6]
BCH codes over GF(2) were introduced by Bose and Ray-Chaudhuri in [61] and [62],
and independently by Hocquenghem in [187]. The non-binary case was treated by
Gorenstein and Zierler in [160]. BCH codes are useful when the number of errors

182 5. Reed–Solomon and Related Codes

is small compared to the code length. Indeed, it was shown by Berlekamp [35] and
Lin and Weldon [231] that the (true) relative minimum distance of primitive BCH
codes approaches zero as the code length increases.

Other than BCH codes, another widely-studied subset of alternant codes is the
family of (classical) Goppa codes. In these codes, the underlying [N, K, D] GRS
code over Φ has column multipliers that are related to the code locators by

vj =
1

f(αj)
, 1 ≤ j ≤ N ,

where f(x) is a polynomial of degree D−1 over Φ such that f(αj) �= 0 for 1 ≤ j ≤
N . See Goppa [156]–[158], MacWilliams and Sloane [249, Chapter 12], part 6 of
Problem 5.11, and Problem 12.11.

Chapter 6

Decoding of Reed–Solomon
Codes

In this chapter, we present an efficient decoding algorithm for GRS codes
that recovers all error patterns whose Hamming weight is less than half the
minimum distance of the code. We develop a set of equations, referred to col-
lectively as the key equation of GRS decoding; solving the key equation is the
core step of the decoding algorithm described herein. This step is preceded
by syndrome computation and is followed by evaluating certain polynomials
at the multiplicative inverses of the code locators—thereby producing the
error locations and error values.

We present two efficient techniques for solving the key equation. The
first technique is based on Euclid’s algorithm for polynomials, except that
we apply here a different stopping rule in that algorithm, compared to its
standard use. The second technique, known as the Berlekamp–Massey al-
gorithm, is in effect an efficient method for computing the shortest linear
recurrence that is satisfied by a given sequence; in our case, that sequence
is formed by the syndrome values.

6.1 Introduction

Let CGRS be a given [n, k, d] GRS code over F with a canonical parity-check
matrix

HGRS =

⎛⎜⎜⎜⎜⎜⎝
1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αd−2
1 αd−2

2 . . . αd−2
n

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

v1

v2 0
0 . . .

vn

⎞⎟⎟⎟⎠ ,

183

184 6. Decoding of Reed–Solomon Codes

where the code locators—α1, α2, . . . , αn—are distinct nonzero elements of
F , and the column multipliers—v1, v2, . . . , vn—are nonzero elements of F .
We describe an algorithm for decoding up to �1

2(d−1) errors, given that a
codeword of CGRS is transmitted through an additive channel (F, F,Prob).

Let c be the transmitted codeword and y = (y1 y2 . . . yn) be the received
word. The error word is given by

e = (e1 e2 . . . en) = y − c ,

and we let J be the set of error locations; that is,

eκ �= 0 ⇐⇒ κ ∈ J .

The number of errors is |J |, and we assume that this number does not exceed
1
2(d−1).

The steps of the decoding algorithm are described and analyzed in Sec-
tions 6.2–6.6 below.

6.2 Syndrome computation

The first decoding step is the computation of the syndrome of y with respect
to HGRS: ⎛⎜⎜⎜⎝

S0

S1
...

Sd−2

⎞⎟⎟⎟⎠ = HGRSyT .

That is, the individual syndrome entries are given by

S� =
n∑

j=1

yjvjα
�
j , � = 0, 1, . . . , d−2 .

Example 6.1 In the special case of RS codes we have αj = αj−1 and
vj = αb(j−1), where α has multiplicative order n in F and b is an integer. In
this case,

S� =
n∑

j=1

yjα
(j−1)(b+�) , � = 0, 1, . . . , d−2 ,

which means that S� is obtained by evaluating the polynomial y(x) = y1 +
y2x + . . . + ynxn−1 at x = αb+�.

We will introduce certain polynomials over F , which are computed
throughout the course of the decoding algorithm. The first is the syndrome

6.3. Key equation of GRS decoding 185

polynomial , denoted by S(x), whose coefficients are given by the syndrome
entries, namely,

S(x) =
d−2∑
�=0

S�x
� .

We next recall that the syndrome of the error word e equals that of the
received word y; so,

S� =
n∑

j=1

ejvjα
�
j , � = 0, 1, . . . , d−2 ,

or,
S� =

∑
j∈J

ejvjα
�
j , � = 0, 1, . . . , d−2 (6.1)

(a sum over an empty set is read as 0). Hence, the syndrome polynomial
can be expressed in terms of the error word e as follows:

S(x) =
d−2∑
�=0

x�
∑
j∈J

ejvjα
�
j =

∑
j∈J

ejvj

d−2∑
�=0

(αjx)� . (6.2)

Consider the ring F [x]/xd−1, i.e., the ring of residues of the polynomials
in F [x] modulo xd−1. The elements in that ring that are not divisible by
x form a group under the multiplication of the ring. The polynomial 1 −
αjx belongs to that group and its multiplicative inverse is the polynomial∑d−2

�=0 (αjx)�; indeed,

(1− αjx)
d−2∑
�=0

(αjx)� = 1− (αjx)d−1 ≡ 1 (mod xd−1) .

Based on (6.2), we can thus write the following relationship between the
syndrome polynomial S(x) and the error word e:

S(x) ≡
∑
j∈J

ejvj

1− αjx
(mod xd−1) . (6.3)

6.3 Key equation of GRS decoding

We next associate two additional polynomials with the error word e. Define
the error-locator polynomial (in short, ELP) by

Λ(x) =
∏
j∈J

(1− αjx)

186 6. Decoding of Reed–Solomon Codes

and the error-evaluator polynomial (in short, EEP) by

Γ(x) =
∑
j∈J

ejvj

∏
m∈J\{j}

(1− αmx)

(a product over an empty set is read as 1).
First, observe that

Λ(α−1
κ) = 0 ⇐⇒ κ ∈ J

(recall that we assume that all the code locators αj are nonzero). Thus, the
roots of the ELP tell us where the errors are. On the other hand, for every
κ ∈ J ,

Γ(α−1
κ) = eκvκ

∏
m∈J\{κ}

(1− αmα−1
κ) �= 0 .

Hence,

gcd(Λ(x), Γ(x)) = 1 . (6.4)

In particular, Γ(x) = 0 =⇒ Λ(x) = 1, which corresponds to the case where
no errors have occurred, i.e., S(x) = 0.

Secondly, the degrees of Λ(x) and Γ(x) satisfy

deg Λ = |J | and deg Γ < |J | .

Since |J | ≤ 1
2(d−1) we therefore have

deg Γ < deg Λ ≤ 1
2(d−1) . (6.5)

Thirdly, we can relate the ELP and the EEP by

Γ(x) = Λ(x)
∑
j∈J

ejvj

1− αjx
.

Hence, from (6.3) we obtain

Λ(x)S(x) ≡ Γ(x) (mod xd−1) . (6.6)

Equations (6.4)–(6.6) together form the key equation of GRS decoding.
Our next decoding step will be solving the key equation for Λ(x) and

Γ(x). Once we know the ELP, we can exhaustively check which among the
elements α−1

1 , α−1
2 , . . . , α−1

n is a root of Λ(x), thereby determining the set J
(this method for finding the roots of Λ(x) is called a Chien search). At this
point, the set of equations (6.1) becomes linear in the error values ej .

6.3. Key equation of GRS decoding 187

6.3.1 Solving the key equation

We next demonstrate that solving the key equation is, in principle, equivalent
to solving a set of linear equations, and that the solution to the key equation
is essentially unique. (We remark that the presentation in this section is
meant to convince that the solution of the key equation is a conceptually
simple task. To this end, we include here an algorithm for solving (6.4)–
(6.6), yet this algorithm is not the fastest known. More efficient algorithms
will be presented in Sections 6.4 and 6.7.)

Let τ stand for �1
2(d−1); by the degree constraints (6.5) we can write

Λ(x) =
τ∑

m=0

Λmxm and Γ(x) =
τ−1∑
m=0

Γmxm ,

and from the polynomial congruence (6.6) we get that the coefficients
(Λm)τ

m=0 and (Γm)τ−1
m=0 solve the following set of d−1 linear equations in

the variables (λm)τ
m=0 and (γm)τ−1

m=0:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S0 0 0 . . . 0
S1 S0 0 . . . 0
...

...
.

...
Sτ−1 Sτ−2 . . . S0 0
Sτ Sτ−1 . . . S1 S0

Sτ+1 Sτ . . . S2 S1
...

...
. . .

...
...

Sd−2 Sd−3 . . . Sd−τ−1 Sd−τ−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
λ0

λ1

λ2
...

λτ

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ0

γ1
...

γτ−1

0
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.7)

Furthermore, the subset that consists of the last d−1−τ (≥ τ) equations
in (6.7) involves only the variables (λm)τ

m=0. Thus, one can solve first
for (λm)τ

m=0 using only this subset of equations, and then any such solu-
tion determines—by the first τ equations—a unique respective solution for
(γm)τ−1

m=0.
Conversely, if (λm)τ

m=0 and (γm)τ−1
m=0 solve (6.7), then the respective poly-

nomials,

λ(x) =
τ∑

m=0

λmxm and γ(x) =
τ−1∑
m=0

γmxm ,

satisfy the degree constraints

deg γ < deg λ ≤ 1
2(d−1) (6.8)

and the polynomial congruence

λ(x)S(x) ≡ γ(x) (mod xd−1) . (6.9)

188 6. Decoding of Reed–Solomon Codes

The next result characterizes the set of solutions to (6.8) and (6.9) (or,
equivalently, to (6.7)), in terms of the ELP and EEP. This result also implies
that the solution to the key equation is essentially unique.

Proposition 6.1 Let λ(x) and γ(x) be polynomials over F that sat-
isfy (6.8). Then the following conditions hold:

(i) The polynomials λ(x) and γ(x) satisfy (6.9) if and only if there exists
a polynomial c(x) ∈ F [x] such that

λ(x) = c(x) · Λ(x) and γ(x) = c(x) · Γ(x) .

(ii) The solution to (6.8) and (6.9) with a nonzero polynomial λ(x) of
smallest possible degree is unique, up to scaling by some nonzero con-
stant c ∈ F , and is given by

λ(x) = c · Λ(x) and γ(x) = c · Γ(x) .

(iii) The solution in part (ii) is also the unique solution to (6.8) and (6.9)
for which

gcd(λ(x), γ(x)) = 1 .

Proof. We prove part (i); parts (ii) and (iii) then immediately follow.
Since Λ(0) = 1, the ELP has a multiplicative inverse in the ring F [x]/xd−1

and, so, from (6.6) we obtain

S(x) ≡ Γ(x)(Λ(x))−1 (mod xd−1) .

Hence, λ(x) and γ(x) satisfy (6.9) if and only if

λ(x) · Γ(x)(Λ(x))−1 ≡ γ(x) (mod xd−1)

or
λ(x)Γ(x) ≡ Λ(x)γ(x) (mod xd−1) .

The latter congruence, in turn, can be replaced by an equality, as (6.5)
and (6.8) yield that the degrees of λ(x)Γ(x) and Λ(x)γ(x) are both smaller
than d−1. We therefore conclude that λ(x) and γ(x) satisfy (6.9) if and only
if

λ(x)Γ(x) = Λ(x)γ(x) . (6.10)

By (6.4) and Lemma 3.2, the equality (6.10) implies that Λ(x) |λ(x). Hence,
(6.10) is equivalent to having λ(x) = c(x) · Λ(x) and γ(x) = c(x) · Γ(x) for
some polynomial c(x) ∈ F [x].

In summary, we have shown that the solution of the key equation boils
down to solving (the last d−1−τ equations in) the set (6.7) for a nonzero

6.3. Key equation of GRS decoding 189

polynomial λ(x) =
∑τ

m=0 λmxm of smallest possible degree; this polynomial,
up to scaling, is then equal to the ELP Λ(x). As pointed out earlier, once the
ELP is known, we can search for its roots among α−1

1 , α−1
2 , . . . , α−1

n to find
the set J , and then solve a second set of linear equations—namely, (6.1)—for
the error values ej .

The two mentioned sets of equations—(6.1) and (6.7)—can be solved by
applying standard Gaussian elimination, whose time complexity is cubic in
d. The resulting decoding algorithm is known as the Peterson–Gorenstein–
Zierler algorithm. It turns out, however, that these two particular sets
of equations can be solved by algorithms whose time complexity is only
quadratic in d. We present such an algorithm for solving the key equation
in Section 6.4, and in Section 6.5 we show how the EEP Γ(x) can be applied
to compute the error values—also in quadratic time. A second efficient
algorithm for solving the key equation will be presented in Section 6.7.

6.3.2 GRS decoding through infinite power series

In this section, we re-derive the congruence (6.6), yet in a somewhat differ-
ent manner. This alternate derivation is not essential for understanding the
upcoming sections of this chapter; still, it provides an interesting interpreta-
tion to the problem of decoding GRS codes. In addition, the concepts that
we introduce next will be useful later on in Chapters 10 and 14.

For an infinite sequence (ai)∞i=0 over a (possibly infinite) field F and an
indeterminate x, define the respective (infinite) formal power series over F
by the expression

a(x) =
∞∑
i=0

aix
i .

The set of all formal power series over F will be denoted by F [[x]]. Clearly,
every polynomial over F can be regarded as an element of F [[x]] where all
but a finite number of its coefficients are zero.

For formal power series a(x) =
∑∞

i=0 aix
i and b(x) =

∑∞
i=0 bix

i over F ,
we define the sum a(x) + b(x) and the product a(x)b(x), respectively, as the
following formal power series f(x) =

∑∞
i=0 fix

i and g(x) =
∑∞

i=0 gix
i:

fi = ai + bi and gi =
i∑

j=0

ajbi−j , i ≥ 0 .

Under those operations, F [[x]] is an integral domain, with the elements 0
and 1 of F being the respective additive and multiplicative unity elements
(Problem 6.5).

Given a(x) =
∑∞

i=0 aix
i in F [[x]] and a positive integer t, we say that

xt divides a(x) (and write xt | a(x)), if ai = 0 for 0 ≤ i ≤ t. The notation
a(x) ≡ b(x) (mod xt) is the same as saying that xt divides a(x)− b(x).

190 6. Decoding of Reed–Solomon Codes

An element a(x) =
∑∞

i=0 aix
i in F [[x]] is invertible (or is a unit) in

F [[x]] if it has a multiplicative inverse in F [[x]]; namely, there is an element
b(x) =

∑∞
i=0 bix

i such that a(x)b(x) = 1. An element a(x) is invertible
if and only if x does not divide a(x); when the latter condition holds, the
coefficients of the inverse b(x) can be computed iteratively by

b0 =
1
a0

and bi = − 1
a0

i∑
j=1

ajbi−j , i ≥ 1

(Problem 6.6).
The inverse of an invertible a(x) ∈ F [[x]] will be denoted by 1/a(x), and

c(x)/a(x) for c(x) ∈ F [[x]] will be a shorthand notation for c(x) · (1/a(x)).

Example 6.2 For an element β ∈ F , let (ai)∞i=0 be the sequence that is
given by ai = βi. The respective formal power series is a(x) =

∑∞
i=0(βx)i,

and the inverse b(x) of a(x) in F [[x]] is the polynomial b(x) = 1−βx (Prob-
lem 6.7).

Turning back to GRS decoding, we associate with the error word e the
formal power series E(x) =

∑∞
�=0 E�x

� in F [[x]] that is defined by

E� =
∑
j∈J

ejvjα
�
j , � = 0, 1, 2, · · · .

The series E(x) can be thought of as an “infinite syndrome” of e, and it is
easy to see from (6.1) that

S� = E� , � = 0, 1, . . . , d−2 ,

or, equivalently,
S(x) ≡ E(x) (mod xd−1) . (6.11)

Thus, by computing the (ordinary) syndrome, the decoder recovers, in effect,
the first d−1 coefficients of E(x).

Now, similarly to (6.2), we have,

E(x) =
∞∑

�=0

x�
∑
j∈J

ejvjα
�
j =

∑
j∈J

ejvj

∞∑
�=0

(αjx)� =
∑
j∈J

ejvj

1− αjx
, (6.12)

where the last equality follows from Example 6.2. Noting that the ELP Λ(x)
is invertible as a formal power series, we identify the rightmost sum in (6.12)
as the ratio Γ(x)/Λ(x); hence, in F [[x]],

E(x) =
Γ(x)
Λ(x)

. (6.13)

6.4. Solving the key equation by Euclid’s algorithm 191

Combining the latter equality with (6.11) yields the congruence (6.6) in
F [[x]] and—since S(x), Λ(x), and Γ(x) are elements of F [x]—that congru-
ence should hold also in F [x].

We conclude that the decoding of GRS codes amounts to extending S(x)
into an (infinite) formal power series that can be written in F [[x]] as a re-
duced ratio Γ(x)/Λ(x), where Λ(x) and Γ(x) are polynomials whose degrees
are bounded by (6.5) (a ratio is called reduced if its numerator and denom-
inator have no common divisors; this is precisely what we require in (6.4)).

6.4 Solving the key equation by Euclid’s algorithm

The efficient algorithm that we present here for solving the key equation for
the ELP and EEP, makes use of (the extended version of) Euclid’s algo-
rithm. Given polynomials a(x) and b(x) over a field F such that a(x) �= 0
and deg a > deg b, the algorithm computes remainders ri(x), quotients qi(x),
and auxiliary polynomials si(x) and ti(x), as shown in Figure 6.1. (See Prob-
lem 3.3; the notation “ri−2(x) div ri−1(x)” stands for the quotient obtained
when ri−2(x) is divided by ri−1(x).)

r−1(x) ← a(x); r0(x) ← b(x);
s−1(x) ← 1; s0(x) ← 0;
t−1(x) ← 0; t0(x) ← 1;
for (i← 1; ri−1(x) �= 0; i++) {

qi(x) ← ri−2(x) div ri−1(x);
ri(x) ← ri−2(x)− qi(x)ri−1(x);
si(x) ← si−2(x)− qi(x)si−1(x);
ti(x) ← ti−2(x)− qi(x)ti−1(x);

}

Figure 6.1. Euclid’s algorithm.

(We remark that while the polynomials si(x) in Figure 6.1 will be used in
the forthcoming analysis, they will not be required for the actual decoding.
Also, the polynomials in Figure 6.1 have been tagged by subscripts which
identify the loop iteration in which each polynomial is computed; in practice,
however, there is no need to allocate separate space in every loop iteration.
Instead, it suffices to use a queue for storing the computed polynomials of
the previous two iterations only.)

Let ν denote the largest index i for which ri(x) �= 0. It is known (Prob-
lem 3.3) that

rν(x) = gcd(a(x), b(x)) .

192 6. Decoding of Reed–Solomon Codes

Lemma 6.2 Using the notation of Euclid’s algorithm, the following con-
ditions hold:

(i) For i = −1, 0, . . . , ν+1,

si(x)a(x) + ti(x)b(x) = ri(x) .

(ii) For i = 0, 1, . . . , ν+1,

deg ti + deg ri−1 = deg a .

Proof. By induction on i (see parts 2 and 3 of Problem 3.3).

The property that we present in the next proposition will serve as the
basis for applying Euclid’s algorithm in solving the key equation.

Proposition 6.3 Using the notation of Euclid’s algorithm, suppose that
t(x) and r(x) are nonzero polynomials over F satisfying the following con-
ditions:

(C1) gcd(t(x), r(x)) = 1.

(C2) deg t + deg r < deg a.

(C3) t(x)b(x) ≡ r(x) (mod a(x)).

Then there is an index h ∈ {0, 1, . . . , ν+1} and a constant c ∈ F such that

t(x) = c · th(x) and r(x) = c · rh(x) .

Proof. First observe that deg ri strictly decreases with i. By condi-
tion (C2) we have deg r < deg a = deg r−1; so, there is a unique value h ≥ 0
of the index i for which

deg rh ≤ deg r < deg rh−1 . (6.14)

From Lemma 6.2(i) we get that

sh(x)a(x) + th(x)b(x) = rh(x) . (6.15)

By condition (C3) there exists a polynomial s(x) such that

s(x)a(x) + t(x)b(x) = r(x) . (6.16)

Multiplying (6.15) by t(x) and (6.16) by th(x) and subtracting the resulting
equations, we obtain

(t(x)sh(x)− th(x)s(x))a(x) = t(x)rh(x)− th(x)r(x) . (6.17)

6.4. Solving the key equation by Euclid’s algorithm 193

Now, by (6.14) and condition (C2),

deg t + deg rh ≤ deg t + deg r < deg a ,

and by (6.14) and Lemma 6.2(ii),

deg th + deg r = deg a− deg rh−1 + deg r < deg a .

Hence, the degree of the right-hand side of (6.17) is less than deg a. However,
the left-hand side of (6.17) is a multiple of a(x); therefore,

t(x)rh(x) = th(x)r(x) . (6.18)

Note that Lemma 6.2(ii) implies that deg th ≥ 0 and, so, both sides of (6.18)
are nonzero. It follows from (6.18) and condition (C1) that r(x) divides the
nonzero polynomial rh(x). Combining this with (6.14), there is a constant c
such that r(x) = c · rh(x), and by (6.18) we also have t(x) = c · th(x).

One can verify that Proposition 6.3 holds also when r(x) = 0: in this
case, condition (C1) implies that t(x) is a nonzero scalar of F , and from
condition (C3) we have b(x) = 0. The corresponding index h will therefore
be ν+1 = 0.

Based on Proposition 6.3, we can solve the key equation for Λ(x) and
Γ(x) as follows. We apply Euclid’s algorithm with a(x) ← xd−1 and b(x) ←
S(x) to produce Λ(x) ← c · th(x) and Γ(x) ← c · rh(x), where the constant
c will then be set so that Λ(0) = 1; note that the key equation implies
conditions (C1)–(C3). However, we still need to determine the index h that
is guaranteed by the proposition: the way we set its value in the proof—
specifically, in (6.14)—is not too useful, since we assume there that the
polynomials t(x) and r(x) are already given. To compute h while t(x) and
r(x) are not known, we will make use of the next result, which assumes more
information about deg t and deg r than just condition (C2); that additional
information is indeed provided by the degree constraints (6.5) in the key
equation.

Proposition 6.4 Let t(x) and r(x) be as in Proposition 6.3, and assume
in addition that

deg t ≤ 1
2 deg a and deg r < 1

2 deg a .

Then the value h in that proposition is the unique index for which the re-
mainders in Euclid’s algorithm satisfy

deg rh < 1
2 deg a ≤ deg rh−1 .

194 6. Decoding of Reed–Solomon Codes

Proof. A smaller index i would result in a polynomial c · ri(x) whose
degree is too large. On the other hand, by Lemma 6.2(ii) we have for every
i > h,

deg ti ≥ deg th+1 = deg a− deg rh > 1
2 deg a .

So, for every i > h we would end up with a polynomial c · ti(x) whose degree
is too large.

Corollary 6.5 The solution to the key equation is given by Λ(x) = c ·
th(x) and Γ(x) = c · rh(x) for some nonzero constant c ∈ F , where {ti(x)}i

and {ri(x)}i are obtained by an application of Euclid’s algorithm to a(x) ←
xd−1 and b(x) ← S(x), and h is the unique value of i for which

deg rh < 1
2(d−1) ≤ deg rh−1 .

Corollary 6.5 serves as an alternative to Proposition 6.1 for establishing
the uniqueness of the solution to the key equation.

6.5 Finding the error values

Having found Λ(x) and Γ(x), we show an efficient way for computing the
error values.

Recall from Section 3.7 that for a polynomial a(x) =
∑s

m=0 amxm over
F we define the formal derivative by

a′(x) =
s∑

m=1

mamxm−1 .

As we saw in Problem 3.38, the formal derivative of a product of two poly-
nomials obeys the rule

(a(x)b(x))′ = a′(x)b(x) + a(x)b′(x) ,

and by repeated applications of this rule to Λ(x), we get

Λ′(x) =
∑
j∈J

(−αj)
∏

m∈J\{j}
(1− αmx) .

Therefore, for every κ ∈ J ,

Λ′(α−1
κ) = −ακ

∏
m∈J\{κ}

(1− αmα−1
κ) .

6.6. Summary of the GRS decoding algorithm 195

On the other hand, for every κ ∈ J ,

Γ(α−1
κ) = eκvκ

∏
m∈J\{κ}

(1− αmα−1
κ) .

Hence, we obtain the following expression for the error values for every κ ∈ J :

eκ = −ακ

vκ
· Γ(α−1

κ)
Λ′(α−1

κ)
.

This formula is known as Forney’s algorithm for computing the error values.

6.6 Summary of the GRS decoding algorithm

Figure 6.2 summarizes the decoding algorithm for an [n, k, d] GRS code over
F with code locators α1, α2, . . . , αn and column multipliers v1, v2, . . . , vn,
assuming that the number of errors does not exceed τ = �1

2(d−1).
A respective decoding circuit is presented by the schematic diagram in

Figure 6.3. The received word y is read serially—entry by entry—into a

Input: received word (y1 y2 . . . yn) ∈ Fn.
Output: error word (e1 e2 . . . en) ∈ Fn.

1. Syndrome computation: compute the polynomial S(x) =
∑d−2

�=0 S�x
� by

S� =
n∑

j=1

yjvjα
�
j , � = 0, 1, . . . , d−2 .

2. Solving the key equation: apply Euclid’s algorithm to

a(x) ← xd−1 and b(x) ← S(x) ,

to produce
Λ(x) ← th(x) and Γ(x) ← rh(x) ,

where h is the smallest index i for which deg ri < 1
2 (d−1).

3. Forney’s algorithm: compute the error locations and values by

ej =

⎧⎪⎪⎨⎪⎪⎩
−αj

vj
·

Γ(α−1
j)

Λ′(α−1
j)

if Λ(α−1
j) = 0

0 otherwise

, j = 1, 2, . . . , n .

Figure 6.2. Decoding algorithm for GRS codes.

196 6. Decoding of Reed–Solomon Codes

�yj
Buffer

yj �+ �

× + S0
� � � �

��
vj

× + S1
� � � �

��
vjαj

× + Sd−2
� � � �

��
vjα

d−2
j

Euclid’s algorithm

�Λ0

�Λ1
...

�Λτ

�Γ0

�Γ1
...

�Γτ−1

Selector 2→1
True

�∑
m
Γmα−m

j

vj

∑
m
mΛmα−m

j

False

�

0

�

∑
m

Λmα−m

j
?= 0

�−ej

Syndrome
computation

Key equation
solver

Computing error
locations and values

Figure 6.3. Decoding circuit for GRS codes.

buffer. While y is being read, the syndrome entries S0, S1, . . . , Sd−2 are
computed and stored in d−1 delay units (Step 1 in Figure 6.2). Those units
are initially reset to zero, and when the jth entry of y is at the input, that
entry is multiplied by vjα

�
j for � = 0, 1, . . . , d−2 and each result is added

to the contents of the respective delay unit. The center part of the circuit
solves the key equation and produces the polynomials Λ(x) and Γ(x) (Step 2
in Figure 6.2). Finally, the received word y is flushed out serially, during
which the error locations and values are found (Step 3): when the jth entry
of y is at the output, the values Λ(α−1

j) and Γ(α−1
j)/(vjα

−1
j Λ′(α−1

j)) are
computed; if the former is zero, then the latter is added to the value at the
jth location.

Note that Step 2 in Figure 6.2 can begin only after the whole word y has
been read and must be completed before y starts to be flushed out from the
buffer. Therefore, the time complexity of Step 2 affects the delay, or latency,
of the decoding process. Hence, it is desirable to have a fast implementation
of this step, and in our decoding algorithm this step is realized with less than
d iterations of Euclid’s algorithm. One can verify that Steps 1–3 in Figure 6.2
can be carried out by a number of field operations that is proportional,
respectively, to dn, |J |d, and |J |n, where |J | is the number of actual errors
(not to exceed 1

2(d−1)); obviously, Steps 2 and 3 can be skipped when |J | = 0
(i.e., when the syndrome is zero).

6.7. The Berlekamp–Massey algorithm 197

An alternant code Calt can be decoded by applying a decoding algorithm
for its underlying GRS codes (in which case d is the designed minimum
distance of Calt). Note that for alternant codes over GF(2), the error values
will always be 1 and, hence, need not be computed.

6.7 The Berlekamp–Massey algorithm

In this section, we describe a second algorithm for solving the key equation.

6.7.1 Linear recurrence

Let b(x) =
∑deg b

i=0 bix
i be a polynomial over F and N be a nonnegative

integer. (In what follows, the coefficients bi for i ≥ N will be immaterial;
hence, one might as well assume that b(x) is a formal power series in F [[x]],
possibly with an infinite degree.) An N -recurrence of b(x) over F is an
(ordered) pair of polynomials (σ(x), ω(x)) over F such that σ(0) = 1 and

σ(x)b(x) ≡ ω(x) (mod xN) .

The recurrence order of (σ(x), ω(x)), denoted by ord(σ, ω), is defined as

ord(σ, ω) = max{deg σ, 1+ deg ω} .

The following result is given as an exercise (Problem 6.15).

Proposition 6.6 Let b(x) be a polynomial over F and let (σ(x), ω(x))
be an N -recurrence of b(x) over F whose recurrence order, ord(σ, ω), is the
smallest possible. Then the following conditions hold:

(i) gcd(σ(x), ω(x)) = 1.

(ii) If ord(σ, ω) ≤ N/2 then (σ(x), ω(x)) is unique; namely, the recurrence
order of every other N -recurrence of b(x) is greater than ord(σ, ω).

Let (σ(x), ω(x)) be an N -recurrence of b(x) and write L = ord(σ, ω),

σ(x) = 1 +
L∑

m=1

λmxm , and ω(x) =
L−1∑
m=0

γmxm .

Then,

bi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
γi −

i∑
m=1

λmbi−m for 0 ≤ i < L

−
L∑

m=1

λmbi−m for L ≤ i < N

(6.19)

198 6. Decoding of Reed–Solomon Codes

(where bi = 0 for i > deg b). That is, the sequence (bi)N−1
i=0 satisfies a linear

recurrence of order L, and the coefficients of the recurrence are given by
λ1, λ2, . . . , λL; hence the terms N -recurrence and recurrence order.

Figure 6.4 shows a circuit that synthesizes a sequence (bi)N−1
i=0 that sat-

isfies (6.19). The circuit, commonly referred to as an L-tap linear-feedback
shift register (in short, LFSR), contains L cascaded delay units, which are
controlled by a clock and are initially reset to zero. During clock ticks
0, 1, . . . , L−1, the switch is in position A and the coefficients of ω(x) are
fed into the circuit, starting with γ0. At clock tick L, the circuit becomes
autonomous: the external input is disconnected by changing the switch to
position B, and the input to the circuit from this point onward is fixed to be
all-zero. At every clock tick i = 0, 1, . . . , N−1, the contents of the L delay
units are multiplied, respectively, by λ1, λ2, . . . , λL, then summed up, and
the result is fed back and subtracted from the input (γi or 0) to produce the
output bi. The contents of the delay units shifts to the right and the newly
computed bi is fed into the leftmost unit.

�γi
A

��0
B

� � �bi−1 �bi−2 �bi−3 �bi−L+1

� � �

· · ·

� �

+

−1 λ1 λ2 λ3 · · · λL−1 λL

�
	�
�

bi−L

+

�

�

�bi

Figure 6.4. Linear-feedback shift register.

Turning back to GRS decoding, let S(x) =
∑d−2

�=0 S�x
� be the syndrome

polynomial and Λ(x) and Γ(x) be the ELP and EEP, respectively. Assuming
that the number of errors does not exceed 1

2(d−1), it follows from the key
equation that (Λ(x),Γ(x)) is a (d−1)-recurrence of S(x) and ord(Λ, Γ) ≤
1
2(d−1) (and from (6.13) we get that (Λ(x),Γ(x)) is an N -recurrence of
E(x) for every N ≥ 0).

Given a polynomial b(x) and a nonnegative integer N , we present in Sec-
tion 6.7.3 an algorithm that computes iteratively i-recurrences (σi(x), ωi(x))
of b(x) for i = 0, 1, 2, . . . , N , and for each i, the recurrence order ord(σi, ωi)
is the smallest possible. In particular, if we apply the algorithm to N ← d−1
and b(x) ← S(x), we will end up with a (d−1)-recurrence (σd−1(x), ωd−1(x))

6.7. The Berlekamp–Massey algorithm 199

of S(x) such that

ord(σd−1, ωd−1) ≤ ord(Λ, Γ) ≤ 1
2(d−1)

and gcd(σd−1(x), ωd−1(x)) = 1 (see Proposition 6.6). That is, the polynomi-
als σd−1(x) and ωd−1(x) solve the key equation; so, by Proposition 6.1 (or
Corollary 6.5), they must be the ELP and EEP, respectively.

6.7.2 Lower bound on the recurrence order

We precede the description and analysis of the algorithm by the following
lemma, which provides for every i ≥ 0 a recursive lower bound on the recur-
rence order of any i-recurrence of a given polynomial b(x).

Lemma 6.7 Let b(x) be a polynomial over F and for every i ≥ 0, let Li

be the smallest recurrence order of any i-recurrence of b(x). Then L0 = 0,
and for every i ≥ 0,

Li+1 ≥ Li ;

furthermore, if some i-recurrence of b(x) with recurrence order Li is not an
(i+1)-recurrence, then

Li+1 ≥ max{Li, i+1−Li} .

Proof. Obviously, (1, 0) is a 0-recurrence of b(x). Also, Li is non-
decreasing with i and, so, Li+1 ≥ Li.

Next, suppose that Li+1 < i+1−Li and let (σ(x), ω(x)) be an i-
recurrence of b(x) with ord(σ, ω) = Li. We show that (σ(x), ω(x)) is neces-
sarily an (i+1)-recurrence.

Let (σ̂(x), ω̂(x)) be an (i+1)-recurrence with ord(σ̂, ω̂) = Li+1; obviously,
(σ̂(x), ω̂(x)) is also an i-recurrence. Both σ(x) and σ̂(x) have multiplicative
inverses in F [x]/xi and, so, we can write

b(x) ≡ (σ(x))−1ω(x) ≡ (σ̂(x))−1ω̂(x) (mod xi)

or
σ̂(x)ω(x) ≡ σ(x)ω̂(x) (mod xi) . (6.20)

Since we assume that

max{deg σ, 1+deg ω}+ max{deg σ̂, 1+deg ω̂} = Li + Li+1 ≤ i ,

it follows that

deg σ + deg ω̂ < i and deg σ̂ + deg ω < i .

200 6. Decoding of Reed–Solomon Codes

Hence, the congruence (6.20) holds with equality, namely,

σ̂(x)ω(x) = σ(x)ω̂(x) .

But from Proposition 6.6(i) we also have

gcd(σ(x), ω(x)) = gcd(σ̂(x), ω̂(x)) = 1 .

Therefore, (σ(x), ω(x)) = (σ̂(x), ω̂(x)).

6.7.3 The algorithm

Figure 6.5 presents an algorithm, known as the Berlekamp–Massey algo-
rithm, for computing an N -recurrence of a polynomial b(x) over F . Given
b(x) and N , the algorithm computes pairs of polynomials (σi(x), ωi(x)) for
i = 0, 1, 2, . . . , N , the properties of which are summarized in the lemmas
below.

Input: polynomial b(x) ∈ F [x], nonnegative integer N .
Output: pair of polynomials (σN (x), ωN (x)) over F .

σ−1(x) ← 0; σ0(x) ← 1;
ω−1(x) ← −x−1; ω0(x) ← 0;
μ← −1; δ−1 ← 1;
for (i← 0; i < N ; i++) {

δi ← coefficient of xi in σi(x)b(x);
σi+1(x) ← σi(x)− (δi/δμ) · xi−μ · σμ(x);
ωi+1(x) ← ωi(x)− (δi/δμ) · xi−μ · ωμ(x);
if ((δi �= 0) and (2 ord(σi, ωi) ≤ i))

μ← i;
}

Figure 6.5. Berlekamp–Massey algorithm.

For the analysis of the algorithm, it will be convenient to define the
reverse degree of b(x), denoted by rdeg(b), as the largest integer t, if any,
such that xt | b(x); when no such integer exists—i.e., when b(x) = 0—define
rdeg(b) = ∞.

Lemma 6.8 Using the notation of the Berlekamp–Massey algorithm
(Figure 6.5), the pair (σi(x), ωi(x)) is an i-recurrence of b(x) for every
i = 0, 1, 2, . . . , N .

6.7. The Berlekamp–Massey algorithm 201

Proof. We distinguish between three types of iterations of the main loop
in Figure 6.5, according to the value of the loop variable i.

Case 1: 0 ≤ i < rdeg(b). By a simple induction on i it follows that in
each such iteration, the computed value of δi is zero; so, (σi+1(x), ωi+1(x)) =
(1, 0), which is readily an (i+1)-recurrence of b(x) for the assumed range of
i (and also for i = −1).

Case 2: i = rdeg(b). Here we get δi �= 0 (for the first time), and the
particular selection for the values of σ−1(x) and ω−1(x) yields

(σi+1(x), ωi+1(x)) = (1, bix
i) ,

where bi is the (nonzero) coefficient of xi in b(x). It follows that the computed
pair (σi+1(x), ωi+1(x)) is an (i+1)-recurrence for b(x). Observe that the
variable μ is updated in this iteration.

Case 3: rdeg(b) < i < N . Using Cases 1 and 2 as an induction base, we
prove by induction on i ≥ 1 + rdeg(b) that (σi(x), ωi(x)) is an i-recurrence
of b(x) and that deg ωi(x) < i. By the induction hypothesis we have

σi(x)b(x) ≡ ωi(x) (mod xi) (6.21)

and
σμ(x)b(x) ≡ ωμ(x) (mod xμ) ,

where we refer here to the value of the variable μ taken at the beginning of
iteration i (recall that μ ≥ 0, as it has already been updated at least once
in previous loop iterations). Multiply the last congruence by (δi/δμ) · xi−μ

to obtain

(δi/δμ)xi−μσμ(x)b(x) ≡ (δi/δμ)xi−μωμ(x) (mod xi) .

Next, subtract the resulting congruence from (6.21); this yields

σi+1(x)b(x) ≡ ωi+1(x) (mod xi) .

Hence, the proof will be complete once we verify that the coefficients of xi

in σi+1(x)b(x) and ωi+1(x) are equal; in fact, we show that they are both
zero. Indeed, the coefficients of xi in σi(x)b(x) and (δi/δμ)xi−μσμ(x)b(x)
both equal δi, and by the induction hypothesis on deg ωi we obtain

deg ωi+1 ≤ max{deg ωi, i−μ+deg ωμ} < i (< i+1) ,

where the first inequality follows from the expression for ωi+1(x) in the
algorithm.

202 6. Decoding of Reed–Solomon Codes

6.7.4 Minimality of the recurrence order

The next lemma provides a recursive upper bound on the recurrence order
of the pairs (σi(x), ωi(x)) that are computed throughout the course of the
algorithm in Figure 6.5.

Lemma 6.9 For i = 0, 1, . . . , N , let Ui be the value ord(σi, ωi) in the
Berlekamp–Massey algorithm. Then U0 = 0, and for every 0 ≤ i < N ,

Ui+1 ≤ max{Ui, i+1−Ui} ;

furthermore, if δi = 0—i.e., if (σi(x), ωi(x)) is an (i+1) recurrence of b(x)—
then,

Ui+1 = Ui .

Proof. We first verify that the claim holds for i ≤ rdeg(b): Ui+1 =
Ui = 0 for 0 ≤ i < rdeg(b), while for i = rdeg(b) we have δi �= 0 and
Ui+1 = i+1 = i+1−Ui.

Next, we prove the claim for a given iteration i > rdeg(b) under an in-
duction hypothesis on all previous iterations. By the way (σi+1(x), ωi+1(x))
is computed in Figure 6.5, we have

Ui+1 = Ui when δi = 0

and
Ui+1 ≤ max{Ui, i−μ+Uμ} when δi �= 0 .

Hence, to complete the proof it suffices to show that i−μ+Uμ ≤ i+1−Ui, or
that

Ui ≤ μ+1−Uμ . (6.22)

Consider iteration μ (≥ 0) of the main loop in Figure 6.5. From the
“if” statement in the loop we have 2Uμ ≤ μ and, so, an application of the
induction hypothesis to iteration μ yields

Uμ+1 ≤ max{Uμ, μ+1−Uμ} = μ+1−Uμ .

Next, consider iteration j of the main loop where μ < j < i. If δj �= 0 then
by the “if” statement we must have 2Uj > j, i.e., max{Uj , j+1−Uj} = Uj .
The induction hypothesis on iteration j thus implies

Uj+1 ≤ Uj for μ < j < i

(regardless of whether δj is zero or not). Writing the chain of inequalities

Ui ≤ Ui−1 ≤ . . . ≤ Uμ+2 ≤ Uμ+1 ≤ μ+1−Uμ ,

we obtain (6.22).

Lemmas 6.7 through 6.9 lead to the following result.

6.7. The Berlekamp–Massey algorithm 203

Proposition 6.10 Using the notations of Lemmas 6.7 and 6.9,

Li = Ui , 0 ≤ i ≤ N ,

and

Ui+1 =
{

max{Ui, i+1−Ui} if δi �= 0
Ui if δi = 0

, 0 ≤ i < N .

Proof. We prove the claim by induction on i. The case i = 0 is imme-
diate, so we proceed with the induction step and assume that Li = Ui for a
given i < N . We distinguish between two cases.

Case 1: some i-recurrence of b(x) with recurrence order Li is not an
(i+1)-recurrence; in particular, this case includes the event δi �= 0. Here,

Li+1 ≥ max{Li, i+1−Li} = max{Ui, i+1−Ui} ≥ Ui+1 ≥ Li+1 ,

where the first inequality follows from Lemma 6.7, the last two inequalities
follow, respectively, from Lemmas 6.9 and 6.8, and the equality in between
follows from the induction hypothesis. We conclude that all the inequalities
are, in fact, equalities.

Case 2: every i-recurrence of b(x) with recurrence order Li is also an
(i+1)-recurrence. This means that δi is necessarily zero, and by Lemmas 6.7–
6.9 we obtain

Li+1 ≥ Li = Ui = Ui+1 ≥ Li+1 .

The inequalities thus must hold with equality.

It follows from Proposition 6.10 that

Ui+1 > Ui ⇐⇒ (δi �= 0 and 2Ui ≤ i) ;

that is, the recurrence order increases in the Berlekamp–Massey algorithm
precisely when the condition in the “if” statement is satisfied.

6.7.5 Summary of the properties of the algorithm

The next corollary is obtained by substituting i = N in Lemma 6.8 and
Proposition 6.10.

Corollary 6.11 Given a polynomial b(x) ∈ F [x] and a nonnegative in-
teger N as input to the Berlekamp–Massey algorithm, the output produced is
an N -recurrence of b(x) over F with the smallest possible recurrence order
among all N -recurrences of b(x).

204 6. Decoding of Reed–Solomon Codes

As discussed earlier, the Berlekamp–Massey algorithm can be used for
solving the key equation during the decoding of GRS codes: apply the al-
gorithm to b(x) ← S(x) and N ← d−1 to produce (σd−1(x), ωd−1(x)) =
(Λ(x), Γ(x)). Hence, it can replace Euclid’s algorithm in Step 2 of Fig-
ure 6.2 and in the center part of the diagram in Figure 6.3. When decoding
binary alternant codes, we do not need the EEP and, so, it is unnecessary to
compute the polynomials ωi(x). Still, the “if” statement in the Berlekamp–
Massey algorithm does require keeping track of the value Ui = ord(σi, ωi),
and Proposition 6.10 shows how this can be done without computing ωi(x)
explicitly.

One can verify that when the Berlekamp–Massey algorithm is used in
the decoding of GRS codes, it takes a number of field operations that is
proportional to |J |d, where |J | is the number of actual errors; as such, this
algorithm ties with Euclid’s (see also Problem 6.17). We also point out that
the subscripts i in (σi(x), ωi(x)) and δi have been inserted in Figure 6.5 only
to allow easier reference in the analysis; an actual implementation of the
algorithm does not require adding new space in each loop iteration. Never-
theless, when the variable μ is updated, we also need to store (σμ(x), ωμ(x))
and δμ, since these quantities may be required in the computation of subse-
quent iterations (until the next update of μ).

Problems

[Section 6.2]

Problem 6.1 Let HGRS be a canonical parity-check matrix of an [n, k, d] GRS
code over F = GF(q) where 0 < k ≤ n−2. Given a word e ∈ Fn, denote by
(S0 S1 . . . Sd−2)T its syndrome with respect to HGRS.

1. Let e be a nonzero word in Fn of Hamming weight t. Show that the longest
run of 0’s in the sequence

S0, S1, . . . , Sd−2

has length less than t; that is, for every i in the range 0 ≤ i < d−t there is a
j in the range i ≤ j < i+t such that Sj �= 0.

2. Show that the bound in part 1 is tight in the following sense. For every t in
the range 0 < t ≤ d and every i in the range 0 ≤ i ≤ d−t, there is a word
e ∈ Fn of Hamming weight t whose syndrome satisfies

Sj = 0 for i ≤ j < i+t−1

(in fact, for every subset J ⊆ {1, 2, . . . , n} of size t there is such a word whose
support is J).

3. Express the syndrome entries of a word of Hamming weight 1 in terms of S0

and S1 only.

Problems 205

[Section 6.3]
Problem 6.2 Let F be the field GF(2) and let CRS be a [15, 11] normalized prim-
itive RS code over Φ = F [ξ]/(ξ4 + ξ + 1) with a canonical parity-check matrix

HRS =
(
ξij

)
3

i=0
14
j=0 .

The word
y =

(
ξ ξ ξ2 ξ2 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10 ξ11 ξ12 ξ13 ξ14

)
has been received as a result of transmitting a codeword of CRS through an additive
channel (Φ, Φ, Prob).

1. Compute the syndrome of y with respect to the parity-check matrix HRS.

2. Compute the ELP and EEP of the error word under the assumption that at
most two errors have occurred.

Problem 6.3 Let α be a primitive element in Φ = GF(2m) and let CBCH be a
narrow-sense primitive BCH code (of length n = 2m−1) over F = GF(2) whose
parity-check matrix is obtained by representing each entry in(

1 α α2 . . . αn−1

1 α3 α6 . . . α3(n−1)

)
as a column vector in Fm.

1. Show that
CBCH = CRS ∩ Fn ,

where CRS is an [n, n−4, 5] narrow-sense RS code over Φ.

Hint: See Example 5.5.

A codeword c ∈ CBCH has been transmitted through an additive channel
(F, F, Prob) and a word y ∈ Fn with at most two errors has been received.

2. Let (S0 S1 S2 S3)T be the syndrome HRSyT , where HRS is a canonical parity-
check matrix of the code CRS in part 1. Show that S1 = S2

0 and S3 = S4
0 .

Hint: Recall that y is over F .

3. Assuming that exactly two errors have occurred, show that the EEP is the
constant polynomial Γ(x) = S0.

4. Assuming that exactly two errors have occurred, derive from the key equation
expressions for the coefficients of the ELP Λ(x) = 1 + Λ1x + Λ2x

2. Write
those expressions in terms of S0 and S2 only. Compare the result with the
polynomial in Equation (3.6).

Problem 6.4 Let CGRS be a narrow-sense GRS code of length n over an extension
field Φ of F = GF(2). A codeword of the alternant code CGRS ∩ Fn is transmitted
through an additive channel (F, F, Prob). Show that the EEP and the ELP are
related by Γ(x) = Λ′(x), where (·)′ stands for a formal derivative (as defined in
Section 3.7). Deduce that Γ(x) is a square of a polynomial in Φ[x].

206 6. Decoding of Reed–Solomon Codes

Problem 6.5 Let F be a field. Show that F [[x]] is an integral domain under the
definition of sum and product of elements in F [[x]] (see the Appendix).

Problem 6.6 Let F be a field.

1. Show that an element a(x) ∈ F [[x]] is invertible in F [[x]] if and only if x does
not divide a(x).

2. Show that if a(x) =
∑∞

i=0 aix
i is invertible in F [[x]] then its multiplicative

inverse, b(x) =
∑∞

i=0 bix
i, is unique and can be iteratively computed by

b0 =
1
a0

and bi = − 1
a0

i∑
j=1

ajbi−j , i ≥ 1 .

Problem 6.7 Let β be an element in a field F . Show that the multiplicative inverse
of 1− βx in F [[x]] equals

∑∞
i=0(βx)i.

Problem 6.8 (Periodic sequences) A sequence (ai)∞i=0 over a field F is called pe-
riodic if there is an integer e > 0 such that ai+e = ai for all i ≥ 0. The smallest
such e is called the period of the sequence. The period of a non-periodic sequence
is defined as infinity. These definitions extend also to the respective formal power
series a(x) =

∑∞
i=0 aix

i.

1. Let (ai)∞i=0 be a periodic sequence with period e over a field F and suppose
that for some positive integer �,

ai+� = ai for all i ≥ 0 .

Show that e | �.
Hint: Show that if there were a nonzero remainder r when dividing � by e,
then r would be a period.

2. Show that an element a(x) ∈ F [[x]] is periodic if and only if there is an integer
e > 0 and a polynomial c(x) ∈ Fe[x] such that

a(x) =
c(x)

xe − 1
.

Furthermore, show that if a(x) is periodic, then its period is the smallest
e > 0 for which the last equality holds for some c(x) ∈ Fe[x].

Problem 6.9 Let σ(x) be a polynomial over a field F such that gcd(σ(x), x) = 1.
The exponent of σ(x), denoted by expσ(x), is the smallest integer e > 0, if any,
such that

σ(x) | xe − 1 .

If no such integer exists then define expσ(x) = ∞.

1. Show that if F is a finite field then expσ(x) < ∞.

Hint: Consider the multiplicative order of x in the (finite) ring F [x]/σ(x).

2. Show that when F is a finite field and deg σ(x) > 0, then the element 1/σ(x)
in F [[x]] is periodic and that the period equals expσ(x) (see Problem 6.8).

Problems 207

[Section 6.4]
Problem 6.10 (Generalization of Proposition 6.3) Let a(x) and b(x) be polyno-
mials over F such that a(x) �= 0 and deg a > deg b. Suppose that t(x) and r(x) are
polynomials over F that satisfy the following two conditions (which are the same
as conditions (C2) and (C3) in Proposition 6.3):

• deg t + deg r < deg a.

• t(x)b(x) ≡ r(x) (mod a(x)).

Using the notation of Euclid’s algorithm in Figure 6.1, show that there is an index
h ∈ {0, 1, . . . , ν+1} and a polynomial c(x) ∈ F [x] such that

t(x) = c(x) · th(x) and r(x) = c(x) · rh(x) .

Hint: First verify that the proof of Proposition 6.3 still holds until (and including)
the equality (6.18). Conclude from (6.17) and (6.18) that

t(x)sh(x) = th(x)s(x) .

Then, based on part 1 of Problem 3.3, argue that gcd(sh(x), th(x)) = 1 and deduce
that th(x) divides t(x).

Problem 6.11 (Decoding errors and erasures) Let CGRS be an [n, k, d] GRS code
over F = GF(q) with nonzero code locators α1, α2, . . . , αn and column multipliers
v1, v2, . . . , vn. A codeword c ∈ CGRS has been transmitted through an erasure
channel (F, F ∪ {?}, Prob) and a word y = (y1 y2 . . . yn) ∈ (F ∪ {?})n has been
received (where the symbol “?” stands for an erasure). Denote by K the set of
erasure locations in y and let ρ = |K|. The set of error locations in y is denoted by
J where J ∩K = ∅. Assume hereafter that 2|J |+ ρ ≤ d−1.

For the purpose of syndrome computation, the values at the erased locations
are assumed to be zero: letting z = (z1 z2 . . . zn) ∈ Fn stand for

zj =
{

yj if yj �= ?
0 otherwise ,

the syndrome is obtained by (S0 S1 . . . Sd−2)T = HGRSzT , where HGRS is a
canonical parity-check matrix of CGRS. The vector e = (e1 e2 . . . en) will denote
the difference z− c.

Define the syndrome polynomial, error-locator polynomial, erasure-locator poly-
nomial, and error–erasure-evaluator polynomial by

S(x) =
d−2∑
�=0

S�x
� , Λ(x) =

∏
j∈J

(1− αjx) , M(x) =
∏
j∈K

(1− αjx) ,

and
Γ(x) =

∑
j∈K∪J

ejvj

∏
m∈(K∪J)\{j}

(1− αmx) ,

respectively. Note that both S(x) and M(x) are known to the decoder. The modified
syndrome polynomial, denoted by S̃(x), is the unique polynomial in Fd−1[x] that
satisfies

S̃(x) ≡ M(x)S(x) (mod xd−1) .

208 6. Decoding of Reed–Solomon Codes

1. Show that S̃(x) = 0 if and only if e = 0.

2. Show that
gcd(Λ(x), Γ(x)) = 1 .

3. Show that Γ(x) = 0 if and only if e = 0.

4. Show that
deg Γ < ρ + deg Λ ≤ 1

2 (d+ρ−1) .

5. Show that
S(x) ≡

∑
j∈K∪J

ejvj

1− αjx
(mod xd−1) .

6. Show that
Λ(x)S̃(x) ≡ Γ(x) (mod xd−1) .

7. Show that by applying Euclid’s algorithm in Figure 6.1 to a(x) ← xd−1 and
b(x) ← S̃(x) one obtains Λ(x) = c · th(x) and Γ(x) = c · rh(x), where h is the
unique index for which

deg rh < 1
2 (d+ρ−1) ≤ deg rh−1 .

[Section 6.5]

Problem 6.12 Let CGRS be an [n, k, d] GRS code over F with code locators
α1, α2, . . . , αn and column multipliers v1, v2, . . . , vn. Also, let

f(x) = f0 + f1x + . . . + fd−1x
d−1

be a polynomial of degree d−1 (= n−k) over F such that f(αj) �= 0 for all 1 ≤ j ≤ n.
Define the polynomials ϑj(x) ∈ Fd−1[x] by

ϑj(x) = − 1
f(αj)

d−2∑
�=0

x�
d−1∑

i=�+1

fiα
i−�−1
j .

The proof of the following properties was given as an exercise in Problem 5.11:

(i) ϑj(x) is the multiplicative inverse of x− αj in the ring F [x]/f(x).

(ii) CGRS consists of all words (c1 c2 . . . cn) ∈ Fn such that

n∑
j=1

cjvjf(αj) · ϑj(x) = 0 .

(iii) CGRS consists of all words (c1 c2 . . . cn) ∈ Fn such that

n∑
j=1

cjvjf(αj)
x− αj

≡ 0 (mod f(x)) .

Problems 209

A codeword c ∈ CGRS is transmitted through an additive channel (F, F, Prob)
and a word y = (y1 y2 . . . yn) over F is received. Associate with y the following
polynomial Zf (x) ∈ Fd−1[x]:

Zf (x) =
n∑

j=1

yjvjf(αj) · ϑj(x) .

Denote by e = (e1 e2 . . . en) the error word y−c and by J the set of error locations
(i.e., the support of e), and assume that |J | ≤ 1

2 (d−1).

1. Show that

Zf (x) ≡
∑
j∈J

ejvjf(αj)
x− αj

(mod f(x)) .

2. Define the polynomials V(x) and L(x) by

V(x) =
∏
j∈J

(x− αj)

and
L(x) =

∑
j∈J

ejvjf(αj)
∏

m∈J\{j}
(x− αm)

(note that V(x) is obtained by reversing the order of coefficients of the ELP
Λ(x), namely, V(x) = x|J|Λ(x−1)). Show that the following three conditions
hold:

(a) gcd(V(x), L(x)) = 1.

(b) deg L(x) < deg V(x) ≤ 1
2 (d−1).

(c) V(x)Zf (x) ≡ L(x) (mod f(x)).

3. Based on part 2, show how V(x) and L(x) can be computed by applying
Euclid’s algorithm in Figure 6.1 to a(x) ← f(x) and b(x) ← Zf (x).

4. Show that the error values are given by

eκ =
1

vκf(ακ)
· L(ακ)
V′(ακ)

, κ ∈ J .

Hint: Notice the resemblance to Forney’s algorithm.

5. Let S(x) be the syndrome polynomial, whose coefficients are the syndrome
entries of the received word y with respect to the canonical parity-check
matrix

(
vjα

i
j

)
d−2
i=0

n
j=1; that is,

S� =
n∑

j=1

yjvjα
�
j , � = 0, 1, . . . , d−2 .

Show that when f(x) = xd−1,

Zf (x) = −xd−2S(x−1) .

210 6. Decoding of Reed–Solomon Codes

(It is interesting to observe that the decoding algorithm in parts 3 and 4 applies
to any polynomial f(x) of degree d−1 that does not vanish at any of the code
locators; thus, the required relationship between f(x) and the code CGRS is rather
weak. The particular selection of the polynomial f(x) may now be dictated by
complexity criteria; for example, one can choose a “simple” polynomial, such as the
polynomial xd−1 in part 5. Alternatively, one can first select the polynomial f(x)
and then set the column multipliers vj to

vj =
1

f(αj)
, 1 ≤ j ≤ n ,

in which case the expression for the error values in part 4 is simplified (see also
part 6 of Problem 5.11). Finally, notice that the decoding algorithm in parts 3
and 4 can be applied also to singly-extended GRS codes, where one of the code
locators is 0: when d ≥ 3 and f(x) is taken as an irreducible polynomial of degree
d−1 over F , one is guaranteed that, regardless of the choice of the code locators,
none of them is a root of f(x).)

Problem 6.13 (The Welch–Berlekamp equations) Let CGRS be an [n, k, d] GRS
code over F = GF(q) with a generator matrix

GGRS =

⎛⎜⎜⎜⎜⎜⎝
1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αk−1
1 αk−1

2 . . . αk−1
n

⎞⎟⎟⎟⎟⎟⎠ ,

namely, the dual code C⊥GRS is normalized; thus, from (5.3), the code can be equiv-
alently described by

CGRS =
{

(u(α1) u(α2) . . . u(αn)) : u(x) ∈ Fk[x]
}

.

For u(x) ∈ Fk[x], let

c = (u(α1) u(α2) . . . u(αn))

be the codeword of CGRS that is transmitted through a channel (F, F, Prob) and
denote by y = (y1 y2 . . . yn) the received word. Assume that the support, J , of
the error word, (e1 e2 . . . en) = y − c, satisfies |J | ≤ 1

2 (d−1).
Let ũ(x) be the (unique) polynomial in Fk[x] that interpolates through the

points {(αj , yj)}n
j=d, i.e.,

ũ(αj) = yj , d ≤ j ≤ n .

The re-encoded codeword is the codeword c̃ ∈ CGRS that is given by

c̃ = (ũ(α1) ũ(α2) . . . ũ(αn)) .

Note that c̃ may differ from c, yet its last k (= n−d+1) entries are identical to the
respective entries in y. Denote the difference y − c̃ by ỹ = (ỹ1 ỹ2 . . . ỹn), where
ỹj = 0 for d ≤ j ≤ n.

Problems 211

1. Show that a canonical parity-check matrix of CGRS is given by

HGRS =
(
vjα

i
j

)
d−2
i=0

n
j=1 ,

where the column multipliers are

vj = −
(∏

1≤m≤n:
m �=j

(αj − αm)
)−1

, 1 ≤ j ≤ n .

Hint: See Problem 5.7.

2. Verify that y and ỹ belong to the same coset of CGRS in Fn.

3. Let ĉ be the closest codeword in CGRS to ỹ. How is ĉ related to the trans-
mitted codeword c?

4. Show that for j ∈ {1, 2, . . . , n},

ỹj = u(αj)− ũ(αj) ⇐⇒ j �= J .

5. Let A(x) be the polynomial over F that is given by

A(x) =
d−1∏
j=1

(x− αj) ,

and denote by A′(x) the formal derivative of A(x). Show that there exists
a nonzero polynomial pair (V(x), N(x)) over F that satisfies the degree con-
straints

deg V < 1
2 (d+1) and deg N < 1

2 (d−1) ,

along with the following set of d−1 linear homogeneous equations (whose
variables are the coefficients of V(x) and N(x)):

N(αj) = ỹjvjA
′(αj) ·V(αj) , 1 ≤ j < d .

(The polynomial pair (V(x), N(x)) is said to be nonzero if at least one of
the constituent polynomials is nonzero; yet notice that the degree constraints
and the linear equations together force N(x) to be zero whenever V(x) is.
Therefore, a pair is nonzero if and only if V(x) �= 0.)

Hint: Verify that the degree constraints still allow the pair (V(x), N(x)) to
have more than d−1 significant coefficients.

(The linear equations—with the respective degree constraints—in part 5 are called
the Welch–Berlekamp equations of GRS decoding. These equations can be viewed
as a relaxed (or weak) version of the following rational interpolation problem: find
a nonzero pair (V(x),N(x)) that satisfies the interpolation constraint

N(x)
V(x)

∣∣∣∣
x=αj

= ỹjvjA
′(αj) , 1 ≤ j < d ,

212 6. Decoding of Reed–Solomon Codes

subject to
max{deg V, 1+deg N} < 1

2 (d+1) .

Now, in part 5, the polynomial V(x) is allowed to vanish at some of the interpolation
abscissas αj , and the interpolation constraint is then relaxed to only requiring that
N(x) vanish at each such abscissa: while a reduced ratio can be obtained by clearing
the common factor, x − αj , from the numerator N(x) and the denominator V(x),
no constraint is imposed on the value taken by that ratio at x = αj . The set of
linear equations in part 5 will be referred to as the weak interpolation constraint.)

A nonzero polynomial pair (V(x), N(x)) is called feasible if it satisfies the degree
constraints and the weak interpolation constraint in part 5. A feasible pair is called
minimal if V(x) is (nonzero and) monic and the value

max{deg V, 1+deg N}

is the smallest possible among all the nonzero feasible pairs.

6. Let Ω(x) denote the polynomial
∏n

j=d(x− αj). Show that if (V(x),N(x)) is
a feasible pair, then

N(αj)Ω(αj) + V(αj)ỹj = 0 , 1 ≤ j ≤ n .

Hint: Ω(αj) = −1/(vjA
′(αj)) for every 1 ≤ j < d.

7. Show that for every feasible pair (V(x), N(x)),

N(x)Ω(x) = V(x)(ũ(x)− u(x)) .

Hint: Consider the polynomial

Q(x) = N(x)Ω(x) + V(x)(u(x)− ũ(x)) .

By combining parts 4 and 6, show that Q(x) has at least n−|J | roots among
the set of code locators. On the other hand, show that deg Q < n−|J | and,
so, Q(x) must be identically zero.

8. Show that if (V(x),N(x)) is a feasible pair, then V(x) is divisible by the
polynomial ∏

j∈J

(x− αj) .

Hint: Deduce from parts 6 and 7 that

V(αj)(ỹj + ũ(αj)− u(αj)) = 0 , 1 ≤ j ≤ n ,

and then use part 4.

9. Show that a minimal feasible pair is unique and is given by

V(x) =
∏
j∈J

(x− αj) and N(x) =
V(x)(ũ(x)− u(x))

Ω(x)
.

In particular,
deg N < deg V = |J | .

Problems 213

10. Let B(x) be the (unique) polynomial in Fd−1[x] that interpolates through the
points {(αj , ỹjvjA

′(αj))}d−1
j=1 , namely,

B(αj) = ỹjvjA
′(αj) , 1 ≤ j < d .

Show that every feasible pair (V(x),N(x)) satisfies

V(x)B(x) ≡ N(x) (mod A(x)) .

11. Based on part 10, show how the minimal feasible pair can be computed by
applying Euclid’s algorithm in Figure 6.1 to a(x) ← A(x) and b(x) ← B(x).

Hint: Similarly to what was done in Section 6.4, use Problem 6.10 to show
that for every feasible pair (V(x), N(x)) there is an index h ≥ 0 and a poly-
nomial C(x) ∈ F [x] such that

V(x) = C(x) · th(x) and N(x) = C(x) · rh(x) .

Furthermore, show that h must be the smallest index for which deg rh <
1
2 (d−1). Finally, verify that (th(x), rh(x)) is a feasible pair and conclude that
the minimal feasible pair is obtained when C(x) is taken as a (particular)
nonzero scalar of F .

The remaining parts of the problem demonstrate how the error values can be
computed from the minimal feasible pair. To this end, partition the set J into the
following two subsets:

J ′ = J ∩ {1, 2, . . . , d−1} and J ′′ = J ∩ {d, d+1, . . . , n} .

(The subset J ′′ can be viewed as the set of error locations within the informa-
tion word, in the case where the encoding is carried out by a systematic encoder
that places the information word in the part of the codeword that is indexed by
{d, d+1, . . . , n}. The errors within the remaining d−1 coordinates are then indexed
by J ′.)

Hereafter in this problem, (V(x), N(x)) stands for the minimal feasible pair.

12. Show that
gcd(V(x), N(x)) =

∏
j∈J′

(x− αj) .

Hint: Show that for κ ∈ J ′′, the multiplicity of x− ακ in the right-hand side
of the equality in part 7 is (exactly) 1.

13. Show that when κ ∈ J ′′, the error value eκ is given by

eκ = − N(ακ)
vκA(ακ) ·V′(ακ)

.

Hint: Take the formal derivative of both sides of the equality in part 7, and
substitute x = ακ. Note that Ω′(αj) = −1/(vjA(αj)) for every d ≤ j ≤ n.

214 6. Decoding of Reed–Solomon Codes

14. Show that when κ ∈ J ′, the error value eκ is given by

eκ = ỹκ −
N′(ακ)

vκA′(ακ) ·V′(ακ)
.

Hint: Follow the steps of part 13, yet now recall from part 12 that N(ακ) = 0
when κ ∈ J ′.

[Section 6.7]

Problem 6.14 Let L be a positive integer and σ(x) = 1 +
∑L

m=1 λmxm be a
polynomial in FL+1[x].

1. Let (ai)∞i=0 be an infinite sequence over F that satisfies the linear recurrence

ai = −
L∑

m=1

λmai−m = 0 , for every i ≥ L ,

and denote by a(x) the formal power series
∑∞

i=0 aix
i. Show that there exists

a unique polynomial ω(x) ∈ FL[x] such that

a(x) =
ω(x)
σ(x)

in F [[x]] (thus, (σ(x), ω(x)) is an N -recurrence of a(x) for every N ≥ 0).

2. Conversely, show that for every ω(x) ∈ FL[x], the infinite sequence of co-
efficients of the formal power series a(x) = ω(x)/σ(x) satisfies the linear
recurrence in part 1.

3. Show that when F is a finite field, there are |F |L distinct sequences (ai)∞i=0

that satisfy the linear recurrence in part 1.

Problem 6.15 (Smallest recurrence order of finite sequences) Let b(x) be a given
polynomial over a field F and let (σ(x), ω(x)) be an N -recurrence of b(x) over F
whose recurrence order is the smallest possible.

1. Show that gcd(σ(x), ω(x)) = 1.

2. Show that if ord(σ, ω) ≤ N/2 then (σ(x), ω(x)) is unique.

Hint: See the proof of Proposition 6.1.

Problem 6.16 (Minimal recurrence of infinite sequences) Let σ(x) and ω(x) be
polynomials over a field F such that gcd(σ(x), x) = 1 and consider the formal
power series a(x) = ω(x)/σ(x) in F [[x]].

1. Show that there exists a unique pair of polynomials (t(x), r(x)) over F that
satisfies the following two conditions:

(i) gcd(t(x), r(x)) = 1.

(ii) (t(x), r(x)) is an N -recurrence of a(x) over F for every N ≥ 0.

Notes 215

Hereafter in this problem, the pair (t(x), r(x)) is as in part 1.

2. Show that for every integer N ≥ 2 ord(t, r), the pair (t(x), r(x)) is an N -
recurrence of a(x) with the smallest possible recurrence order.

Hint: See Problem 6.15.

3. Show that a(x) is periodic if and only if the exponent of t(x) is finite and
deg r < deg t (see Problems 6.8 and 6.9). What is then the period of a(x)?

4. Show that if F is a finite field and deg r < deg t, then a(x) is necessarily
periodic.

Problem 6.17 (Early stopping of the Berlekamp–Massey algorithm) Suppose that
the Berlekamp–Massey algorithm in Figure 6.5 is used in the decoding of a GRS
code with minimum distance d and that no more than 1

2 (d−1) errors have occurred.
Let i be the first loop iteration of the algorithm for which i ≥ � 1

2 (d−1)+ord(σi, ωi).
Show that (Λ(x),Γ(x)) = (σi(x), ωi(x)).

Notes

[Sections 6.1–6.3]

The first polynomial-time algorithm for decoding GRS codes was introduced by
Peterson [277] and Gorenstein and Zierler [160]. The discussion in Section 6.3.1 is
based on their algorithm.

Given an [n, k, d] GRS code, a direct computation of the syndrome requires
O(dn) arithmetic field operations. The roots of the ELP can be found by a Chien
search (see [79]) with time complexity O(|J |n), where |J | is the number of actual
errors.

[Section 6.4]

The decoding algorithm for GRS codes that uses Euclid’s algorithm is due to
Sugiyama et al. [348]. A direct application of Euclid’s algorithm to solving the
key equation requires O(|J |d) arithmetic field operations, but there are ways
to accelerate this algorithm so that the asymptotic time complexity becomes
O(d log2 d log log d) arithmetic operations; see Aho et al. [6, Section 8.9] and von
zur Gathen and Gerhard [144, Section 11.1].

[Section 6.5]

The formula for computing the error values out of Λ′(x) and Γ(x) is due to For-
ney [128].

The Welch–Berlekamp equations, which are presented in Problem 6.13, form
the basis of another decoding algorithm for GRS codes, not covered in this chapter.
That algorithm is known as the Welch–Berlekamp algorithm and is described in [37]
and [380].

216 6. Decoding of Reed–Solomon Codes

[Section 6.6]
We next consider the asymptotic time complexity of GRS decoding when the ratio
d/n is bounded away from zero.

As mentioned earlier, the key equation can be solved in time complexity
O(d log2 d log log d) = O(n log2 n log log n). In fact, this is also the time complex-
ity of Forney’s algorithm, since there exists an algorithm with time complexity
O(n log2 n log log n) for evaluating a polynomial in Fn[x] simultaneously at n ele-
ments of F [6, Section 8.5], [144, Section 10.1]. As for the initial syndrome computa-
tion step, by a result of Kaminski et al. [203] we get that its complexity is essentially
the same as that of the evaluation of a polynomial at n points. One can therefore
conclude that the overall complexity of GRS decoding is O(n log2 n log log n) arith-
metic field operations; see Justesen [200] and Sarwate [317]. By Problem 6.11 it
follows that one gets the same time complexity also when erasures are present. And
this is also the time complexity of systematic encoding of GRS codes, since the
encoding can be seen as a special case of erasure decoding.

While the algorithm in Figure 6.2 assumes that the code locators are all nonzero,
we can use this algorithm also for the decoding of singly-extended GRS codes, as
described next (see also the remark at the end of Problem 6.12).

Let CGRS be an [n, k, d] singly-extended GRS code over F = GF(q) with a
canonical parity-check matrix

HGRS = (vjα
i
j)d−2

i=0
n

j=1 ,

where αn = 0. Given a received word y = (y1 y2 . . . yn), we first apply Step 1 in
Figure 6.2 to compute the syndrome

(S0 S1 S2 . . . Sd−2)T = HGRSyT .

Next, we execute Steps 2 and 3 in two rounds. In the first round, we assume that
the entry yn is error-free and apply these two steps to the computed syndrome,
while replacing n in Step 3 by n−1. This means that we effectively use Figure 6.2
as a decoder for the [n−1, k−1, d] GRS code C′GRS that is obtained by shortening
CGRS at the nth coordinate (see Problem 2.14): a parity-check matrix of C′GRS is
obtained from HGRS by deleting the nth column.

In the second round, we assume that the entry yn is in error: we replace d, n,
and the column multipliers in Steps 2 and 3 by d−1, n−1, and vjαj , respectively,
and apply these steps to the truncated syndrome

(S1 S2 . . . Sd−2)T .

In other words, we now use Figure 6.2 as a decoder for the [n−1, k, d−1] GRS code
C′′GRS obtained by puncturing CGRS at the nth coordinate (see Problem 2.3): a
parity-check matrix of C′′GRS is obtained from HGRS by deleting the first row and
the nth column. The second round ends by recovering the error value at the nth
coordinate from the syndrome entry S0.

Obviously, if the number of errors in y does not exceed �(d−1)/2, one (and
only one) of these two rounds will end up with a codeword whose Hamming distance
from y is at most �(d−1)/2.

The decoder that we have just described can be generalized to handle erasures
as well, using the algorithm presented in Problem 6.11.

Notes 217

[Section 6.7]
The Berlekamp–Massey algorithm is due to Berlekamp [36, Section 7.4] and
Massey [254]. Blahut [46, Sections 11.6 and 11.7] describes a method for accelerat-
ing the Berlekamp–Massey algorithm through recursion, resulting in an algorithm
that requires O(d log2 d log log d) arithmetic field operations.

On properties of the sequences that are generated by linear-feedback shift reg-
isters see the book by Golomb [152].

Extensions of the Berlekamp–Massey algorithm to multi-dimensional recur-
rences are described by Sakata [314], [315]; see also Fitzpatrick and Norton [126].
Feng and Tzeng [124], [125] study the problem of synthesizing a linear recurrence
that is satisfied simultaneously by several given sequences. Roth and Rucken-
stein [302] describe an algorithm for generating linear sliding-block transformations
on several given sequences such that when each transformation is applied to the re-
spective sequence, the resulting images sum to zero. Reeds and Sloane [290] extend
the Berlekamp–Massey algorithm to sequences over the ring Zm, and Fitzpatrick
and Norton [127] consider the extension of the algorithm to unique factorization do-
mains. Deutsch [103] studies the application of the Berlekamp–Massey algorithm to
the decoding of certain RS-type codes over the ring F [x]/(1+x+ . . . +xp−1), where
F = GF(q) and p is a prime (these codes will be presented in Problem 11.7).

The correspondence between the steps of the Berlekamp–Massey algorithm and
those of Euclid’s algorithm has been studied by Cheng [77], Dornstetter [108], Hey-
dtmann and Jensen [175], Mills [262], and Welch and Scholtz [381].

There are other known efficient algorithms for decoding GRS codes: the Welch–
Berlekamp algorithm mentioned earlier [37], [380] and Blahut’s time-domain decod-
ing algorithm [46, Section 9.5], [47]. The latter algorithm is derived by applying the
inverse of the Fourier transform to the steps of the Berlekamp–Massey algorithm
(Problem 3.27). See also Hasan et al. [173].

Chapter 7

Structure of Finite Fields

In this chapter, we make a second pause in the treatment of codes and
continue with our study of finite fields, which started in Chapter 3. Given
a finite field F = GF(q) and an extension field Φ = GF(qn), we show that
Φ can be partitioned into subsets, which we call conjugacy classes, each
forming the set of roots in Φ of some irreducible polynomial over F whose
degree divides the extension degree n; conversely, the set of roots in Φ of
every such polynomial forms a conjugacy class. This result leads to a closed
expression for the number of monic irreducible polynomials of a given degree
over any finite field. Another key result to be shown is that all finite fields
of the same size are isomorphic.

7.1 Minimal polynomials

Throughout this section, we fix F to be the finite field GF(q) and let Φ be
an extension field of F with extension degree [Φ : F] = n.

Two elements α, β ∈ Φ are called conjugates (with respect to F) if there
is a nonnegative integer r such that

β = αqr
.

Without loss of generality we can assume that r < n; indeed, writing r =
cn + d where 0 ≤ d < n, we have

αqcn
= αqn·q(c−1)n

= (αqn
)q(c−1)n

= αq(c−1)n
= . . . = αq0·n

= α ,

and, so,
αqr

= αqcn+d
= (αqcn

)qd
= αqd

.

The next proposition presents a basic property of the conjugacy relation.

Proposition 7.1 Conjugacy is an equivalence relation.

218

7.1. Minimal polynomials 219

Proof. This follows from reflexivity (α = αq0
), symmetry (if β = αqr

for
some 0 ≤ r < n, then α = βqn−r

), and transitivity (if β = αqr
and γ = βqs

,
then γ = αqr+s

).

Being an equivalence relation, the conjugacy relation partitions Φ into
equivalence classes, which will be referred to as conjugacy classes. A conju-
gacy class that contains an element α ∈ Φ will be denoted by Cα. The next
proposition characterizes a typical class Cα.

Proposition 7.2 The conjugacy class (with respect to F) of an element
α ∈ Φ is given by

Cα = {α, αq, αq2
, . . . , αqm−1 } ,

where m is the smallest positive integer such that αqm
= α.

Proof. Clearly, the elements in Cα are the conjugates of α. We verify
that they are all distinct. Assume to the contrary that αqi

= αqj
for some

0 < i < j < m. Raising to the power qm−j yields αqm−j+i
= αqm

= α,
contradicting the minimality of m.

Let α be an element of Φ and denote the size of the conjugacy class Cα

by m = mα. The minimal polynomial (with respect to F) of α is defined by

Mα(x) =
∏

γ∈Cα

(x− γ) =
m−1∏
i=0

(x− αqi
) .

Clearly, deg Mα(x) = m = mα, and Mβ(x) = Mα(x) for every β ∈ Cα.

Example 7.1 Let F = GF(2) and consider the extension field Φ =
F [ξ]/(ξ3 + ξ + 1), which we constructed in Example 3.6. The conjugacy
classes (with respect to F) of the elements of Φ are

C0 = {0} , C1 = {1} , Cξ = {ξ, ξ2, ξ4} , and Cξ3 = {ξ3, ξ6, ξ5} .

Using Table 3.2, we can compute the minimal polynomials of the elements
of Φ, as follows:

M0(x) = x

M1(x) = x− 1
Mξ(x) = (x− ξ)(x− ξ2)(x− ξ4) = x3 + x + 1 = Mξ2(x) = Mξ4(x)

Mξ3(x) = (x− ξ3)(x− ξ6)(x− ξ5) = x3 + x2 + 1 = Mξ6(x) = Mξ5(x) .

Notice that the coefficients of the minimal polynomials all lie in the field
F = GF(2).

220 7. Structure of Finite Fields

We exhibit several properties of minimal polynomials through a sequence
of propositions. In the first proposition, we show that the phenomenon
observed in Example 7.1 is not a coincidence: while minimal polynomials are
defined over the extension field Φ = GF(qn), they are in fact polynomials
over the ground field F = GF(q).

Proposition 7.3 For every α ∈ Φ,

Mα(x) ∈ F [x] .

Proof. Since q is a power of the characteristic of Φ, we have,

(Mα(x))q =
∏

γ∈Cα

(x− γ)q =
∏

γ∈Cα

(xq − γq) .

Now, when γ ranges over all the conjugates of α, so does γq. Therefore,

(Mα(x))q =
∏

γ∈Cα

(xq − γq) =
∏

γ∈Cα

(xq − γ) = Mα(xq) . (7.1)

Write Mα(x) =
∑m

i=0 aix
i where m = mα. We next compute the leftmost

and rightmost expressions in (7.1): the former equals

(Mα(x))q =
(m∑

i=0

aix
i
)q

=
m∑

i=0

aq
i x

iq ,

while the latter is

Mα(xq) =
m∑

i=0

aix
iq .

Thus,
m∑

i=0

aq
i x

iq =
m∑

i=0

aix
iq ,

which readily implies that aq
i − ai = 0 for every 0 ≤ i ≤ m. Hence, by

Problem 3.11, each coefficient ai is an element of F .

Proposition 7.4 Let α ∈ Φ and b(x) ∈ F [x] be such that b(α) = 0.
Then,

Mα(x) | b(x) .

Proof. Since α is a root of b(x), so is every conjugate αqr
(Problem 3.30).

Therefore, b(x) must be divisible by
∏

γ∈Cα
(x− γ).

The previous proposition provides the reason for the term “minimal poly-
nomial”: the proposition implies that Mα(x) is a nonzero polynomial of
smallest degree in F [x] that vanishes at x = α (see also Problem 3.12).

7.1. Minimal polynomials 221

Proposition 7.5 The polynomial Mα(x) is irreducible over F for every
α ∈ Φ.

Proof. Since α is a root of Mα(x), it must be a root of at least one of
the irreducible factors, say, a(x), of Mα(x) over F . But then, by Proposi-
tion 7.4, Mα(x) | a(x). Hence, Mα(x) is a scalar multiple of the irreducible
factor a(x).

Example 7.2 Shifting momentarily from finite fields to the infinite case,
consider the complex field C, which is an extension field of the real field R

with extension degree 2 (see Example 3.5). Denote by ı the square root of
−1 in C, and recall that for every a, b ∈ R, the elements α = a + bı and
α∗ = a− bı are conjugates in C (with respect to R). Thus, a conjugacy class
of an element α ∈ C has size 1 (if α ∈ R) or 2 (otherwise). Extending the
definition of minimal polynomials to elements of C, we get that for every
a ∈ R and b ∈ R \ {0}, the minimal polynomial of α = a + bı (with respect
to R) is

Mα(x) = (x− α)(x− α∗)
= (x− a− bı)(x− a + bı)
= x2 − 2ax + (a2 + b2) .

This polynomial is irreducible over R.

Lemma 7.6 For every α ∈ Φ and every positive integer s,

αqs
= α ⇐⇒ mα | s .

Proof. Write m = mα and s = cm + d, where 0 ≤ d < m. Now,

αqcm
= αqm·q(c−1)m

= (αqm
)q(c−1)m

= αq(c−1)m
= . . . = α ;

so, αqs
= αqcm+d

= (αqcm
)qd

= αqd
. Hence, by the definition of mα it follows

that αqs
= α if and only if d = 0.

Proposition 7.7 For every α ∈ Φ,

mα | n .

Proof. Every α ∈ Φ satisfies αqn
= α. The result now follows from

Lemma 7.6.

Denote by Q(x) the polynomial xqn−x over F . Since Q(α) = 0 for every
α ∈ Φ, the polynomial Q(x) factors over Φ as follows:

Q(x) =
∏
α∈Φ

(x− α) . (7.2)

222 7. Structure of Finite Fields

Proposition 7.8

Q(x) =
∏

Mα(x)

Mα(x) ,

where Mα(x) ranges over all distinct minimal polynomials of the elements
α ∈ Φ.

Proof. By (7.2),
Q(x) =

∏
Cα

∏
γ∈Cα

(x− γ) ,

where Cα ranges over all the (distinct and disjoint) equivalence classes Cα.

Example 7.3 For F = GF(2) and Φ = F [ξ]/(ξ3 + ξ + 1):

x8 − x = x · (x− 1) · (x− ξ)(x− ξ2)(x− ξ4) · (x− ξ3)(x− ξ6)(x− ξ5)
= M0(x)M1(x)Mξ(x)Mξ3(x)

= x(x− 1)(x3 + x + 1)(x3 + x2 + 1) .

Proposition 7.9 The minimal polynomials of the elements in Φ are all
the monic irreducible polynomials over F with degrees dividing n.

Proof. By Propositions 7.5 and 7.7, every minimal polynomial of an
element in Φ is an irreducible polynomial with degree dividing n.

As for the other direction, suppose that a(x) is a monic irreducible poly-
nomial over F whose degree, m, divides n. Consider the extension field
K = F [ξ]/a(ξ) of F . Every β ∈ K satisfies βqm

= β, and, since m divides
n, we also have βqn − β = 0. Therefore, by Proposition 7.4, every minimal
polynomial of an element in K divides Q(x). In particular, this applies to
a(x), which is the minimal polynomial of the element β = ξ in K (Prob-
lem 7.2). By Proposition 7.8, a(x) divides—and is therefore equal to—a
minimal polynomial of an element in Φ.

By combining Propositions 7.8 and 7.9, we end up with the following
theorem, which characterizes the irreducible factorization of Q(x) over F .

Theorem 7.10

Q(x) =
∏
a(x)

a(x) ,

where a(x) ranges over all monic irreducible polynomials over F with degrees
dividing n.

7.1. Minimal polynomials 223

It is interesting to note that the statement in Theorem 7.10 involves only
polynomials over the ground field F , even though the proof of the theorem
does rely on the existence of the extension field Φ and on properties of the
minimal polynomials of the elements of Φ. The field Φ, in turn, is guaranteed
to exist by Proposition 3.16 for every positive integer n; as a matter of fact,
that proposition uses the very same polynomial Q(x) to construct such a
field.

Example 7.4 For F = GF(2) and n = 1, 2, 3, 4, we use Table 3.1 to
obtain the following irreducible factorization of x2n − x over F :

x2 − x = x(x−1)
x4 − x = x(x−1)(x2+x+1)
x8 − x = x(x−1)(x3+x+1)(x3+x2+1)

x16 − x = x(x−1)(x2+x+1)︸ ︷︷ ︸
x4−x

(x4+x+1)(x4+x3+1)(x4+x3+x2+x+1) .

Notice that each irreducible factor of x2 − x is also an irreducible factor of
x4 − x; similarly, the irreducible factors of x4 − x all divide x16 − x.

Example 7.5 Let F = GF(2) and P1(x) = x4 + x + 1, and consider the
field Φ = F [ξ]/P1(ξ). The conjugacy classes of the elements of Φ are

C0 = {0} , C1 = {1} , Cξ = {ξ, ξ2, ξ4, ξ8} , Cξ3 = {ξ3, ξ6, ξ12, ξ9} ,

Cξ5 = {ξ5, ξ10} , and Cξ7 = {ξ7, ξ14, ξ13, ξ11} .

The conjugacy classes of size 1 correspond to the elements of the subfield F
of Φ, and the respective minimal polynomials are x and x− 1.

There is one conjugacy class of size 2 in Φ, consisting of the elements ξ5

and ξ10. The minimal polynomial of those elements is x2 +x+1, as we have
seen in Example 3.4 that this is the only irreducible polynomial of degree 2
over F . Now,

x(x− 1)(x− ξ5)(x− ξ10) = x(x− 1)(x2 + x + 1) = x4 − x .

That is, F ∪Cξ5 is the set of roots of x4−x in Φ, and this set forms a subfield
of Φ of size 4 (refer to the proof of Proposition 3.16); this subfield, which
we denote by K, is in fact GF(22). The containment relationships between
F , K, and Φ are shown in Figure 7.1. Note that the only possible sizes of
proper subfields of Φ are 2 and 4 (for any other size the extension degree of
Φ would not be an integer).

There are 12 elements in Φ that do not belong to the proper subfields of
Φ; i.e., they are not roots of x4 − x. Those elements form three conjugacy

224 7. Structure of Finite Fields

� Φ = GF(24)
Cξ ∪ Cξ3 ∪ Cξ7

�K = GF(22)

Cξ5�
F = GF(2)

C0 ∪ C1

Figure 7.1. Subfields of Φ = F [ξ]/(ξ4 + ξ + 1).

classes, Cξ, Cξ3 , and Cξ7 , each of size 4. The element ξ ∈ Φ is a root
of the irreducible polynomial P1(x) = x4 + x + 1; therefore, P1(x) is the
minimal polynomial of the elements in Cξ. Next, we show that the irreducible
polynomial P2(x) = x4 + x3 + 1 is the minimal polynomial of the elements
in Cξ7 . To this end, it suffices to check that one of the elements in Cξ7 , say
ξ14 = ξ−1, is a root of P2(x). Indeed,

P2(ξ−1) = ξ−4(1 + ξ + ξ4) = ξ−4P1(ξ) = 0 .

There is one remaining irreducible polynomial of degree 4 over F , namely,
P3(x) = x4 + x3 + x2 + x + 1. We conclude that P3(x) is the minimal
polynomial of the elements in Cξ3 .

7.2 Enumeration of irreducible polynomials

In this section, we use Theorem 7.10 to obtain a formula for the number of
monic irreducible polynomials of any given degree over any given finite field.

Let μ : Z+ → {−1, 0, 1} denote the Möbius function, whose value at
any given positive integer n is determined as follows (see Problem A.2). Let
n =

∏s
j=1 p

ej

j be the factorization of n into distinct primes p1, p2, . . . , ps.
Then,

μ(n) =

⎧⎨⎩
1 if n = 1

(−1)s if ej = 1 for 1 ≤ j ≤ s
0 otherwise

.

The Möbius function is known for the following property.

Proposition 7.11 (The Möbius inversion formula) Let h : Z+ → R and
H : Z+ → R be two real-valued functions defined over the domain of positive
integers. The following two conditions are equivalent:

(i) H(n) =
∑
m |n

h(m) for every n ∈ Z+ .

7.2. Enumeration of irreducible polynomials 225

(ii) h(n) =
∑
m |n

μ(m)H(n/m) for every n ∈ Z+ .

(The summations are taken over all positive integers m that divide n.)

The proof of Proposition 7.11 is given as an exercise in Problem A.2. We
next use this proposition in our main result of this section.

Theorem 7.12 Let I(n, q) denote the number of monic irreducible poly-
nomials of degree n over F = GF(q). Then,

I(n, q) =
1
n

∑
m |n

μ(m) · qn/m .

Proof. By Theorem 7.10,

qn = deg Q(x) =
∑
a(x)

deg a(x) ,

where a(x) ranges over all monic irreducible polynomials over F with de-
grees dividing n. The sum

∑
a(x) deg a(x), in turn, equals

∑
m |n m · I(m, q).

Hence, for every n ∈ Z+,

qn =
∑
m |n

m · I(m, q) .

The result now follows by applying Proposition 7.11 to h(n) = n · I(n, q)
and H(n) = qn.

The values of I(n, 2) for n = 1, 2, 3, 4 are computed in Table 7.1 (the
rightmost column in the table is taken from Table 3.1).

Table 7.1. Values of I(n, 2) for n = 1, 2, 3, 4.

n I(n, 2) Irreducible polynomials of degree n

1 1
1 ·μ(1)·2 = 2 x, x + 1

2 1
2 (μ(1)·4 + μ(2)·2) = 1 x2 + x + 1

3 1
3 (μ(1)·8 + μ(3)·2) = 2 x3 + x + 1, x3 + x2 + 1

4 1
4 (μ(1)·16+μ(2)·4+μ(4)·2) = 3 x4+x+1, x4+x3+1, x4+x3+x2+x+1

226 7. Structure of Finite Fields

Example 7.6 Let Φ be an extension field of size 26 of F = GF(2). The
minimal polynomials (with respect to F) of the elements of Φ have degrees
1, 2, 3, or 6. As was the case in Example 7.5, the polynomial x4 − x has
four roots in Φ, which form a subfield, K, of Φ. The minimal polynomials
of the elements of K are x, x− 1, and x2 + x + 1, among which the first two
polynomials are the minimal polynomials of the elements of the subfield F
of Φ.

Since there are two irreducible polynomials of degree 3 over F , there
must be two respective conjugacy classes of size 3 in Φ. The elements in
those classes, along with the elements of F , are roots of the polynomial

x8 − x = x(x− 1)(x3 + x + 1)(x3 + x2 + 1) .

The eight roots of x8 − x, in turn, form a subfield of Φ, which we denote by
J . The intersection of J with K is the set of roots of

gcd(x8 − x, x4 − x) = x · gcd(x7 − 1, x3 − 1) = x(x− 1) = x2 − x ,

that is, J ∩K = F .
The containment relationships between F , K, J , and Φ are shown in

Figure 7.2. One can verify—as in Example 7.5—that F , K, and J are the
only proper subfields of Φ.

�Φ = GF(26)

�
K = GF(22)

� J = GF(23)
F =

GF(2)

Figure 7.2. Subfields of a field Φ of size 26.

The elements in Φ whose minimal polynomials have degree 6 are those
that do not belong to any of the proper subfields of Φ. The number of those
elements is given by

|Φ| − |J | − |K|+ |J ∩K︸ ︷︷ ︸
F

| = 26 − 23 − 22 + 2 = 54 .

Since each minimal polynomial of degree 6 is shared by six such elements,
we obtain from Proposition 7.9 that the number of monic irreducible poly-
nomials of degree 6 over F equals 9. This is precisely what we get when we

7.3. Isomorphism of finite fields 227

compute that number using Theorem 7.12:

I(6, 2) =
1
6

∑
m | 6

μ(m) · 26/m =
1
6
· (26 − 23 − 22 + 2) = 9 .

7.3 Isomorphism of finite fields

The next theorem was already mentioned in Section 3.3, when we explained
why the standard notation for finite fields specifies only the field size. We
are now in a position to prove this theorem.

Theorem 7.13 All finite fields of the same size are isomorphic.

Proof. Let Φ and K be finite fields of the same size. Both fields have the
same characteristic p; therefore, their respective fields of integers are both
isomorphic to GF(p). This allows us to assume hereafter in the proof that Φ
and K are extension fields of the same field F and have the same extension
degree [Φ : F] = [K : F] = n.

Fix an irreducible polynomial a(x) of degree n over F . By Proposi-
tion 7.9, this polynomial is a minimal polynomial of an element α ∈ Φ and
also of an element β ∈ K. From Problem 7.6 we get that

Φ = {u(α) : u(x) ∈ Fn[x] } and K = {u(β) : u(x) ∈ Fn[x] } .

Define the mapping ψ : K → Φ by

ψ(u(β)) = u(α) , u(x) ∈ Fn[x] .

We show that ψ is an isomorphism. It is easy to see that ψ is additive,
one-to-one, and onto; it remains to prove that it is also multiplicative. Let
u(x) and v(x) be polynomials in Fn[x] and let r(x) denote the remainder of
u(x)v(x) when divided by a(x). Since a(α) = 0 in Φ and a(β) = 0 in K, we
have

ψ(u(β) · v(β)) = ψ(r(β)) = r(α) = u(α) · v(α) = ψ(u(β)) · ψ(v(β)) .

7.4 Primitive polynomials

Let a(x) be a polynomial over F = GF(q) such that gcd(a(x), x) = 1. Recall
from Problem 6.9 that the exponent of a(x), denoted by exp a(x), is the
smallest positive integer e such that

a(x) | xe − 1 .

228 7. Structure of Finite Fields

In other words, the exponent e is the multiplicative order of x in the ring
F [x]/a(x). It turns out that when a(x) is irreducible, e is also the multi-
plicative order of the roots of a(x) in any extension field of F .

Proposition 7.14 Let a(x) be an irreducible polynomial over F =
GF(q) other than a scalar multiple of x. The exponent of a(x) equals the
multiplicative order of every root of a(x) in any extension field of F (thus,
all of these roots have the same multiplicative order).

Proof. Assume without loss of generality that a(x) is monic and let
α be a root of a(x) in an extension field of F . Then a(x) is the minimal
polynomial of α (with respect to F); so, by Proposition 7.4, αe = 1 if and
only if a(x) |xe − 1.

The next proposition relates the multiplicative order of an element to
the degree of its minimal polynomial.

Proposition 7.15 Let α be a nonzero element of multiplicative order e
in an extension field of F = GF(q). The degree of the minimal polynomial
of α (with respect to F) is the smallest positive integer m such that e | qm−1.

Proof. The degree of the minimal polynomial of α is the smallest integer
m > 0 such that αqm

= α, or equivalently, αqm−1 = 1. The latter equality
holds if and only if e | qm−1.

By combining Propositions 7.14 and 7.15, we get the following relation
between the degree of an irreducible polynomial and its exponent.

Proposition 7.16 Let a(x) �= x be a monic irreducible polynomial of
degree m over F = GF(q) and let e be the exponent of a(x). Then m is the
smallest positive integer such that e | qm−1.

Example 7.7 Let F = GF(2) and Φ = F [ξ]/(ξ4 + ξ +1). Table 7.2 lists
the multiplicative orders of the elements of Φ. Note that elements in the
same conjugacy class share the same minimal polynomial; so, they also have
the same multiplicative order.

An irreducible polynomial of degree n over GF(q) is called a primitive
polynomial if its exponent equals qn−1.

Proposition 7.17 The monic primitive polynomials of degree n over
GF(q) are the minimal polynomials of the primitive elements in GF(qn).

7.5. Cyclotomic cosets 229

Table 7.2. Multiplicative orders of the elements in GF(24).

Conjugacy class Minimal polynomial Order/Exponent
{0} x −
{1} x + 1 1

{ξ, ξ2, ξ4, ξ8} x4 + x + 1 15
{ξ3, ξ6, ξ12, ξ9} x4 + x3 + x2 + x + 1 5
{ξ5, ξ10} x2 + x + 1 3

{ξ7, ξ14, ξ13, ξ11} x4 + x3 + 1 15

Proof. Let α be a nonzero element in Φ = GF(qn) with deg Mα(x) =
m. By Proposition 7.14 it follows that α is primitive in Φ if and only if
expMα(x) = qn−1. And the latter equality implies by Proposition 7.16 that
m = n.

Recall that the number of primitive elements in GF(qn) is φ(qn−1), where
φ(·) is the Euler function. The next enumeration result follows from Propo-
sition 7.17.

Theorem 7.18 Let P(n, q) denote the number of monic primitive poly-
nomials of degree n over F = GF(q). Then,

P(n, q) =
1
n

φ(qn−1) .

Table 7.3 summarizes the values of P(n, 2) for n = 1, 2, 3, 4.

Table 7.3. Values of P(n, 2) for n = 1, 2, 3, 4.

n P(n, 2) Primitive polynomials of degree n

1 1
1 · φ(1) = 1 x + 1

2 1
2 · φ(3) = 1 x2 + x + 1

3 1
3 · φ(7) = 2 x3 + x + 1, x3 + x2 + 1

4 1
4 · φ(15) = 2 x4 + x + 1, x4 + x3 + 1

7.5 Cyclotomic cosets

In this section, we consider the properties of polynomials of the form xe − 1
over GF(q), where gcd(e, q) = 1. These properties are summarized in the
next two propositions.

230 7. Structure of Finite Fields

Proposition 7.19 Let F = GF(q) and let e be a positive integer rela-
tively prime to q. Then the following conditions hold:

(i) The roots of the polynomial xe − 1 in any extension field of F are
simple.

(ii) The splitting field of xe−1 over F is GF(qm), where m is the smallest
positive integer such that e | qm−1.

Proof. The formal derivative of xe − 1 equals exe−1, which is a nonzero
polynomial due to our assumption on e. Therefore, gcd(xe − 1, exe−1) = 1
and, so, by Lemma 3.15, the roots of xe − 1 are simple, thereby proving
part (i).

As for part (ii), the polynomial xe − 1 has e (simple) roots in GF(qr) if
and only if xe−1 |xqr−x, or, equivalently, xe−1 |xqr−1−1. By Problem 3.4,
the latter condition holds if and only if e | qr−1.

Proposition 7.20 Given F = GF(q), let e be a positive integer rela-
tively prime to q and let m be the smallest positive integer such that e | qm−1.
Then

xe − 1 =
∏

Mα(x)

Mα(x) ,

where Mα(x) ranges over all distinct minimal polynomials (with respect to
F) of the elements α ∈ GF(qm) with multiplicative orders dividing e.

Proof. The roots of xe − 1 in Φ = GF(qm) are the e elements in Φ
whose multiplicative order divides e. These roots are all simple and form a
union of conjugacy classes in Φ (with respect to F). The proof continues as
in Proposition 7.8.

Let q, e, and m be as in Proposition 7.20 and let α be an element of
multiplicative order e in GF(qm). Every conjugacy class of roots of xe − 1
has the form

{αs, αsq, αsq2
, . . . , αsqt−1}

for some integer s, where t is the smallest positive integer such that αsqt
= αs.

Equivalently, t is the smallest positive integer such that sqt ≡ s (mod e).
The respective set of exponents,

{s, sq, sq2, . . . , sqt−1} ,

with each value taken modulo e, is called a cyclotomic coset modulo e over
GF(q).

7.5. Cyclotomic cosets 231

Example 7.8 Consider the polynomial x15 − 1 over F = GF(2). By
Proposition 7.19, the splitting field of this polynomial over F is GF(24).
Letting α be an element of multiplicative order 15 in GF(24) (i.e., a primitive
element), the conjugacy classes of the roots of x15−1 in GF(24) are as shown
in Table 7.4 (compare with Table 7.2).

Table 7.4. Conjugacy classes of the roots of x15 − 1 in GF(24) over GF(2).

Conjugacy class Cyclotomic coset Order of elements
{1} {0} 1

{α, α2, α4, α8} {1, 2, 4, 8} 15
{α3, α6, α12, α9} {3, 6, 12, 9} 5
{α5, α10} {5, 10} 3

{α7, α14, α13, α11} {7, 14, 13, 11} 15

Example 7.9 The splitting field of the polynomial x21 − 1 over F =
GF(2) is GF(26). Selecting α to be an element of multiplicative order 21 in
GF(26), the conjugacy classes of the roots of x21− 1 in GF(26) are as shown
in Table 7.5.

Table 7.5. Conjugacy classes of the roots of x21 − 1 in GF(26) over GF(2).

Conjugacy class Cyclotomic coset Order of elements
{1} {0} 1

{α, α2, α4, α8, α16, α11} {1, 2, 4, 8, 16, 11} 21
{α3, α6, α12} {3, 6, 12} 7

{α5, α10, α20, α19, α17, α13} {5, 10, 20, 19, 17, 13} 21
{α7, α14} {7, 14} 3

{α9, α18, α15} {9, 18, 15} 7

Based on Table 7.5, we next apply Proposition 7.20 to find the irreducible
factorization of x21− 1 over F . Clearly, M1(x) = x− 1 and, since x2 + x + 1
is the unique irreducible polynomial of degree 2 over F , we must have

Mα7(x) = x2 + x + 1 .

Similarly, x3 + x + 1 and x3 + x2 + 1 are the only irreducible polynomials of
degree 3 over F ; so, one of them must be Mα3(x) and the other is Mα9(x).

232 7. Structure of Finite Fields

Therefore,

Mα(x)Mα5(x) =
x21 − 1

M1(x)Mα7(x)Mα3(x)Mα9(x)

= x12 + x11 + x9 + x8 + x6 + x4 + x3 + x + 1 .

Write Mα(x) = a(x) =
∑6

i=0 aix
i. Since α−1 ∈ Cα5 , it follows from Prob-

lem 7.3 that Mα5(x) is obtained by reversing the order of coefficients of
Mα(x); namely, Mα5(x) =

∑6
i=0 a6−ix

i. From

(6∑
i=0

aix
i
)(6∑

i=0

a6−ix
i
)

= x12 + x11 + x9 + x8 + x6 + x4 + x3 + x + 1

we obtain equations in the unknown values a0, a1, . . . , a6, resulting in two
solutions for a(x): x6 + x4 + x2 + x + 1 and its reverse x6 + x5 + x4 + x2 + 1
(see Problem 7.13). This leads to the factorization

x21 − 1 = (x− 1)(x2 + x + 1)(x3 + x + 1)(x3 + x2 + 1)
· (x6 + x4 + x2 + x + 1)(x6 + x5 + x4 + x2 + 1) .

Problems

[Sections 7.1 and 7.2]

Problem 7.1 Let α be a primitive element in GF(qm) and let s be a positive
integer.

1. Show that when 1 ≤ s ≤ q�m/2	, the degree of the minimal polynomial of αs

with respect to GF(q) equals m.

Hint: Let s = (s0 s1 . . . sm−1) be the coefficients of the q-ary representation
of the integer s, i.e., s =

∑m−1
j=0 sjq

j , where 0 ≤ sj < q. Verify that the
remainder of sqi when divided by qm − 1 is an integer whose q-ary repre-
sentation is obtained by shifting the contents of s cyclically i times to the
right. Show that when 1 ≤ s ≤ q�m/2	, these cyclic shifts are distinct for all
0 ≤ i < m.

2. What is the degree of the minimal polynomial of αs when m is even and
s = qm/2 + 1?

Problem 7.2 Let a(x) be a monic irreducible polynomial over a finite field F .
Show that a(x) is the minimal polynomial of the element ξ in the extension field
F [ξ]/a(ξ).

Problems 233

Problem 7.3 Let α be a nonzero element in an extension field Φ of F = GF(q).

1. Show that the conjugacy classes of α and α−1 (with respect to F) are of the
same size.

2. Let Mα(x) =
∑m

i=0 aix
i be the minimal polynomial of α (with respect to F).

Show that the minimal polynomial of α−1 is given by

Mα−1(x) =
1
a0

m∑
i=0

am−ix
i .

That is, up to scaling by some nonzero element of F , the minimal polyno-
mial of α−1 is obtained by reversing the order of coefficients of the minimal
polynomial of α.

Problem 7.4 Let F = GF(q) and consider the polynomial L(x) = xq − ax, where
a is a nonzero element in F with multiplicative order n. Denote by Φ the splitting
field of L(x) over F .

1. Suppose that L(x) has a nonzero root in (the ground field) F . What can be
said about the value of a? What is the splitting field over F in this case?

2. Let α be a root of L(x) in Φ. Show that αqr

= arα for every positive integer r.

3. Find the degrees of the irreducible factors of L(x) over F . How many irre-
ducible factors are there of any given degree?

Hint: Use part 2 to find the size of the conjugacy class (with respect to F)
of each nonzero root of L(x) in Φ.

4. Show that the equation
b(q−1)/n = a

has (q−1)/n distinct solutions for b in F .

Hint: Write a = γs(q−1)/n, where γ is a primitive element in F and s is an
integer such that gcd(s, n) = 1. Express the solutions for b in terms of γ, s,
and n.

5. Let b be an element of F that satisfies b(q−1)/n = a. Show that the polynomial
L(x) = xq − ax is divisible by the polynomial xn − b.

6. What are the irreducible factors of L(x) = xq − ax over F?

Hint: Show that each polynomial xn − b in part 5 is a minimal polynomial
(with respect to F) of some nonzero root of L(x) in Φ.

Problem 7.5 Let K be the field GF(23) and let β be an element of multiplicative
order 9 in the extension field Φ of K with extension degree [Φ : K] = 2.

1. Partition the set of powers

{1, β, β2, . . . , β8}

into conjugacy classes (with respect to K).

234 7. Structure of Finite Fields

2. For each element βi, find the degree of the minimal polynomial Mβi(x) (with
respect to K).

3. For each minimal polynomial Mβi(x), find its constant coefficient (i.e., the
value of Mβi(x) at x = 0).

4. Show that the elements βi + β−i are in K.

5. Find the value of β3 + β−3.

Hint: Show that this value belongs to a proper subfield of K.

6. Identify the minimal polynomials Mβi(x) (with respect to K) whose coeffi-
cients are in GF(2).

[Section 7.3]

Problem 7.6 Let F = GF(q) and Φ = GF(qn), and let α be an element of Φ
whose minimal polynomial (with respect to F) has degree (exactly) n. Define the
mapping ϕ : Fn[x]→ Φ by

ϕ(u(x)) = u(α) , u(x) ∈ Fn[x] .

Show that the mapping ϕ is one-to-one and onto.

Problem 7.7 Let p be a prime and let Φ and K be extension fields of GF(p) with
the same extension degree n.

1. Let ψ : K → Φ be an isomorphism. Show that the minimal polynomial
(with respect to GF(p)) of every element β ∈ K is the same as the minimal
polynomial of the element ψ(β) ∈ Φ.

2. Show that every isomorphism ψ : K → Φ is completely defined by the value
of ψ at an element β ∈ K that does not belong to any proper subfield of K.

3. Show that there are exactly n distinct isomorphisms ψ : K → Φ.

Hint: Given an element β ∈ K that does not belong to any proper subfield
of K, what are the possible values that ψ(β) may take?

4. Show that the automorphisms ψ : Φ → Φ are the Frobenius mappings fm :
x�→ xpm

.

Problem 7.8 The purpose of this problem is to show that the polynomial

Bn(x) =
n−1∑
j=0

xj

is irreducible over the rational field Q if and only if n is a prime.

1. Show that Bn(x) is reducible over Q whenever n is a composite integer.

Hint: Using Problem 3.4, show that Br(x) divides Bn(x) for every positive
divisor r of n.

Problems 235

Assume hereafter in this problem that n is a prime and write Bn(x) = a(x)b(x),
where a(x) and b(x) are monic polynomials in Q[x].

2. Show that a(x) and b(x) have integer coefficients.

Hint: By clearing denominators from a(x) and b(x), write

c ·Bn(x) = â(x)b̂(x) ,

where c is an integer and â(x) and b̂(x) have integer coefficients. Argue that
each coefficient in the product â(x)b̂(x) must be divisible by every prime
divisor p of c, and then recall from Problem 3.2 that the ring of polynomials
over GF(p) is an integral domain.

3. Show that either a(1) = 1 or b(1) = 1.

Without loss of generality assume hereafter that a(1) = 1.

4. Show that there is an integer m ∈ {0, 1, . . . , n−1} such that

a(x) ≡ (x− 1)m (mod n)

(where the congruence holds for every two coefficients in a(x) and (x− 1)m,
respectively, that multiply the same power of x).

Hint: Show that Bn(x) ≡ (x− 1)n−1 (mod n).

5. Show that if deg a > 0 then n | a(1).

6. Deduce that a(x) has degree 0 and, so, Bn(x) is irreducible over Q.

(It follows from this problem that when n is a prime, the ring of residues Q[ω]/Bn(ω)
is an extension field of Q. Several properties of this field are summarized in the
notes on Section 7.3.)

[Section 7.4]
Problem 7.9 Let m be a positive integer. Show that every irreducible polynomial
of degree m over GF(2) is primitive if and only if 2m−1 is a prime.

Hint: Use part 1 of Problem 7.1 to show the “only if” part. See also Problem 3.19.

Problem 7.10 For a positive integer m, let α be an element of multiplicative order
3 · (4m + 1) in an extension field Φ of F = GF(2).

1. Show that 3 · (4m + 1) divides 24m − 1.

2. Find the smallest positive integer � such that 3 · (4m + 1) divides 2� − 1.

Hint: The sought � is the multiplicative order of 2 in the ring of integer
residues modulo 3 · (4m + 1).

3. What is the smallest possible size of Φ?

4. What is the size of the conjugacy class of α (with respect to F)?

5. What is the multiplicative order of α3 in Φ?

236 7. Structure of Finite Fields

6. What is the size of the conjugacy class of α3?

7. Are α and α3 in the same conjugacy class?

8. Are α3 and α−3 in the same conjugacy class?

9. Show that α and α−1 are not in the same conjugacy class (with respect to F).

Hint: Verify that if α−1 = α2�

for some nonnegative integer � < 4m then
3 · (4m + 1) divides 2� + 1. Deduce that 2m | � and, so, � ≥ 4m, thereby
reaching a contradiction.

Problem 7.11 The purpose of this problem is to show that the polynomial

Un(x) = x2·3n

+ x3n

+ 1

is irreducible over F = GF(2) for every n ≥ 0.

1. Show that Un(x) divides x3n+1 − 1.

2. Let zn denote the integer 23n

. Show by induction on n that zn +1 is divisible
by 3n+1, yet it is not divisible by 3n+2.

Hint: Write
zn+1 + 1 = (zn + 1)(z2

n − zn + 1)

and show that
z2

n − zn + 1 ≡ 3 (mod 9) .

3. Deduce from part 2 that 3n+1 divides 22·3n − 1 (= z2
n − 1), yet for n > 0 it

divides neither 23n − 1 (= zn − 1) nor 22·3n−1 − 1 (= z2
n−1 − 1).

4. Show that the smallest positive integer � such that 3n+1 | 2�−1 equals 2 · 3n.

Hint: Use part 3 (and see the hint in part 2 of Problem 7.10).

5. Let α be a root of Un(x) in the splitting field of Un(x) over F . Show that the
multiplicative order of α equals 3n+1.

Hint: If O(α) divided 3n, then Un(α) would be 1.

6. Let α be as in part 5. Show that the conjugacy class of α (with respect to
F) contains 22·3n

elements of the splitting field. Deduce that Un(x) is the
minimal polynomial of α (with respect to F).

Problem 7.12 (More on linear-recurring sequences) Let σ(x) = 1 +
∑m

i=1 σix
i be

an irreducible polynomial of degree m over F = GF(q) and let α be a root of σ(x)
in Φ = GF(qm).

Recall from Problem 3.31 that the trace polynomial over Φ with respect to F
is defined by

T(x) = TΦ:F (x) = x + xq + xq2
+ . . . + xqm−1

.

Fix η to be an element of Φ, and consider the infinite trace sequence a = (ai)∞i=0

whose elements are given by

ai = T(ηα−i) , i ≥ 0 .

Problems 237

1. Show that the sequence a satisfies the linear recurrence

ai = −
m∑

j=1

σjai−j , for every i ≥ m .

2. Show that distinct values of η yield distinct sequences a; so, when η ranges
over the elements of Φ, the infinite sequence

(
T(ηα−i)

)∞
i=0

ranges over all the
distinct sequences that satisfy the linear recurrence in part 1.

Hint: See part 3 of Problem 6.14.

3. A sequence (bi)∞i=0 is called a phase of a if there exists a nonnegative integer
τ such that

bi = ai+τ , i ≥ 0 .

Show that for each phase (bi)∞i=0 of a there exists an element β ∈ Φ such that

bi = T(βα−i) , i ≥ 0 .

Express β in terms of α, η, and τ .

4. The sequence a is said to be of natural phase if aiq = ai for every i ≥ 0. Show
that a is of natural phase if and only if η ∈ F .

5. Recall from Problem 6.8 that the period of a is the least integer e > 0, if any,
such that ai+e = ai for all i ≥ 0. Show that when η �= 0, the period of a
equals the multiplicative order of α in Φ (which, by Proposition 7.14, is also
the exponent of σ(x); see also part 3 of Problem 6.16).
(Thus, for the special case where σ(x) is a primitive polynomial, the period of
a is qm−1. The sequence a is then called a maximal-length (linear-recurring)
sequence or, in short, an M -sequence. The respective primitive polynomial
σ(x) is said to represent a maximal-length linear-feedback shift register . See
also Problem 3.37 and Section 6.7.1.)

6. How many distinct phases does a have?

Associate with a the formal power series a(x) =
∑∞

i=0 aix
i in F [[x]] as defined in

Section 6.3.2.

7. Show that the formal power series a(x) can be expressed as

a(x) =
m−1∑
j=0

ηqj

1− α−qj x
.

8. Recall from Problem 6.14 that there exists a unique polynomial ω(x) ∈ Fm[x]
such that

a(x) =
ω(x)
σ(x)

.

Show that η is related to σ(x) and ω(x) by

η = − ω(α)
α · σ′(α)

,

238 7. Structure of Finite Fields

where σ′(x) denotes the formal derivative of σ(x). Conclude that the coeffi-
cients of ω(x) form the representation of the element −η ·α · σ′(α) according
to the basis Ω = (1 α α2 . . . αm−1) of Φ over F .

Hint: Based on part 7, write

ω(x) =
m−1∑
j=0

ηqj

σ(x)
1− α−qj x

=
m−1∑
j=0

ηqj ·
∏

0≤k<m:
k �=j

(1− α−qk

x) ,

and substitute x = α.

9. Assume now that a is an M -sequence (that is, σ(x) is a primitive polyno-
mial over F and η �= 0). Show that when i ranges over {0, 1, . . . , qm−2},
the m-tuple (ai ai+1 . . . ai+m−1) ranges over all the nonzero elements of
Fm. Conclude that each nonzero element of F appears in the finite sequence
(ai)

qm−2
i=0 exactly qm−1 times, while the zero element appears qm−1−1 times

(this property follows also from part 5 of Problem 3.31).

[Section 7.5]

Problem 7.13 Let a(x) =
∑6

i=0 aix
i be a polynomial over F = GF(2) that satis-

fies the equality

(6∑
i=0

aix
i
)(6∑

i=0

a6−ix
i
)

= x12 + x11 + x9 + x8 + x6 + x4 + x3 + x + 1 .

By comparing respective coefficients of powers of x in both sides of this equality,
show that a(x) equals either x6 + x4 + x2 + x + 1 or x6 + x5 + x4 + x2 + 1.

Problem 7.14 Consider the polynomial

Pn(x) = xn − 1

over GF(2). Answer parts 1–6 for the following values of n: (i) n = 7, (ii) n = 11,
and (iii) n = 17.

1. Find the splitting field Φ of Pn(x) over GF(2).

2. Find the number of distinct roots of Pn(x) in Φ.

3. Find the multiplicative orders of the roots of Pn(x) in Φ and the number of
roots of each order.

4. Let α be an element of multiplicative order n in Φ. Find the conjugates of
α in Φ with respect to GF(2) (express the conjugates as powers αi, where
0 ≤ i < n).

5. For an element α as in part 4, find the conjugates of α3 in Φ with respect to
GF(2).

Problems 239

6. Determine whether the polynomial

Bn(x) =
n−1∑
j=0

xj =
Pn(x)
x− 1

is irreducible over GF(2).

Problem 7.15 Consider the polynomial

Bn(x) =
n−1∑
j=0

xj

over F = GF(q).

1. Show that Bn(x) is reducible over F whenever n is a composite number.

Hint: See part 1 of Problem 7.8.

2. Suppose now that n is a prime. Show that Bn(x) is irreducible over F if and
only if the integer q, when taken modulo n, is a primitive element in GF(n).

Hint: See Problem 7.14.

Problem 7.16 (Legendre sequence as a linear-recurring sequence) Let p be a prime
and suppose that the multiplicative order of 2 in GF(p) is m = 1

2 (p−1). Also, let α
be an element in Φ = GF(2m) of multiplicative order p (why does such an element
exist?).

1. Show that 2 is a generator of the set of quadratic residues in GF(p), when
this set is regarded as a cyclic subgroup of the multiplicative group of GF(p)
(see Problems 3.23 and 3.26).

2. Show that Φ is the splitting field of the polynomial xp − 1 over GF(2).

3. Show that the polynomial xp − 1 factors over F = GF(2) into

xp − 1 = (x− 1)σ(x)τ(x) ,

where both σ(x) and τ(x) are irreducible polynomials of degree m over F ,
with σ(x) being the minimal polynomial of α with respect to F . Furthermore,
show that the set of roots of σ(x) in Φ is

Q =
{
αi : i is a quadratic residue modulo p

}
,

while that of τ(x) is

N =
{
αi : i is a quadratic non-residue modulo p

}
.

4. Let T(x) be the trace polynomial TΦ:F (x) = x + x2 + x22
+ . . . + x2m−1

over
Φ with respect to F = GF(2). Show that the mapping x�→ T(x) is constant
when restricted to the domain Q, and is also constant when restricted to N .
On the other hand, show that the values taken by T(x) on these two domains
are distinct: one value is 0, while the other is 1.

240 7. Structure of Finite Fields

Hint: Show that for any β ∈ Q,

T(β) = T(α) ,

and for any β ∈ N ,

1 + T(α) + T(β) =
p−1∑
i=0

αi = 0 .

5. Suppose that α is such that T(α−1) = 0 (argue why, indeed, one could select α
in the first place so that this condition holds), and define the infinite sequence
a = (ai)∞i=0 by

ai = T(α−i) , i ≥ 0 .

Show that for every i ≥ 0,

ai =

⎧⎪⎪⎨⎪⎪⎩
0 if p divides i and m is even
1 if p divides i and m is odd
0 if i is a quadratic residue modulo p
1 otherwise

.

(Thus, when p ≡ 3 (mod 4) and O(2) = 1
2 (p−1) in GF(p), the infinite integer

sequence (xi)∞i=0 that is given by

xi = (−1)ai , i ≥ 0 ,

coincides with the Legendre sequence, which was defined in Problem 3.26.
As a linear-recurring sequence, a has a minimal linear recurrence order
deg σ(x) = 1

2 (p−1), which is large—almost half its period p; see Problems 6.16
and 7.12.)

Notes

[Sections 7.1 and 7.2]
The book by Lidl and Niederreiter [229] contains an encyclopedic treatment of finite
fields. The structure of finite fields is studied in the first three chapters of that book.

Let Cα be a conjugacy class of elements of Φ = GF(qm) (with respect to F =
GF(q)). Sometimes the elements of Cα form a basis of the linear space Φ over F .
When this happens, we say that the elements of Cα form a normal basis of Φ over F
(clearly, this occurs only if |Cα| = m). It can be shown that a normal basis always
exists; see Lidl and Niederreiter [229, Theorems 2.35 and 3.73].

[Section 7.3]
Let p be a prime and Bp(x) be the polynomial

∑p−1
j=0 xi over the rational field Q.

It follows from Problem 7.8 that the ring of residues Kp = Q[ω]/Bp(ω) is a field,
which is called the pth cyclotomic extension of Q, and [Kp : Q] = p−1. The element
ω ∈ Kp, being a root of Bp(x), is a root of order p of unity in the complex field C.

Notes 241

Fix a primitive element g in GF(p). It can be shown that the mapping ϕ :
Kp → Kp, which is defined by

ϕ
(∑p−2

i=0 aiω
i
)

=
∑p−2

i=0 aiω
ig ,

is an automorphism of Kp (note that raising ω to the power ig is well-defined,
since the multiplicative order of ω in C is equal to the modulus p). In fact, ϕ is a
generator of the automorphism group {ϕ�}p−2

�=0 of Kp, where

ϕ�
(∑p−2

i=0 aiω
i
)

=
∑p−2

i=0 aiω
ig�

, � ≥ 0 .

The terms conjugacy class and minimal polynomial can be defined also for
elements of Kp, with the automorphism x �→ ϕ(x) playing the same role as the
Frobenius mapping x�→ xq does for GF(qn). Specifically, the conjugacy class (with
respect to Q) of an element α ∈ Kp is defined by

Cα =
{
α, ϕ(α), ϕ2(α), . . . , ϕm−1(α)

}
,

where m = mα is the smallest positive integer such that ϕm(α) = α. The minimal
polynomial (with respect to Q) of α is defined by Mα(x) =

∏
γ∈Cα

(x − γ), and
this polynomial is a monic irreducible polynomial over Q whose degree, mα, divides
p−1.

[Sections 7.4 and 7.5]
An extensive treatment of M -sequences (which are defined in Problem 7.12)—and
sequences in general—can be found in the book by Golomb [152]. The polynomials
in Problem 7.11 are mentioned by Golomb in [152, p. 96].

For more on the linear-recurring properties of Legendre sequences (Prob-
lem 7.16), see Ding et al. [105], Kim and Song [213], and No et al. [272]. It is
still an open problem whether there exist infinitely many primes p such that either
2 is primitive in GF(p) (in which case the polynomial Bp(x) in Problem 7.15 is
irreducible over GF(2)) or 2 has multiplicative order 1

2 (p−1) in GF(p) (which is the
condition assumed in Problem 7.16).

Chapter 8

Cyclic Codes

Cyclic codes form a class of linear codes that have two major advantages:
the codes in this class can be encoded by simple hardware circuits, and
their structure lends itself to a more extensive analysis of their parameters,
compared to general linear codes. Conventional Reed–Solomon codes and
BCH codes are prominent examples of cyclic codes; we will revisit BCH
codes in this chapter, now reviewing them through the lens of cyclic codes.

With each cyclic code we associate two polynomials, which are referred
to as the generator polynomial and the check polynomial. For the analysis
of the parameters of cyclic codes, we will examine the set of roots of the
generator polynomial in its splitting field. In particular, we obtain a lower
bound on the minimum distance by looking for the largest possible subset
of roots that form a sequence of consecutive powers of some element whose
multiplicative order equals the code length.

8.1 Definition

A linear [n, k] code C over a field F is called cyclic if every cyclic shift of a
codeword in C is also a codeword; namely,

(c0 c1 . . . cn−1) ∈ C =⇒ (cn−1 c0 . . . cn−2) ∈ C
(in the context of cyclic codes, it will be convenient to use an indexing
convention whereby the first entry in a word is indexed by 0).

Let a(x) and b(x) be polynomials in F [x] such that deg a(x) = m ≥ 0. We
denote by b(x) MOD a(x) the remainder in Fm[x] obtained when dividing b(x)
by a(x) (as an operation on polynomials, MOD will have the same precedence
as multiplication and division).

Hereafter in this chapter, we will commonly use polynomial notation for
words, by associating a word c = (c0 c1 . . . cn−1) in Fn with a polynomial

c(x) = c0 + c1x + . . . + cn−1x
n−1

242

8.1. Definition 243

in Fn[x]. In this notation, the cyclic shift of c(x) is given by

cn−1 + c0x + . . . + cn−2x
n−1 = x · c(x)− cn−1 · (xn − 1)

= x · c(x) MOD (xn − 1) ,

and a linear code C is cyclic if and only if

c(x) ∈ C =⇒ x · c(x) MOD (xn − 1) ∈ C .

It follows that when c(x) is a codeword in a cyclic code, so are the words
xi · c(x) MOD (xn − 1) for every i ≥ 0. By linearity we thus conclude that in
a cyclic code C,

c(x) ∈ C =⇒
∑

i

uix
ic(x) MOD (xn − 1) ∈ C

for every (finitely many) u0, u1, u2, . . . in F ; equivalently,

c(x) ∈ C =⇒ u(x)c(x) MOD (xn − 1) ∈ C (8.1)

for every u(x) ∈ F [x]. Hence, C is an ideal in the ring F [x]/(xn−1) (see the
Appendix).

Example 8.1 The parity code and the repetition code are cyclic.

Example 8.2 We show that conventional RS codes over F = GF(q) are
cyclic. Let n be a positive integer dividing q−1 and let α be an element
of multiplicative order n in F . Also, let b and d be integers such that
0 < d ≤ n. These parameters define an [n, k=n−d+1, d] RS code CRS over
F , which consists of all polynomials c(x) ∈ Fn[x] such that

c(α�) = 0 for � = b, b+1, . . . , b+d−2

(see Equation (5.4)).
Let c(x) = c0 + c1x + . . . + cn−1x

n−1 be a codeword in CRS. Its cyclic
shift is given by

c̃(x) = x · c(x) MOD (xn − 1) = x · c(x)− cn−1 · (xn − 1) ,

and when we substitute α� in c̃(x) we obtain

c̃(α�) = α� · c(α�)− cn−1 · ((α�)n − 1) = α� · c(α�) .

Hence,
c̃(α�) = 0 for � = b, b+1, . . . , b+d−2 ,

thus implying that c̃(x) ∈ CRS.

244 8. Cyclic Codes

Example 8.3 Recall from Section 5.6 that a BCH code over a field F
consists of the codewords over F of an RS code over an extension field of F .
Since RS codes are cyclic, so are BCH codes.

Example 8.4 We find sufficient conditions for having a cyclic Hamming
code over F = GF(q). Given an integer m > 1, let n = (qm− 1)/(q− 1) and
let α be an element in GF(qm) with multiplicative order n. Consider a BCH
code CBCH of length n over F with an m × n parity-check matrix obtained
by representing each entry in

(1 α α2 . . . αn−1)

as a column vector in Fm, according to some basis of GF(qm) over F . To
have minimum distance at least 3, we require that every two columns in the
resulting parity-check matrix be linearly independent over F . Equivalently,
we require that for every 0 ≤ i < j ≤ n−1 and every u ∈ F ,

αj �= u · αi .

This, in turn, holds if and only if

α� �∈ F for � = 1, 2, . . . , n−1 .

Now, recall that α� ∈ F if and only if (α�)q−1 = 1, and the latter equality
holds if and only if the multiplicative order n of α divides �(q−1). We thus
conclude that CBCH has minimum distance at least 3 if and only if

n does not divide �(q−1) for � = 1, 2, . . . , n−1 ,

and this happens if and only if

gcd(n, q−1) = 1 .

So, the latter condition guarantees that CBCH is a linear [n, k≥n−m, d≥3]
code over GF(q), and we can recognize this code as the [n, k=n−m, d=3]
Hamming code.

8.2 Generator polynomial and check polynomial

In this section, we introduce two polynomials that can be associated with
a given cyclic code. The definition of the first polynomial is based on the
following property of cyclic codes.

Proposition 8.1 Let C be a cyclic [n, k] code over F with k > 0. Then
there is a unique monic polynomial g(x) such that for every c(x) ∈ Fn[x],

c(x) ∈ C ⇐⇒ g(x) | c(x) .

8.2. Generator polynomial and check polynomial 245

Proof. First, from the requirements on g(x) it follows that if g(x) exists
then it must be a codeword of C (since obviously g(x) | g(x)) and it is unique
(since it divides all other monic codewords in C).

Now, select g(x) to be a monic nonzero codeword with a smallest degree
in C. For every u(x) ∈ F [x] we have u(x)g(x) MOD (xn − 1) ∈ C. In
particular, for every u(x) ∈ Fn−deg g[x] we have u(x)g(x) ∈ C. Therefore, all
the polynomial multiples of g(x) in Fn[x] are codewords of C.

Conversely, let c(x) ∈ C and write c(x) = u(x)g(x) + r(x) where deg r <
deg g. Since both c(x) and u(x)g(x) are in C then, by linearity, so is r(x) =
c(x) − u(x)g(x). From the minimality of deg g we get that r(x) = 0, i.e.,
c(x) is divisible by g(x).

The polynomial g(x) in Proposition 8.1 is called the generator polynomial
of C. (We remark that the trivial case k = 0 was excluded from Proposi-
tion 8.1. The generator polynomial can be formally defined in this case as
xn − 1.)

It follows from Proposition 8.1 that a cyclic [n, k] code C over F can be
written as

C = {u(x)g(x) : u(x) ∈ Fn−deg g[x] } , (8.2)

where g(x) is the generator polynomial of C. This also implies that

deg g = n− k .

Writing g(x) = g0 + g1x + . . . + gn−kx
n−k (and assuming that k > 0), we

obtain from (8.2) the following k × n generator matrix of the code C:

G =

⎛⎜⎜⎜⎝
g0 g1 . . . gn−k

g0 g1 . . . gn−k 0
0 · · · . . .

g0 g1 . . . gn−k

⎞⎟⎟⎟⎠ . (8.3)

We have seen Equations (8.2) and (8.3) already in Sections 5.2 and 5.3,
for the special case of RS codes: using the notation of Example 8.2, the
generator polynomial of CRS is given by

g(x) = (x− αb)(x− αb+1) · · · (x− αb+d−2) .

In fact, cyclic codes can be encoded using the same multiplication and re-
maindering circuits as shown in Figures 5.1 and 5.2. Such encoding circuits
lend themselves to simple hardware implementations.

The next proposition provides the basis for the definition of a second
polynomial that we associate with a given cyclic code.

246 8. Cyclic Codes

Proposition 8.2 Let g(x) be the generator polynomial of a cyclic [n, k]
code over F . Then

g(x) | xn − 1 .

Proof. Write xn − 1 = h(x)g(x) + r(x) where deg r < deg g. We have

r(x) = −h(x)g(x) MOD (xn − 1)

and, so, from the property (8.1) of cyclic codes it follows that r(x) ∈ C.
This means that r(x) is zero, since no other codeword in C can have degree
smaller than deg g.

We can also state a converse to Proposition 8.2: if g(x) is a polynomial
over F that divides xn− 1, then the set (8.2) is a cyclic code (Problem 8.1).

Let C be a cyclic [n, k] code with a generator polynomial g(x). The
check polynomial of C, denoted as h(x), is the monic polynomial of degree k
obtained by

h(x) =
xn − 1
g(x)

.

Proposition 8.3 Let C be a cyclic [n, k] code over F with a check poly-
nomial h(x) = h0 + h1x + . . . + hkx

k. Then the following (n−k)× n matrix

H =

⎛⎜⎜⎜⎝
hk hk−1 . . . h0

hk hk−1 . . . h0 0
0 · · · . . .

hk hk−1 . . . h0

⎞⎟⎟⎟⎠
is a parity-check matrix of C.

Proof. First, observe that rank(H) = n−k. Next, let G be obtained
by (8.3) from the generator polynomial g(x) of C; we verify that GHT = 0.
For every i = 0, 1, . . . , k−1 and � = 0, 1 . . . , n−k−1, the scalar product of
row i in G and row � in H is given by

n−1∑
j=0

gj−ihk+�−j , (8.4)

where gj = 0 for j �∈ {0, 1, . . . , n−k} and hj = 0 for j �∈ {0, 1, . . . , k}. The
expression in (8.4) is the coefficient of xk+�−i in the product g(x)h(x) =
xn − 1. Now, for the range of values of i and � we have

1 ≤ k+�−i ≤ n−1

and, so, the respective coefficients in g(x)h(x) are zero.

The following property immediately follows from (8.3) and Proposi-
tion 8.3.

8.3. Roots of a cyclic code 247

Corollary 8.4 Let C be a cyclic [n, k] code over F and let h(x) =∑k
j=0 hjx

j be the check polynomial of C. Then the dual code of C is a cyclic
[n, n−k] code over F whose generator polynomial is

g⊥(x) =
1
h0

k∑
j=0

hk−jx
j =

xkh(x−1)
h(0)

.

Example 8.5 Let C be a cyclic code of length 7 over F = GF(2) with a
generator polynomial g(x) = x3 + x + 1. The check polynomial is given by

h(x) =
x7 − 1

x3 + x + 1
= x4 + x2 + x + 1 ,

and the respective generator and parity-check matrices are given by

G =

⎛⎜⎜⎝
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

⎞⎟⎟⎠ and H =

⎛⎝ 1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎞⎠ .

The parity-check matrix H indicates that C is a [7, 4, 3] Hamming code.

8.3 Roots of a cyclic code

Let a(x) be a polynomial over F = GF(q) such that gcd(a(x), x) = 1. Recall
from Problem 6.9 and Section 7.4 that the exponent of a(x), denoted by
exp a(x), is the smallest positive integer e such that

a(x) | xe − 1 .

The exponent of a(x) equals the multiplicative order of x in the ring
F [x]/a(x); as such, it satisfies the following property.

Proposition 8.5 Let a(x) be a polynomial over F = GF(q) such that
gcd(a(x), x) = 1. Then a(x) |x� − 1 if and only if exp a(x) | �.

Let C be a cyclic [n, k] code over F = GF(q) and let g(x) be the generator
polynomial of C. It follows from Proposition 8.2 that g(x) |xn − 1 and, so,
gcd(g(x), x) = 1. By Proposition 8.5 we have

exp g(x) | n .

Suppose first that exp g(x) < n. In this case, the word xexp g(x) − 1 is a
codeword in C, which means that the minimum distance of C is at most 2.

248 8. Cyclic Codes

Hence, we will be mainly interested in the case where exp g(x) = n. In
addition, we will assume in this section that

gcd(n, q) = 1 .

This, in turn, implies that gcd(exp g(x), q) = 1.
The next proposition, which generalizes Proposition 7.19, will be used in

the sequel to obtain some properties of the roots of generator polynomials.

Proposition 8.6 Let a(x) be a polynomial over F = GF(q) such that
gcd(a(x), x) = 1 and let e = exp a(x) be such that gcd(e, q) = 1. Then the
following conditions hold:

(i) The roots of a(x) in any extension field of F are simple.

(ii) The splitting field of a(x) over F is GF(qm), where m is the smallest
positive integer such that e | qm−1.

Proof. From Proposition 7.19 we get that all the roots of xe − 1 in any
extension field of F are simple, and the same must therefore hold for the
roots of the divisor a(x) of xe − 1. This proves part (i).

Turning to part (ii), a(x) has deg a(x) (simple) roots in GF(qm) if and
only if a(x) |xqm − x, or, equivalently, a(x) |xqm−1 − 1. By Proposition 8.5,
the latter condition holds if and only if e | qm−1.

Let C be a cyclic [n, k] code over F = GF(q). The roots of C are the
roots of its generator polynomial g(x) in the splitting field Φ = GF(qm) of
g(x) over F .

If gcd(n, q) = 1 then, by Proposition 8.6, g(x) has n−k distinct roots
β1, β2 . . . , βn−k in Φ and

g(x) =
n−k∏
�=1

(x− β�) .

Now, an element in Φ is a root of g(x) if and only if so are all its conjugates
(with respect to F). Therefore, we can partition the set of roots of C into
distinct conjugacy classes

{β1, β2, . . . , βn−k} = Cγ1 ∪ Cγ2 ∪ . . . ∪ Cγt ,

where Cγi is a conjugacy class that contains (and is represented by) the root
γi of C. Hence,

g(x) =
t∏

i=1

Mγi(x) ,

8.3. Roots of a cyclic code 249

where Mγi(x) is the minimal polynomial (with respect to F) of each element
in Cγi . The extension degree m of Φ and the number of conjugacy classes t
can be related to n and k by

n− k = deg g(x) =
t∑

i=1

deg Mγi(x) ≤ tm .

Observe that for every c(x) ∈ Fn[x],

c(x) ∈ C ⇐⇒ Mγi(x) | c(x) for i = 1, 2, . . . , t ;

equivalently,

c(x) ∈ C ⇐⇒ c(γi) = 0 for i = 1, 2, . . . , t .

Thus, we can obtain a tm×n parity-check matrix of C by representing each
entry in the matrix ⎛⎜⎜⎜⎝

1 γ1 γ2
1 . . . γn−1

1

1 γ2 γ2
2 . . . γn−1

2
...

...
...

...
...

1 γt γ2
t . . . γn−1

t

⎞⎟⎟⎟⎠
as a column vector in Fm, according to some basis of Φ over F .

Example 8.6 Let C be a cyclic code of length 7 over F = GF(2) with
a generator polynomial g(x) = x4 + x3 + x2 + 1. The polynomial g(x)
factors over F into g(x) = (x − 1)(x3 + x + 1). From the factorization of
x8 − x (= x(x7 − 1)) over F , as seen in Example 7.4, we get that

x7 − 1 = (x− 1)(x3 + x + 1)(x3 + x2 + 1) ,

namely, g(x) divides x7 − 1. Therefore, exp g(x) | 7, which means that
exp g(x) actually equals 7. The splitting field of g(x) over F is Φ = GF(23),
since 3 is the smallest positive integer m such that 7 | 2m−1.

Denote by α a root of x3 + x + 1 in GF(23) (in which case Mα(x) =
x3 + x + 1). The roots of C, partitioned into conjugacy classes, are given by

{1} ∪ {α, α2, α4} .

A parity-check matrix (over F) of C can be obtained by representing each
entry in the matrix (

1 1 1 1 1 1 1
1 α α2 α3 α4 α5 α6

)

250 8. Cyclic Codes

as a column vector in F 3. The elements of the first row (which are all
represented by the same nonzero vector in F 3) will contribute only 1 to the
rank of the parity-check matrix of C. So, that matrix will have rank at most
4; in fact, since n−k = deg g(x) = 4, the rank will be exactly 4. The parity-
check matrix obtained when representing GF(23) by F [ξ]/(ξ3 + ξ + 1) and
taking α = ξ is ⎛⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and the two all-zero rows can obviously be deleted.
The generator polynomial g(x) can be obtained by reversing the order of

coefficients of the check polynomial in Example 8.5. Hence, by Corollary 8.4,
the code in that example is the dual code of C.

8.4 BCH codes as cyclic codes

We have established in Example 8.3 that BCH codes are cyclic, so now we
can analyze them as such. Let F = GF(q) and let n be a positive integer such
that gcd(n, q) = 1. Let Φ = GF(qm) be the splitting field of xn − 1 over F ;
by Proposition 8.6 (or Proposition 7.19), m is the smallest positive integer
such that n | qm−1. Also, let α be an element of multiplicative order n in Φ
and let b and D be integers where 0 < D ≤ n. These parameters define a
BCH code CBCH over F , which consists of all polynomials c(x) ∈ Fn[x] such
that

c(α�) = 0 for � = b, b+1, . . . , b+D−2 .

Equivalently, CBCH is a cyclic [n, k] code over F whose set of roots consists
of the D−1 elements of the consecutive root sequence

αb, αb+1, . . . , αb+D−2 (8.5)

and their conjugates (see Section 5.6).
The elements in the consecutive root sequence (8.5) are the roots of the

underlying [n, n−D+1, D] RS code CRS over Φ, from which the BCH code
CBCH was originally derived in Section 5.6 as the intersection CRS ∩ Fn.
The latter characterization of CBCH also implies that when k > 0, the (true)
minimum distance of CBCH is bounded from below by the designed minimum
distance D (which is also the true minimum distance of CRS). On the other
hand, due to the closure under conjugacy, there may be roots of CBCH that

8.4. BCH codes as cyclic codes 251

do not belong to the sequence (8.5); such roots will be referred to as excess
roots of the BCH code CBCH.

The generator polynomial of CBCH is given by

g(x) =
∏
C

α�

Mα�(x) ,

where the product is taken over the distinct conjugacy classes that contain
the consecutive root sequence of CBCH. Therefore,

n− k = deg g(x) =
∑
C

α�

deg Mα�(x) .

Now, while the designed minimum distance D of CBCH is determined only by
the number of elements in the consecutive root sequence (8.5), the dimension
k depends also on the number of excess roots: the fewer we have of the latter,
the larger k becomes. Specifically, the number of elements in (8.5) is D−1,
and the number of excess roots equals

deg g(x)− (D−1) = (n−D+1)− k .

Since (the set of elements in) the consecutive root sequence of CBCH is
contained in no more than D−1 distinct conjugacy classes, we have

n− k ≤ (D−1)m .

For the special case q = 2, b = 1, and D = 2t + 1 (i.e., binary narrow-sense
BCH codes with an odd designed minimum distance), the consecutive root
sequence consists of elements that belong to the t conjugacy classes

Cα ∪ Cα3 ∪ . . . ∪ CαD−2

and, so,

n− k ≤ tm =
(D−1)m

2
. (8.6)

Similarly, for q = 2, b = 0, and D = 2t (i.e., binary normalized BCH codes
with an even designed minimum distance), the consecutive root sequence
comprises elements which are all in

C1 ∪ Cα ∪ Cα3 ∪ . . . ∪ CαD−3 ,

where deg M1(x) = |C1| = 1. Hence here

n− k ≤ 1 + (t−1)m = 1 +
(D

2
− 1

)
m . (8.7)

The bounds (8.6) and (8.7) are familiar from Examples 5.5 and 5.6, where
we obtained them in the more general context of binary alternant codes.

252 8. Cyclic Codes

Example 8.7 We construct a BCH code CBCH of length n = 15 over
F = GF(2) with b = 1 and D = 7. Let α be an element of GF(24) whose
minimal polynomial is

Mα(x) = x4 + x + 1 .

This polynomial is primitive over F ; so, α is primitive in GF(24), namely, it
has multiplicative order n = 15. The (designed) consecutive root sequence
of CBCH is

α, α2, α3, α4, α5, α6 ,

which means that the set of roots of CBCH consists of the union of the fol-
lowing conjugacy classes:

Cα = {α, α2, α4, α8} , Cα3 = {α3, α6, α12, α9} , Cα5 = {α5, α10}

(the underlined elements are part of the consecutive root sequence, and there
are four excess roots, namely, α8, α9, α10, and α12). The four elements in Cα3

are non-primitive in GF(24) and, therefore, Mα3(x) is given by the (only)
non-primitive irreducible polynomial of degree 4 over F :

Mα3(x) = x4 + x3 + x2 + x + 1 .

Similarly,
Mα5(x) = x2 + x + 1 ,

which is the only irreducible polynomial of degree |Cα5 | = 2 over F .
Thus, the generator polynomial of CBCH is given by

g(x) = Mα(x)Mα3(x)Mα5(x)
= (x4 + x + 1)(x4 + x3 + x2 + x + 1)(x2 + x + 1)
= x10 + x8 + x5 + x4 + x2 + x + 1 ;

that is, the Hamming weight of g(x) is 7 and n− k = deg g(x) = 10 (notice
that in this case, the bound (8.6) is not tight). We conclude that the BCH
code CBCH is a cyclic [15, 5, 7] code.

In comparison, by the sphere-packing bound, every linear [n=15, k, 7]
code over F must satisfy

2n−k ≥
(

15
0

)
+
(

15
1

)
+
(

15
2

)
+
(

15
3

)
= 576 ,

yielding the lower bound n− k ≥ 10; this bound is attained by CBCH.
A parity-check matrix of CBCH can be obtained by representing each

entry in the 3× 15 matrix

H =

⎛⎝ 1 α α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14

1 α3 α6 α9 α12 1 α3 α6 α9 α12 1 α3 α6 α9 α12

1 α5 α10 1 α5 α10 1 α5 α10 1 α5 α10 1 α5 α10

⎞⎠

8.5. The BCH bound 253

as a column vector in F 4, resulting in a 12× 15 matrix over F whose rank
is n − k = 10. Each of the first two rows of H contributes (at most) 4 to
that rank, while the third row contributes only 2: the elements in this row
all belong to the subfield GF(22) and so, their representations as column
vectors in F 4 span a linear space of dimension (at most) 2.

The generator polynomial in Example 8.7 is also a minimum-weight
nonzero codeword of the code. While this happens in many cyclic codes,
there are codes—including BCH codes—where it does not (but see Prob-
lem 8.5).

8.5 The BCH bound

The following result provides a lower bound on the minimum distance of
cyclic codes.

Proposition 8.7 (The BCH bound) Let C be a cyclic [n, k, d] code over
F = GF(q) where gcd(n, q) = 1. Let α be an element of multiplicative order
n in the splitting field of xn−1 over F and suppose that αb, αb+1, . . . , αb+D−2

belong to the set of roots of C for some integers b and D ≥ 2. Then d ≥ D.

Proof. The result follows by observing that C is a subset of the BCH code
CBCH over F defined by the consecutive root sequence αb, αb+1, . . . , αb+D−2;
the minimum distance of CBCH, in turn, is at least D.

Example 8.8 Let C be a cyclic [2m−1, 2m−1−m, d] code over F =
GF(2) whose generator polynomial is a primitive polynomial P (x) of degree
m over F (a special case of this construction, for m = 3, was presented in
Example 8.5). The polynomial P (x) is a minimal polynomial of an element
α of multiplicative order 2m−1 in the splitting field, GF(2m), of x2m−1 − 1
over F . The roots of C form the conjugacy class

{α, α2, α4, . . . , α2m−1} ,

and the underlined elements allow us to apply the BCH bound with b = 1
and D = 3, thereby yielding the lower bound d ≥ 3. In fact, C is a Hamming
code and d is exactly 3.

Example 8.9 Let F = GF(q) and n = (qm − 1)/(q − 1), where m > 1.
Clearly, gcd(n, q) = 1 and the splitting field of xn−1 over F is Φ = GF(qm).
We further assume here that gcd(n, q−1) = 1.

254 8. Cyclic Codes

Consider a cyclic code C of length n over F whose generator polynomial,
g(x), is a minimal polynomial of an element β ∈ GF(qm) whose multiplica-
tive order is n. The set of roots of g(x) is given by

Cβ = {β, βq, βq2
, . . . , βqm−1} .

A direct application of the BCH bound to this set (with b = 1 and D = 2)
would yield a lower bound of 2 on the minimum distance d of C. Yet, this
lower bound can be improved if we express the roots of g(x) as powers of
the element α = βq−1; note that by Problem A.9, the multiplicative order
of α is also n:

O(α) =
O(β)

gcd(O(β), q−1)
=

n

gcd(n, q−1)
= n .

Specifically, let s be the multiplicative inverse of q−1 in the ring of integer
residues modulo n; such an inverse indeed exists since gcd(n, q−1) = 1.
Then,

β = (βq−1)s = αs

and
βq = βq−1 · β = α · αs = αs+1 .

We now apply the BCH bound with b = s and D = 3 to yield d ≥ 3. The
code C coincides with the cyclic Hamming code in Example 8.4 (see also
Problem 8.19).

Example 8.10 Let P (x) be a primitive polynomial of degree m ≥ 3
over F = GF(2) and let P̂ (x) be a polynomial of degree m over F ob-
tained from P (x) by reversing the order of coefficients of P (x); namely,
P̂ (x) = xmP (x−1). It is easy to see that P̂ (x) is also primitive: if P (x) is
a minimal polynomial of a (primitive) element α ∈ GF(2m), then P̂ (x) is
a minimal polynomial of the (primitive) element α−1 (see Problem 7.3).
Note that when m ≥ 3, the element α−1 is not in the conjugacy class
Cα = {α, α2, . . . , α2m−1}; this means that P (x) and P̂ (x) are distinct poly-
nomials and, in particular, the product P (x)(x + 1)P̂ (x) divides x2m−1 − 1.

Let C be a cyclic [2m−1, k, d] code over F = GF(2) whose generator
polynomial is g(x) = P (x)(x + 1)P̂ (x). Clearly, deg g(x) = 2m + 1 and, so,
k = 2m − 2m − 2 (which is positive when m > 3). The set of roots of C is
given by

Cα ∪ {1} ∪ Cα−1 = {α, α2, . . . , α2m−1} ∪ {1} ∪ {α−1, α−2, . . . , α−2m−1} .

Applying the BCH bound with b = −2 and D = 6 yields the lower bound
d ≥ 6. Hence, C is a cyclic [2m−1, 2m−2m−2,≥6] code over F for every
m > 3.

8.5. The BCH bound 255

Example 8.11 Let C be a cyclic [9, 2, d] code over F = GF(2) with the
generator polynomial

g(x) = x7 + x6 + x4 + x3 + x + 1 = (x + 1)(x6 + x3 + 1)

(it is easy to verify that g(x) divides x9 − 1 and, therefore, such a code C
indeed exists). Next, we find the value of d.

By Proposition 8.6, the splitting field of x9 − 1 over F is GF(26). The
roots of x9 − 1 in this field are the powers of an element α of multiplicative
order 9 in GF(26). Those powers belong to three conjugacy classes as follows:

C1 = {1}, Cα = {α, α2, α4, α8, α7, α5}, Cα3 = {α3, α6} .

The elements in Cα3 have multiplicative order 3, which means that these
elements belong to GF(22) and, as such, their minimal polynomial is x2 +
x + 1. Obviously, the minimal polynomial of the element in C1 is x − 1. It
follows that the minimal polynomial of the elements in Cα is given by

x9 − 1
(x− 1)(x2 + x + 1)

=
x9 − 1
x3 − 1

= x6 + x3 + 1 .

We conclude that the set of roots of C is C1∪Cα. In particular, the elements
α7, α8, 1, α, α2 are roots of C; thus, by the BCH bound we obtain d ≥ 6. In
fact, we have equality since the Hamming weight of g(x) is 6.

Example 8.12 The binary Golay code, which was defined in the notes
on Section 4.2, is a cyclic [23, 12, 7] code over F = GF(2). We next check
how the BCH bound performs on this code. By Proposition 8.6, the splitting
field of x23−1 over F is GF(211). Let α be an element of multiplicative order
23 in this field. The conjugacy class (with respect to F) of α is given by

Cα = {α, α2, α4, α8, α16, α9, α18, α13, α3, α6, α12} (8.8)

and the remaining powers of α belong to C1 = {1} and

Cα−1 = {α5, α10, α20, α17, α11, α22, α21, α19, α15, α7, α14} (8.9)

(here α−1 = α22). Hence, the irreducible factorization of x23 − 1 over F is
given by

x23 − 1 = Mα(x)(x + 1)Mα−1(x) ,

where deg Mα(x) = deg Mα−1(x) = 11; in fact, Mα−1(x) is obtained by
reversing the order of coefficients of Mα(x) (Problem 7.3). It can be verified
that the factors of x23 − 1 of degree 11 are

x11 + x10 + x6 + x5 + x4 + x2 + 1 and x11 + x9 + x7 + x6 + x5 + x + 1 .

256 8. Cyclic Codes

The generator polynomial g(x) of the binary Golay code, being of degree
23 − 12 = 11 and dividing x23 − 1, must therefore equal either Mα(x) or
Mα−1(x). In either case, the BCH bound yields a lower bound of 5 on
the minimum distance (the underlined elements in (8.8) or in (8.9) form
consecutive root sequences of length 4). However, the true minimum distance
of the binary Golay code is 7, which makes it a perfect code.

Example 8.13 We analyze the ternary Golay code, which is a cyclic
[11, 6, 5] code over F = GF(3) (also mentioned in the notes on Section 4.2).
Let α be an element of multiplicative order 11 in the field GF(35), which
is the splitting field of x11 − 1 over F . The powers of α belong to three
conjugacy classes (with respect to F), namely,

Cα = {α, α3, α9, α5, α4} , C1 = {1} , and Cα−1 = {α2, α6, α7, α10, α8} .

The irreducible factorization of x11 − 1 over F is given by

x11 − 1 = Mα(x)(x− 1)Mα−1(x)
= (x5 + x4 − x3 + x2 − 1)(x− 1)(x5 − x3 + x2 − x− 1) ,

and the generator polynomial of the code is either Mα(x) or Mα−1(x). While
the BCH bound yields a lower bound of 4 on the minimum distance in this
case, the true minimum distance turns out to be 5. Thus, the ternary Golay
code is a perfect code.

Problems

[Section 8.2]
Problem 8.1 Show that if g(x) is a polynomial over F that divides xn − 1, then
the set

C = {u(x)g(x) : u(x) ∈ Fn−deg g[x] }
is a cyclic code over F (what is the generator polynomial of C?).

Problem 8.2 Let C be a cyclic [n, k>0] code over F . Show that every set of k
consecutive columns in every generator matrix of C is linearly independent. Deduce
that C has a systematic generator matrix.

Problem 8.3 Let C1 and C2 be cyclic codes of length n over F and let g1(x) and
g2(x) be their generator polynomials, respectively. Show that each of the following
sets is a cyclic code of length n over F and find its generator polynomial.

1. C1 ∩ C2.
2. C1 + C2 = { c1 + c2 : c1 ∈ C1 and c2 ∈ C2 }.
3. { c(x) ∈ Fn[x] : c(x) ≡ g2(x)c1(x) (mod xn − 1) for some c1(x) ∈ C1 }.

Hint: In part 3, assume first that gcd(g1(x), g2(x)) = 1.

Problems 257

Problem 8.4 Let C be a cyclic [n, k] code over F .

1. Find the largest integer t such that every burst of length up to t that occurs
in a codeword of C can be detected.
(Recall from Problem 2.21 that a burst of length � is the event of having
errors in a codeword such that the locations i and j of the first and last
errors, respectively, satisfy j−i = �−1.)

2. What is the respective value of t so that every burst erasure of length up to
t can be recovered?
(A burst erasure of length � is the event where erasures occur in � consecutive
locations within a codeword.)

Problem 8.5 Let C be an [n, k, d=n−k+1] RS code over F = GF(q) with a gen-
erator polynomial

g(x) = (x− αb)(x− αb+1) · · · (x− αb+d−2) ,

where α is an element of multiplicative order n in F and b is an integer.

1. Show that the coefficients of 1, x, x2, . . . , xn−k in g(x) are all nonzero.

Hint: Do not expand the expression for g(x).

2. Assuming that d > 1, show that the dual code of C is an [n, d−1, k+1] RS
code over F with a generator polynomial

g⊥(x) = (x− α1−b)(x− α2−b) · · · (x− αk−b) .

Problem 8.6 (Cyclic codes of length q over GF(q)) Let F = GF(q) and let C be a
cyclic [q, k] code over F . Denote by p the characteristic of F .

1. Show that the generator polynomial of C is (x − 1)q−k (therefore, C is the
unique cyclic [q, k] code over F).

2. Show that for i = 0, 1, . . . , p−1, the polynomial

ci(x) =
q−1∑
j=0

jixj

(where 00 = 1) is divisible by (x− 1)q−i−1.

Hint: Verify that for i > 0, the polynomial ci(x) is related to the formal
derivative of ci−1(x) by

ci(x) = x · c′i−1(x) .

Then apply induction.

3. Show that when q = p, a generator matrix of C is given by

G =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 . . . 1
0 1 2 . . . p−1
0 12 22 . . . (p−1)2
...

...
...

...
...

0 1k−1 2k−1 . . . (p−1)k−1

⎞⎟⎟⎟⎟⎟⎠
(namely, C is a singly-extended GRS code).

258 8. Cyclic Codes

4. Show that when q �= p, the code C is MDS if and only if k ∈ {1, q−1, q}.
Hint: Distinguish between two ranges of k. Assume first that q/p ≤ k ≤
q−(q/p) and show that in this case, the code C contains the codeword (xq/p−
1)p−1 (what is the Hamming weight of this codeword?). Then assume that
k < q/p or k > q− (q/p) and show that either C or C⊥ contains the codeword
xq/p − 1.

[Section 8.3]
Problem 8.7 Let C1 be a cyclic [15, 15−r] code over F = GF(2) and let C2 be
a cyclic [17, 17−r] code over F (with the same redundancy as C1). The following
parts will lead to the values of r for which such code pairs (C1, C2) indeed exist.

1. Find the splitting field of the polynomial x17 − 1 over F .

2. Let α be a root of x17−1 other than 1 in the splitting field of x17−1 over F .
Find the conjugates of α and determine the degree of the minimal polynomial
of α with respect to F .

3. Find the degrees of the irreducible factors of x17 − 1 over F and how many
irreducible factors there are of each degree.

4. Show that there exist pairs of cyclic codes (C1, C2) that satisfy the given
specifications when r = 9. What is the number of such pairs?

Hint: The degrees of the irreducible factors of x15− 1 over F can be deduced
from Example 7.4.

5. Find all other values of r for which pairs (C1, C2) exist.

Problem 8.8 Let F be the field GF(22) and C be a cyclic [85, 81, d] code over F .
Denote by g(x) the generator polynomial of C and by Φ the splitting field of g(x)
over F .

1. Show that g(x) is either irreducible over F or is a product of two irreducible
polynomials of degree 2 over F .

2. For each one of the cases in part 1, determine the possible values of the
multiplicative orders of the roots of g(x) in Φ.

3. In which of the cases in part 1 is x5 + 1 a codeword of C?
4. Identify the field Φ in the case where the minimum distance d is 3.

5. Determine the possible values of the multiplicative orders of the roots of g(x)
in Φ in the case where d = 3.

[Section 8.4]
Problem 8.9 Let α be a primitive element in Φ = GF(2m) and let CBCH be a
narrow-sense primitive BCH code (of length n = 2m−1) over F = GF(2) whose
parity-check matrix is obtained by representing each entry in(

1 α α2 . . . αn−1

1 α3 α6 . . . α3(n−1)

)

Problems 259

as a column vector in Fm. For the given code CBCH, let CRS be an [N=n,K,D]
code over Φ that satisfies

CBCH = CRS ∩ FN .

1. Show that α2, α4, and α6 are roots of CBCH.

2. Write a parity-check matrix of CRS, assuming that D = 5 and that α3 is a
root of CRS.

3. Repeat part 2, except that now D = 4 (and α3 is still a root of CRS). Is the
solution unique?

4. Find the largest possible dimension of any RS code CRS over Φ that satisfies
CBCH = CRS ∩ FN .

Problem 8.10 Let α be a primitive element in Φ = GF(2m) and let CBCH be
a normalized primitive BCH code (of length n = 2m−1) over F = GF(2) whose
parity-check matrix is obtained by representing each entry in⎛⎝ 1 1 1 . . . 1

1 α α2 . . . αn−1

1 α3 α6 . . . α3(n−1)

⎞⎠
as a column vector in Fm. Define the codes ĈBCH and C by

ĈBCH = {(c0 c1 . . . cn−2 cn−1) : (cn−1 cn−2 . . . c1 c0) ∈ CBCH}

and
C = CBCH ∩ ĈBCH .

1. Verify that ĈBCH is a BCH code and express its generator polynomial as a
function of the generator polynomial of CBCH.

2. Show that the dimension of C is at least 2m − 4m− 2.

3. Find the exact dimension of C when m = 4, and write the check polynomial
in this case.

4. Find the exact dimension of C when m = 5.

Problem 8.11 Let F and Φ be the finite fields GF(22) and GF(28), respectively.

1. Let α be an element in Φ of multiplicative order 17. Find the size of the
conjugacy class of α with respect to the field F .

2. Find the splitting field of the polynomial x17 − 1 over F .

3. Find the degrees of the irreducible factors of x17 − 1 over F and how many
monic irreducible factors there are of each degree.

4. Show that if g(x) =
∑17−k

i=0 gix
i is a generator polynomial of a cyclic code of

length 17 over F then gi = g17−k−i for i = 0, 1, . . . , 17−k.

Denote by CBCH a BCH code with the largest possible dimension among all BCH
codes of length 17 over F with designed minimum distance 7.

260 8. Cyclic Codes

5. Express the roots of the code CBCH as powers of an element α of multiplicative
order 17 in Φ and find the dimension of CBCH.

6. Let CRS be an RS code of length 17 over Φ with the largest possible dimension
such that CBCH = CRS ∩ F 17. Find the dimension of CRS and compute the
possible sets of roots of CRS (as powers of α).

Problem 8.12 Let CBCH be an [n=qm−1, k, d≥D] primitive BCH code over F =
GF(q) with designed minimum distance D.

1. Show that when CBCH is a narrow-sense BCH code and D ≤ q�m/2	 + 1 then

n− k =
⌈

q−1
q

(D−1)
⌉

m .

Hint: See Problem 7.1.

2. Show that when CBCH is normalized and D ≤ q�m/2	 + 2 then

n− k = 1 +
⌈

q−1
q

(D−2)
⌉

m .

Problem 8.13 The purpose of this problem is to show that shortened binary Reed–
Muller codes are cyclic codes.

Let F = GF(2) and for 0 ≤ r ≤ m, denote by S(m, r) the set of all words in Fm

whose Hamming weight is at most r. Recall from Problem 2.19 that the rth order
Reed–Muller code of length 2m over F , denoted by CRM(m, r), is generated by the
following |S(m, r)| × 2m matrix GRM(m, r) over F : for every e = (e0 e1 . . . em−1)
in S(m, r) and a = (a0 a1 . . . am−1) in Fm, the entry of GRM(m, r) that is indexed
by (e,a) is given by

ae = ae0
0 ae1

1 · · · a
em−1
m−1

(where 00 = 10 = 11 = 1 and 01 = 0). It is also known that (CRM(m, r))⊥ =
CRM(m,m−r−1).

Let ξ be an indeterminate over the extension field Φ = GF(2m), and for every
vector a = (a0 a1 . . . am−1) in Fm associate the polynomial

a(ξ) =
m−1∑
h=0

ahξh

and the integer

ı(a) =
m−1∑
h=0

ah2h .

1. Show that for every s ∈ S(m, r) and a ∈ Fm,

(a(ξ))ı(s) =
(m−1)ı(s)∑

j=0

(∑
e∈S(m,r)

us,e,jae
)

ξj ,

where each us,e,j is an element of F that depends on s, e, and j, but not
on a.

Problems 261

Hint: Writing s = (s0 s1 . . . sm−1), show that

(a(ξ))ı(s) =
∏

h : sh=1

a
(
ξ2h)

,

and then check how the coefficients of the powers of ξ in the right-hand side
depend on a.

2. Let β be a root in Φ of an irreducible polynomial of degree m over F . Show
that for every s ∈ S(m, r) and a ∈ Fm,

(a(β))ı(s) =
m−1∑
j=0

(∑
e∈S(m,r)

u′
s,e,ja

e
)

βj ,

where each u′
s,e,j is an element of F that depends on s, e, and j, but not

on a.

3. Let H be the |S(m, r)| × 2m matrix over Φ whose rows and columns are
indexed by the elements of S(m, r) and Φ, respectively, and

H =
(
γı(s)

)
s∈S(m,r), γ∈Φ

.

Let β be as in part 2 and denote by HF the (m|S(m, r)|)× 2m matrix over F
that is obtained by representing each entry in H as a column vector in Fm,
according to the basis (1 β β2 . . . βm−1) of Φ over F . Show that—up to a
permutation of columns of HF (or H)—the rows of HF are spanned by the
rows of GRM(m, r).

Let H and HF be as in part 3, and let H∗ and H∗
F be obtained from H and HF ,

respectively, by deleting the column that is indexed by the zero element of Φ. Thus,
without loss of generality,

H∗ =
(
αı(s)·j

)
s∈S(m,r), j∈{0,1,...,2m−2}

,

where α is a primitive element in Φ. It follows from part 3 that up to a permutation
of columns, the rows of H∗

F are spanned by the rows of the matrix G∗
RM(m, r), which

is obtained from GRM(m, r) by deleting the column that is indexed by a = 0.

4. Show that H∗
F is a parity-check matrix of a cyclic code of length 2m − 1 over

F whose set of roots is {
αı(s) : s ∈ S(m, r)

}
.

Hint: Show that this set is a union of (whole) conjugacy classes with respect
to F .

5. Let C∗RM(m,m−r−1) be the cyclic code in part 4. Show that a parity-check
matrix of C∗RM(m,m−r−1) can be obtained by permuting the columns of
G∗

RM(m, r); i.e., C∗RM(m,m−r−1) is obtained from CRM(m, m−r−1) by a
permutation of coordinates and shortening.

Hint: Deduce from part 4 that rank(H∗
F) = |S(m, r)| = rank(G∗

RM(m, r)).

262 8. Cyclic Codes

6. Show that C∗RM(m,m−r−1) is a sub-code of a normalized primitive bi-
nary BCH code whose designed minimum distance is 2r. Deduce that
CRM(m,m−r−1) is a sub-code of the respective extended primitive BCH
code.

[Section 8.5]
Problem 8.14 Let α be an element of multiplicative order 9 in Φ = GF(26) and
let CRS be an RS code of length 9 over Φ = GF(26) whose set of roots is {α2, α3, α4}.
Denote by CBCH the BCH code of length 9 over F = GF(23) that is obtained by
the intersection CRS ∩ F 9.

1. What is the dimension and minimum distance of CRS?

2. Find all the roots of CBCH; express those roots as powers of α.

3. Find the dimension of CBCH.

4. Show that CBCH is MDS.

Problem 8.15 (Cyclic codes of length q+1 over GF(q)) Let F = GF(q) and let α
be an element of multiplicative order q+1 in GF(q2). For i = 0, 1, . . . , q, denote by
Mαi(x) the minimal polynomial of αi over F .

1. Show that GF(q2) is the splitting field of the polynomial xq+1 − 1 over F .

2. Show that Mαi(x) = (x− αi)(x− α−i) for every i �∈ {0, (q+1)/2}.
3. Show that when q is odd, there exist cyclic [q+1, k] MDS codes over F for

every odd value of k in the range 1 ≤ k ≤ q.

Hint: Consider the cyclic [q+1, k] code whose generator polynomial is

(q−k)/2∏
i=0

Mαi(x) .

4. Show that when q is even, there exist cyclic [q+1, k] MDS codes over F
for every k ∈ {1, 2, . . . , q+1}. (An example of such a code is presented in
Problem 8.14.)

Problem 8.16 Let Φ be the splitting field of the polynomial x13− 1 over the field
GF(3).

1. Identify the field Φ.

2. Find all the possible values for the dimension of a cyclic code of length 13
over GF(3) and the number of such codes for every given dimension.

Let α be an element of multiplicative order 13 in Φ and let C be a cyclic code with
the largest possible dimension among all cyclic codes of length 13 over GF(3) whose
set of roots contains the elements 1, α, α2, and α4.

3. Find all the roots of C.
4. Find the dimension of C.

Problems 263

5. Using the BCH bound, compute a lower bound on the minimum distance
of C.

6. Using the Griesmer bound from part 2 of Problem 4.4, show that the bound
in part 5 is tight.

Problem 8.17 Let C be the cyclic code of length 15 over F = GF(2) with a
generator polynomial g(x) = (x5 + 1)(x4 + x + 1) (why does such a cyclic code
exist?). Also, let Ĉ be defined by

Ĉ = {(c0 c1 . . . c14 c15) : (c15 c14 . . . c1 c0) ∈ C} .

1. Find the dimension of C.
2. Show that the Hamming weight of g(x) attains the BCH bound on the min-

imum distance of C.
3. Show that the word (1 1 0 1 1 0 1 1 0 1 1 0 1 1 0) is contained in the intersection
C ∩ Ĉ.

4. Find the dimension and minimum distance of C ∩ Ĉ.

Problem 8.18 Let α be a primitive element in Φ = GF(24) and let C(1)
RS be a

primitive RS code over Φ whose set of roots is {α2, α3, α4, α5}. Let Cparity be the
parity code of length 15 over F = GF(22) and define the code C over F by

C = C(1)
RS ∩ Cparity .

1. Show that C is a BCH code over F .

2. Find the set of roots of C in Φ.

3. Using the BCH bound, show that the minimum distance of C is at least 7.

4. Find a primitive RS code C(2)
RS with minimum distance 7 over Φ such that

C = C(2)
RS ∩ F 15.

5. Let H
(1)
RS and H

(2)
RS denote canonical parity-check matrices of C(1)

RS and C(2)
RS ,

respectively. A codeword of C is transmitted through a channel (F, F, Prob)
and a word y = (y0 y1 . . . , y14) that contains at most three errors is received.
The word y is corrected using the following decoding steps:

(i) An element u ∈ F is computed as the sum u =
∑14

j=0 yj .

(ii) A vector v ∈ Φ4 is computed from y by v = H
(1)
RSyT .

(iii) A syndrome polynomial S(x) =
∑5

�=0 S�x
� of y, with respect to H

(2)
RS ,

is computed from u and v.

(iv) A decoder for C(2)
RS for correcting up to three errors is applied to the

syndrome polynomial S(x).

Explain how S(x) can be computed in Step (iii) from u and v (rather than
computing it directly from y).

264 8. Cyclic Codes

Problem 8.19 Let F = GF(q) and n = (qm − 1)/(q − 1), where m > 1, and let C
be a cyclic [n, n−m, d] code over F with a generator polynomial g(x). The purpose
of this problem is to show that d ≥ 3 only if the following three conditions hold:

(i) exp g(x) = n.

(ii) g(x) is irreducible over F .

(iii) gcd(n, q−1) = 1.

(Note that the respective “if” direction was shown in Examples 8.4 and 8.9.) Assume
hereafter in this problem that d ≥ 3. The condition exp g(x) = n then follows
already from the discussion in Section 8.3.

1. Let m1,m2, . . . ,ms be positive integers and let e be the least common mul-
tiplier of the values

qm1−1, qm2−1, . . . , qms−1
(namely, e is the smallest positive integer that is divisible by all of these
values). Show that if s > 1 then e necessarily divides

1
q−1

s∏
i=1

(qmi − 1) .

2. Let m1,m2, . . . ,ms be positive integers. Show that
s∏

i=1

(qmi − 1) ≤ qm1+m2+...+ms − 1 ,

with equality holding if and only if s = 1.

3. Let

g(x) =
s∏

i=1

ai(x)

be the factorization of g(x) into irreducible polynomials over F . Show that
the polynomials ai(x) are all distinct.

4. Let the polynomials ai(x) be as in part 3 and let e be defined as in part 1 for
mi = deg ai. Show that ai(x) |xe − 1 for all 1 ≤ i ≤ s.

5. Deduce from parts 3 and 4 that n | e.
6. Conclude from parts 1, 2, and 5 that s = 1, namely, that g(x) is irreducible.

7. Show that the splitting field of g(x) over F is GF(qm).

8. Let α be a root of g(x) in GF(qm). Show that

α� �∈ F for � = 1, 2, . . . , n−1 .

Hint: The set of roots of g(x) forms one conjugacy class (with respect to F);
consequently, an m× n parity-check matrix of C is obtained by representing
each entry in

(1 α α2 . . . αn−1)
as a column vector in Fm. Argue that every two distinct columns are linearly
independent over F .

9. Based on part 8, show that gcd(n, q−1) = 1.

Notes 265

Notes

[Section 8.2]
Cyclic codes of length q over GF(q) (Problem 8.6) were studied by Berman [40],
Falkner et al. [119], Massey et al. [255], Roth and Seroussi [304], and Zehend-
ner [393].

[Section 8.4]
The discussion in this section concentrated on cyclic codes whose roots are all simple.
However, as Problem 8.6 suggests, one may get interesting cyclic codes by allowing
the roots of the generator polynomial to have multiplicity greater than 1, in which
case the code is called a repeated-root cyclic code; see Castagnoli et al. [76] and van
Lint [234].

The property of Reed–Muller codes that is presented in Problem 8.13 is due
to Kasami et al. [207] and Kolesnik and Mironchikov [218]. For a generalization
to non-binary Reed–Muller codes, see also Assmus and Key [18, Section 5.4] and
Berlekamp [36, Section 15.3].

[Section 8.5]
There are some known generalizations of the BCH bound that improve on the latter:
the Hartmann–Tzeng bound [172] and the Roos bound [296].

It is still unknown whether there exists an infinite family of cyclic codes over
a given field GF(q) such that both their rate and relative minimum distance are
bounded away from zero. On the other hand, for the case of primitive BCH codes
with rate bounded away from zero, it is known that the relative minimum distance
must approach zero as the code length increases: see Berlekamp [35] and Lin and
Weldon [231].

Cyclic codes of length q+1 over GF(q) (Problem 8.15) were studied by Dür [112],
Falkner et al. [119], and Georgiades [145]. See also MacWilliams and Sloane [249,
Section 11.5].

Chapter 9

List Decoding of Reed–Solomon
Codes

In Chapter 6, we introduced an efficient decoder for GRS codes, yet we
assumed that the number of errors does not exceed �(d−1)/2, where d is
the minimum distance of the code. In this chapter, we present a decoding
algorithm for GRS codes, due to Guruswami and Sudan, where this upper
limit is relaxed.

When a decoder attempts to correct more than �(d−1)/2 errors, the
decoding may sometimes not be unique; therefore, we consider here a more
general model of decoding, allowing the decoder to return a list of codewords,
rather than just one codeword. In this more general setting, a decoding is
considered successful if the computed list of codewords contains the trans-
mitted codeword. The (maximum) number of errors that a list decoder can
successfully handle is called the decoding radius of the decoder.

The approach that leads to the Guruswami–Sudan list decoder is quite
different from the GRS decoder which was introduced in Chapter 6. Specifi-
cally, the first decoding step now computes from the received word a certain
bivariate polynomial Q(x, z) over the ground field, F , of the code. Regard-
ing Q(x, z) as a univariate polynomial in the indeterminate z over the ring
F [x], a second decoding step computes the roots of Q(x, z) in F [x]; these
roots are then mapped to codewords which, in turn, form the returned list.
Both steps can be implemented in a time complexity that is polynomially
large in the code length and the list size.

We also present a generalization, due to Koetter and Vardy, of the
Guruswami–Sudan algorithm. The Koetter–Vardy algorithm provides an
improvement especially when used as a decoder for alternant codes.

We end this chapter by presenting a lower bound on the largest decoding
radius of any list decoder for any given code, as a function of the code param-
eters and the size of the returned list. It turns out that for a given length,

266

9.1. List decoding 267

minimum distance, and list size, the lower bound on the decoding radius of
the Koetter–Vardy decoder is, in fact, a lower bound on the largest decoding
radius attainable for every code. Still, for the special case of GRS codes, we
have at hand a list decoder that has a polynomial-time implementation.

9.1 List decoding

Let C be an (n,M) code over an alphabet F and let S = (F, Φ, Prob) be
a channel. Recall that a decoder for C with respect to S is defined as a
mapping D : Φn → C ∪ {“e”}; i.e., the decoder either returns a codeword
or an indicator of error detection. If we rename the latter indicator by the
empty set, we can say that a decoder returns a subset of C of size at most 1.

We next consider a more general family of decoders where the return
value is a set (or “list”) of codewords, and the size of the set can be greater
than 1. Denote by 2C the set of all the subsets of C. Given an (n,M) code
C over F , a channel S = (F, Φ, Prob), and a positive integer �, define a list-�
decoder (of C with respect to S) to be a mapping

D : Φn → 2C ,

where |D(y)| ≤ � for every y ∈ Φn.
In the framework of list-� decoders, a decoding success will occur when

the returned list contains the transmitted codeword. Therefore, the decoding
error probability Perr of a list-� decoder D is defined by

Perr = max
c∈C

∑
y∈Φn : c �∈D(y)

Prob{y received | c transmitted } .

Even when the correct codeword is included in the returned list, the
receiving end still needs to identify that codeword within the list. This
can be done by, say, selecting the codeword that maximizes the conditional
probability

Prob{y received | c transmitted }
among all codewords c in the list D(y); such a selection criterion guarantees
that a list-� decoder will do no worse than a maximum-likelihood decoder,
under the assumption that the correct codeword is indeed in the list. Some
side information about codewords—such as their a priori probabilities—may
also be incorporated into the selection procedure.

We assume hereafter in this chapter that S = (F, F,Prob) is an additive
channel; namely, both the input and output alphabets equal F . We say that
a positive integer τ is a decoding radius of a list-� decoder D : Fn → 2C if
for every word y ∈ Fn and every codeword c ∈ C,

d(y, c) ≤ τ =⇒ c ∈ D(y) .

268 9. List Decoding of Reed–Solomon Codes

That is, the list returned by the decoder contains all codewords whose Ham-
ming distance from the received word is at most τ . Observe that if the
number of errors that actually occurred is τ or less, then the returned list
is guaranteed to contain the transmitted codeword. Obviously, a nearest-
codeword decoder for an (n,M, d) code C is a list-1 decoder with decoding
radius �(d−1)/2. On the other hand, it follows from Problem 1.10 that the
decoding radius of a list-� decoder for C may exceed �(d−1)/2 only if � > 1.

9.2 Bivariate polynomials

The decoders to be discussed in the sequel involve operations on bivariate
polynomials. Therefore, we precede our further discussion on list decoders
by reviewing several concepts that relate to such polynomials.

Given a field F , denote by F [x, z] the set of all bivariate polynomials
over F in the indeterminates x and z; that is,

F [x, z] =
{

a(x, z) =
∑m

i,j=0ai,jx
izj : 0 ≤ m <∞, ai,j ∈ F

}
.

We will hereafter regard the elements of F [x, z] as elements of the ring
F [x][z]—namely, as univariate polynomials over F [x] in the indeterminate
z; such a characterization of the elements of F [x, z] implies in a natural way
the definition of addition and multiplication in F [x, z].

Let μ and ν be nonnegative integers and let a(x, z) =
∑

i,j ai,jx
izj be a

nonzero bivariate polynomial in F [x, z]. The (μ, ν)-degree of a(x, z), denoted
by degμ,ν a(x, z), is defined as

degμ,ν a(x, z) = max
i,j : ai,j �=0

{iμ + jν} .

In particular, deg0,1 a(x, z) is the ordinary degree of a(x, z) when regarded
as an element of F [x][z]. The (μ, ν)-degree of the zero polynomial is defined
as −∞.

Let a(x, z) and b(x, z) be elements of F [x, z] where a(x, z) �= 0. We say
that a(x, z) divides b(x, z) (in F [x, z]) or that a(x, z) is a factor of b(x, z)
if there exists c(x, z) ∈ F [x, z] such that a(x, z) = c(x, z)b(x, z). A linear
factor of Q(x, z) is a factor of Q(x, z) of the form z−f(x) where f(x) ∈ F [x].

We say that f(x) ∈ F [x] is a z-root of Q(x, z) ∈ F [x, z] if the univariate
polynomial Q(x, f(x)) is identically zero.

Lemma 9.1 A polynomial f(x) ∈ F [x] is a z-root of Q(x, z) ∈ F [x, z]
if and only if z − f(x) is a (linear) factor of Q(x, z).

Proof. Let F (x) denote the field of rational functions over F : the
elements of F (x) are all the expressions of the form a(x)/b(x), where

9.3. GRS decoding through bivariate polynomials 269

a(x), b(x) ∈ F [x], the polynomial b(x) is nonzero and normalized to some
prescribed form (e.g., it is monic), and gcd(a(x), b(x)) = 1. Addition and
multiplication in F (x) are defined in the conventional way, with an extra
step of clearing common factors of the numerator and denominator from the
result.

Regarding the bivariate polynomial Q(x, z) as a univariate polynomial
in F (x)[z], we have (by Proposition 3.5) that f(x) is a z-root of Q(x, z) if
and only if Q(x, z) is divisible by z− f(x) in the ring F (x)[z]. Furthermore,
since z − f(x) is monic in F [x][z], we get that

z − f(x) divides Q(x, z) in F (x)[z]

if and only if
z − f(x) divides Q(x, z) in F [x, z]

(Problem 9.2).

9.3 GRS decoding through bivariate polynomials

Let CGRS be an [n, k, d] GRS code over F = GF(q). In Chapter 6, we have
seen efficient implementations of list-1 decoders for CGRS with decoding ra-
dius �1

2(d−1). To obtain list-� decoders with larger decoding radii (and
necessarily larger list sizes �), we follow a different approach—one that is
based on interpolation of bivariate polynomials. We demonstrate this ap-
proach by first applying it to obtain yet another implementation of a GRS
list-1 decoder with decoding radius �1

2(d−1).
Let α1, α2, . . . , αn be the code locators of CGRS. For simplicity, we will

further assume that the column multipliers (of the parity-check matrix) of
CGRS are such that the generator matrix of the code is given by

GGRS =

⎛⎜⎜⎜⎜⎜⎝
1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

...
...

αk−1
1 αk−1

2 . . . αk−1
n

⎞⎟⎟⎟⎟⎟⎠ . (9.1)

Associating each vector u = (u0 u1 . . . uk−1) in F k with a polynomial
u(x) = u0 + u1x + . . . + uk−1x

k−1 ∈ Fk[x], the codewords of CGRS are then
given by

CGRS =
{
uGGRS = (u(α1) u(α2) . . . u(αn)) : u(x) ∈ Fk[x]

}
.

Let c = (c1 c2 . . . cn) be the transmitted codeword and y =
(y1 y2 . . . yn) be the received word, where d(y, c) ≤ 1

2(d−1). Also, let u(x)

270 9. List Decoding of Reed–Solomon Codes

be the (unique) polynomial in Fk[x] such that cj = u(αj) for 1 ≤ j ≤ n;
clearly, reconstructing the codeword c is equivalent to finding the polynomial
u(x).

Given the received word y, we first compute a nonzero bivariate polyno-
mial Q(x, z) ∈ F [x, z] that satisfies the degree constraints

deg0,1 Q(x, z) ≤ 1 (9.2)

and
deg1,k−1 Q(x, z) < n− 1

2(d−1) , (9.3)

as well as the interpolation constraint

Q(αj , yj) = 0 , j = 1, 2, . . . , n . (9.4)

Note that conditions (9.2) and (9.3) simply mean that Q(x, z) has the form

Q(x, z) = Q0(x) + zQ1(x) ,

where
deg Q0(x) < n− 1

2(d−1) and deg Q1(x) < 1
2(d+1) .

These degree constraints on Q0(x) and Q1(x) still allow Q(x, z) to have⌈
n− 1

2(d−1)
⌉

+
⌈

1
2(d+1)

⌉
≥ n + 1

significant coefficients; on the other hand, (9.4) is a set of n linear homoge-
neous equations in these (unknown) coefficients. Hence, there is at least one
nonzero solution Q(x, z) ∈ F [x, z] that satisfies (9.2)–(9.4).

Let Q(x, z) be any such nonzero solution and consider the univariate
polynomial

ϕ(x) = Q(x, u(x)) = Q0(x) + u(x)Q1(x) . (9.5)

Denote by J the set of error locations; that is,

yj �= cj ⇐⇒ j ∈ J .

On the one hand, for every location j �∈ J we have

ϕ(αj) = Q(αj , u(αj)) = Q(αj , cj) = Q(αj , yj) = 0 , (9.6)

namely, ϕ(x) has at least n− |J | distinct roots in F . On the other hand,

deg ϕ(x) ≤ max{deg Q0(x),deg u(x) + deg Q1(x)} < n− 1
2(d−1) ≤ n− |J | .

It follows that ϕ(x) has more distinct roots in F than its degree, which
means that it must be identically zero. Thus, we can solve (9.5) for u(x) to
obtain

u(x) = −Q0(x)
Q1(x)

.

9.4. Sudan’s algorithm 271

From ϕ(x) being identically zero we also conclude that (9.6) holds for
j ∈ J . Therefore,

Q1(αj)(yj − cj) = Q(αj , yj)−Q(αj , cj) = 0 , j ∈ J ,

or
Q1(αj) = 0 , j ∈ J .

This means that Q1(x) is divisible by the polynomial

V(x) =
∏
j∈J

(x− αj) ,

which is obtained by reversing the order of coefficients of the error-locator
polynomial Λ(x) =

∏
j∈J(1 − αjx) (see Section 6.3); that is, V(x) =

x|J |Λ(x−1).
Conversely, it is easy to check that the bivariate polynomial

Q(x, z) = V(x)(z − u(x))

is a nonzero solution to (9.2)–(9.4). Here Q1(x) is actually equal to V(x) and,
so, this solution has the smallest possible (1, k−1)-degree; furthermore, such
an extremal solution is unique up to a scalar multiple. (Refer to Problem 9.4
to see the connection between the list-1 decoder presented herein and the
Welch–Berlekamp equations that were introduced in Problem 6.13.)

9.4 Sudan’s algorithm

We now turn to generalizing the decoding method of Section 9.3 to larger
list sizes �. Given the parameters [n, k, d] of the GRS code CGRS, we will
find it convenient to introduce the notation

R′ =
k−1
n

.

The value R′, which is typically very close to the rate of CGRS, is related to
the relative minimum distance δ = d/n of CGRS by R′ = 1− δ.

Assume a prescribed list size �. The list-� decoder to be presented in this
section has decoding radius �nΘ�,1(R′)� − 1, where

Θ�,1(R′) = �
�+1 −

�
2R′

(the reason for the additional subscript 1 will become apparent in Sec-
tion 9.5). If we regard R′ momentarily as a real variable, then the function
R′ �→ Θ�,1(R′) represents a line in the real plane.

272 9. List Decoding of Reed–Solomon Codes

Example 9.1 For � = 1 we have Θ1,1(R′) = (1 − R′)/2 = δ/2 and, so,
the decoding radius in this case equals the familiar value

�d/2� − 1 = �(d−1)/2 .

For � = 2 we have Θ2,1(R′) = 2
3 −R′; therefore, the decoding radius is⌈

2
3n
⌉
− k =

⌊
2
3(n+1)

⌋
− k .

Note, however, that when R′ > 1
3 ,

Θ1,1(R′) = 1
2(1−R′) > 2

3 −R′ = Θ2,1(R′) .

Hence, when R′ > 1
3 , there is no point in selecting � = 2 over � = 1.

As the last example indicates, there is a range of values of R′ for which
the decoding radius can be made larger by selecting a smaller list size �; in
such circumstances we will prefer the smaller �. It follows that the value of �
that should be selected for a given R′ (or, alternatively, the value of R′ that
should be selected for a given �) is such that

Θ�,1(R′) ≥ Θ�−1,1(R′) .

The latter inequality holds if and only if

R′ ≤ 2
�(�+1)

(see Problem 9.5).
The list-� decoder to be presented is based on the following two lemmas.

Lemma 9.2 (Bivariate interpolation lemma) Given the [n, k=nR′+1]
GRS code over F that is generated by (9.1), let � and τ be positive integers
such that τ < nΘ�,1(R′). For every vector (y1 y2 . . . yn) in Fn there exists
a nonzero bivariate polynomial Q(x, z) ∈ F [x, z] that satisfies the degree
constraints

deg0,1 Q(x, z) ≤ � (9.7)

and
deg1,k−1 Q(x, z) < n− τ , (9.8)

and the interpolation constraint

Q(αj , yj) = 0 , j = 1, 2, . . . , n . (9.9)

9.4. Sudan’s algorithm 273

Proof. Condition (9.9) defines a set of n linear homogeneous equations
in the unknown coefficients of Q(x, z). By (9.7)–(9.8), the number of these
coefficients is at least

�∑
t=0

(
(n−τ)− t(k−1)

)
= (�+1)(n−τ)−

(
�+1
2

)
(k−1)

= (�+1)(n−τ)−
(
�+1
2

)
nR′

= (�+1)
(
nΘ�,1(R′)− τ

)
+ n > n ,

where the last inequality follows from τ < nΘ�,1(R′). Hence, (9.9) has a
nontrivial solution.

Lemma 9.3 (Factorization lemma) Given the [n, k] GRS code over F
that is generated by (9.1), let a nonzero Q(x, z) ∈ F [x, z] satisfy (9.8)
and (9.9) for some positive integer τ and a vector y = (y1 y2 . . . yn) in
Fn. Suppose that there exists u(x) ∈ Fk[x] such that the respective code-
word, c = (u(α1) u(α2) . . . u(αn)), satisfies d(y, c) ≤ τ . Then z − u(x)
divides Q(x, z).

Proof. Let J be the set of location indexes j where yj �= u(αj), and
consider the univariate polynomial ϕ(x) = Q(x, u(x)). On the one hand,

deg ϕ(x) = deg Q(x, u(x)) ≤ deg1,k−1 Q(x, z) < n− τ ≤ n− |J | ,

where the penultimate inequality follows from (9.8) and the last inequality
follows from the assumption that d(y, c) ≤ τ . On the other hand, for every
location index j �∈ J we have

ϕ(αj) = Q(αj , u(αj)) = Q(αj , yj) = 0 ,

with the last equality implied by (9.9). We conclude that ϕ(x), having more
distinct roots in F than its degree, is identically zero. Thus, u(x) is a z-root
of Q(x, z) and the result now follows from Lemma 9.1.

Our analysis in Section 9.3 can be seen as a restricted version of the last
two proofs, for the special case � = 1.

We are now in a position where we can describe our algorithm for im-
plementing a list-� decoder for CGRS and verify its correctness, based on
Lemmas 9.2 and 9.3. Specifically, we apply these lemmas with � being
the prescribed list size; the parameter τ , which can be any positive inte-
ger smaller than nΘ�,1(R′), will serve as the decoding radius. In particular,
we can take τ = �nΘ�,1(R′)� − 1.

274 9. List Decoding of Reed–Solomon Codes

Let y = (y1 y2 . . . yn) be the received word. We first compute a nonzero
bivariate polynomial Q(x, z) ∈ F [x, z] that satisfies (9.7)–(9.9). This in-
volves solving a set of linear homogeneous equations, and Lemma 9.2 guar-
antees that a nontrivial solution indeed exists.

Having computed Q(x, z), we next compute all the factors of Q(x, z) in
F [x, z] of the form z − f(x), where f(x) ∈ Fk[x]. Since deg0,1 Q(x, z) ≤ �,
the number of such factors cannot exceed �. And by Lemma 9.3 we are
guaranteed to find in this way all the factors z − u(x) that correspond to
codewords (u(α1) u(α2) . . . u(αn)) within Hamming distance τ from y.

The list decoder that we have just described is known as Sudan’s algo-
rithm. Figure 9.1 summarizes the algorithm for a given [n, nR′+1] GRS
code CGRS over F that is generated by (9.1), where τ is assumed to be
�nΘ�,1(R′)� − 1.

Input: received word y = (y1 y2 . . . yn) ∈ Fn, list size �.
Output: list of up to � codewords c ∈ CGRS.

1. Interpolation step: find a nonzero bivariate polynomial Q(x, z) ∈ F [x, z] that
satisfies

deg0,1 Q(x, z) ≤ � , deg1,nR′ Q(x, z) ≤ n (1−Θ�,1(R′)) ,

and
Q(αj , yj) = 0 , j = 1, 2, . . . , n .

2. Factorization step: compute the set U of all the polynomials f(x) ∈ FnR′+1[x]
such that z − f(x) is a factor of Q(x, z) in F [x, z].

3. Output all the codewords c = (u(α1) u(α2) . . . u(αn)) that correspond to
u(x) ∈ U such that d(y, c) < nΘ�,1(R′).

Figure 9.1. Sudan’s list-decoding algorithm for GRS codes.

The algorithm in Figure 9.1 can be realized in time complexity that is
polynomially large in the code length and list size. Specifically, Step 1 in
Figure 9.1 can be implemented by using Gaussian elimination to find a non-
trivial solution to (9.7)–(9.9), thereby requiring O(n3) operations in F . An
efficient procedure for implementing Step 2 will be described in Section 9.7,
and a straightforward implementation of Step 3 takes O(|U |kn) = O(�kn)
operations in F .

Example 9.2 We consider a list-4 decoder for the [18, 2] GRS code over
F = GF(19) with code locators αj = j for 1 ≤ j ≤ 18 (while such a
field size and dimension are hardly ever found in practice, these parameters

9.4. Sudan’s algorithm 275

were selected to make this example easy to follow). For � = 4 we have
18 ·Θ4,1(1

18) = 12.4; so, the decoding radius is τ = 12.
Let the transmitted codeword correspond to the polynomial u(x) = 18+

14x; that is,

c = (u(1) u(2) . . . u(18))
= (13 8 3 17 12 7 2 16 11 6 1 15 10 5 0 14 9 4) ,

and let the error word and the received word be given by

e = (11 16 17 12 17 0 0 2 14 0 0 0 3 0 14 8 11 15)

and

y = (5 5 1 10 10 7 2 18 6 6 1 15 13 5 14 3 1 0) ,

respectively.
A nonzero solution to (9.7)–(9.9) is given by

Q(x, z) = 4 + 12x + 5x2 + 11x3 + 8x4 + 13x5

+ (14 + 14x + 9x2 + 16x3 + 8x4)z
+ (14 + 13x + x2)z2

+ (2 + 11x + x2)z3

+ 17z4 ,

and one can verify that

Q(x, z) = 17(z − 18− 14x)(z − 8− 8x)(z − 14− 16x)
· (z − 18− 15x− 10x2) .

Therefore, Q(x, z) has three z-roots in Fk[x]:

u1(x) = 18 + 14x , u2(x) = 8 + 8x , and u3(x) = 14 + 16x .

Both u1(x) (= u(x)) and u2(x) correspond to codewords at Hamming dis-
tance 12 from y, while u3(x) corresponds to a codeword at Hamming distance
15 from y. So, in this case, Sudan’s algorithm will produce two codewords.

An alternate nonzero solution to (9.7)–(9.9) is given by

Q̂(x, z) = 8 + 12x2 + 9x3 + 8x4

+ (5 + 14x + 7x2 + 15x3 + 4x4)z
+ (12 + 12x + 15x2 + 4x3)z2

+ (9 + 10x + 14x2)z3

+ (13 + x)z4 ,

276 9. List Decoding of Reed–Solomon Codes

and one can verify that the complete factorization of Q(x, z) in F [x, z] is

Q̂(x, z) = (z − 18− 14x)(z − 8− 8x)((13 + x)z2

+ (5 + 18x + 17x2)z + (18 + 6x + 15x2))

(the third factor, of (0, 1)-degree 2, has no linear factors in F [x, z]). In
this case, Q̂(x, z) has only two z-roots in Fk[x]: u1(x) = 18 + 14x and
u2(x) = 8 + 8x.

9.5 The Guruswami–Sudan algorithm

The decoding radius in Sudan’s algorithm can be increased by considering
also the derivatives of the bivariate polynomial Q(x, z), as we show next.

Let a(x, z) be a polynomial in F [x, z]. The (s, t)th Hasse derivative of
a(x, z), denoted by a[s,t](x, z), is defined as

a[s,t](x, z) =
∑
i,j

(
i
s

)(
j
t

)
ai,jx

i−szj−t ,

where a binomial coefficient
(

h
m

)
is defined to be zero when h < m. This

definition of Hasse derivatives is a natural extension of its univariate coun-
terpart, which was introduced in Problem 3.40.

Let T(r) denote the set

T(r) = {(s, t) : s, t ∈ N , s + t < r} ,

where N stands for the set of nonnegative integers.

Lemma 9.4 Given u(x) ∈ F [x] and a(x, z) ∈ F [x, z], let β and γ be
elements of F such that u(β) = γ and

a[s,t](x, z)|(x,z)=(β,γ) = 0 for all (s, t) ∈ T(r) .

Then (x− β)r | a(x, u(x)).

Proof. Define the polynomial b(v, w) =
∑

s,t bs,tv
swt ∈ F [v, w] by

b(v, w) = a(v + β, w + γ) . (9.10)

By comparing the coefficients of vswt on both sides of (9.10) we get that

bs,t =
∑
i,j

(
i
s

)(
j
t

)
ai,jβ

i−sγj−t = a[s,t](x, z)|x=β,z=γ

9.5. The Guruswami–Sudan algorithm 277

and, so, bs,t = 0 for every (s, t) ∈ T(r). Hence,

a(x, u(x)) = b(x− β, u(x)− γ) =
∑

s,t : s+t≥r

bs,t(x− β)s(u(x)− γ)t .

The result now follows by observing that (x− β) | (u(x)− γ).

Let � be the prescribed list size and r be a positive integer not greater
than �. Define

Θ�,r(R′) =
1

(�+1)r

((
�+1
2

)
(1−R′)−

(
�+1−r

2

))
.

The expression Θ�,r(R′)—which will be used in our subsequent analysis—can
also be written as

Θ�,r(R′) = 1− r+1
2(�+1)

− �

2r
·R′ .

In particular, the function R′ �→ Θ�,r(R′), when viewed over the real field,
represents a line in the real plane. It is easy to see that when r = 1, the
expression Θ�,r(R′) coincides with the definition of Θ�,1(R′) in Section 9.4.

The next two lemmas generalize Lemmas 9.2 and 9.3 to the case
where not only does the bivariate polynomial Q(x, z) vanish at the points
{(αj , yj)}n

j=1, but so do also some of its Hasse derivatives.

Lemma 9.5 Given the [n, k=nR′+1] GRS code over F that is generated
by (9.1), let �, r, and τ be positive integers such that r ≤ � and τ < nΘ�,r(R′).
For every vector (y1 y2 . . . yn) in Fn there exists a nonzero bivariate poly-
nomial Q(x, z) ∈ F [x, z] that satisfies

deg0,1 Q(x, z) ≤ � , (9.11)

deg1,k−1 Q(x, z) < r(n− τ) , (9.12)

and

Q[s,t](x, z)|(x,z)=(αj ,yj) = 0 , j = 1, 2, . . . , n , (s, t) ∈ T(r) . (9.13)

Proof. The proof is similar to that of Lemma 9.2, except that now (9.13)
defines a set of

(
r+1
2

)
n linear homogeneous equations in the unknown coeffi-

cients of Q(x, z). By (9.11) and (9.12) we obtain that the number of these
coefficients is at least

�∑
t=0

(
r(n−τ)− t(k−1)

)
= (�+1)r(n−τ)−

(
�+1
2

)
(k−1)

278 9. List Decoding of Reed–Solomon Codes

=
(
�+1
2

)
n(1−R′) +

(
(�+1)r −

(
�+1
2

))
n− (�+1)rτ

=
(
�+1
2

)
n(1−R′)−

((
�+1−r

2

)
−
(
r+1
2

))
n− (�+1)rτ

= (�+1)r
(
nΘ�,r(R′)− τ

)
+
(
r+1
2

)
n

>
(
r+1
2

)
n ,

where the last inequality follows from τ < nΘ�,r(R′). Hence, (9.13) has a
nontrivial solution.

Lemma 9.6 Given the [n, k] GRS code over F that is generated by (9.1),
let a nonzero Q(x, z) ∈ F [x, z] satisfy (9.12) and (9.13) for positive integers r
and τ and a vector y = (y1 y2 . . . yn) in Fn. Suppose that there exists u(x) ∈
Fk[x] such that the respective codeword, c = (u(α1) u(α2) . . . u(αn)),
satisfies d(y, c) ≤ τ . Then z − u(x) divides Q(x, z).

Proof. Let J be the set of indexes j for which u(αj) = yj . By (9.13)
and Lemma 9.4 we obtain

(x− αj)r |Q(x, u(x)) , j ∈ J ,

and, so, (∏
j∈J

(x− αj)r
) ∣∣∣ Q(x, u(x)) . (9.14)

On the other hand, by (9.12) we have

deg Q(x, u(x)) ≤ deg1,k−1 Q(x, z) < r(n− τ) ≤ r|J | .

Combining this with (9.14) we conclude that Q(x, u(x)) is identically zero.
The result now follows from Lemma 9.1.

Based on the last two lemmas, we can now modify Sudan’s algorithm
by using (9.11)–(9.13) instead of (9.7)–(9.9). The resulting list decoding
algorithm, which is shown in Figure 9.2, is known as the Guruswami–Sudan
algorithm: its decoding radius is �nΘ�,r(R′)� − 1, and it reduces to Sudan’s
algorithm when r = 1.

The additional parameter r in the Guruswami–Sudan algorithm allows
us to increase the decoding radius (compared to Sudan’s algorithm) by
maximizing over r. Specifically, we can now attain a decoding radius
�nΘ�(R′)� − 1, where

Θ�(R′) = max
1≤r≤�

Θ�,r(R′) . (9.15)

9.5. The Guruswami–Sudan algorithm 279

Input: received word y = (y1 y2 . . . yn) ∈ Fn, list size �.
Output: list of up to � codewords c ∈ CGRS.

1. Interpolation step: find a nonzero bivariate polynomial Q(x, z) ∈ F [x, z] that
satisfies

deg0,1 Q(x, z) ≤ � , deg1,nR′ Q(x, z) ≤ rn (1−Θ�,r(R′)) ,

and

Q[s,t](x, z)|(x,z)=(αj ,yj) = 0 , j = 1, 2, . . . , n , (s, t) ∈ T(r) .

2. Factorization step: compute the set U of all the polynomials f(x) ∈ FnR′+1[x]
such that z − f(x) is a factor of Q(x, z) in F [x, z].

3. Output all the codewords c = (u(α1) u(α2) . . . u(αn)) that correspond to
u(x) ∈ U such that d(y, c) < nΘ�,r(R′).

Figure 9.2. The Guruswami–Sudan list-decoding algorithm for GRS codes.

(It should be noted, however, that the parameter r also affects the time com-
plexity of the algorithm: this complexity increases (polynomially) with r.)

We next characterize the value of r that achieves the maximum in (9.15).
For 1 ≤ r ≤ �+1 define

Υ�,r =
r(r−1)
�(�+1)

.

It can be shown (Problem 9.6) that

Θ�,r(R′) ≥ Θ�,r−1(R′) ⇐⇒ R′ ≥ Υ�,r

(i.e., the lines R′ �→ Θ�,r−1(R′) and R′ �→ Θ�,r(R′) intersect in the real plane
when R′ = Υ�,r). So, given � and R′, we reach a maximum in (9.15) when r
equals the (unique) integer r0 = r0(�, R′) that satisfies

Υ�,r0 ≤ R′ < Υ�,r0+1 .

It follows that the function R′ �→ Θ�(R′), when viewed over the real interval
[0, 1), is continuous and piecewise linear in R′ (for fixed �) and is given by

Θ�(R′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Θ�,1(R′) for Υ�,1 ≤ R′ < Υ�,2

Θ�,2(R′) for Υ�,2 ≤ R′ < Υ�,3
...

...
Θ�,�(R′) for Υ�,� ≤ R′ < Υ�,�+1

(where Υ�,1 = 0 and Υ�,�+1 = 1).

280 9. List Decoding of Reed–Solomon Codes

We have seen in Example 9.1 that the value Θ�,1(R′) may sometimes
decrease as � increases; the value Θ�(R′), on the other hand, is better behaved
in the sense that it is always non-decreasing with �, and it can be shown to
converge to the limit

Θ∞(R′) = lim
�→∞

Θ�(R′) = 1−
√

R′

(see Problem 9.7).
The functions R′ �→ Θ�(R′) for � = 1, 4,∞ are plotted in Figure 9.3.

9.6 List decoding of alternant codes

The Guruswami–Sudan algorithm is applicable also to the list decoding of
alternant codes over F = GF(q): we simply use the list decoder for the
underlying GRS code. Recall that this strategy was already suggested in
Section 6.6 for the special case of list-1 decoding. Namely, if d is the designed

�

�
Θ�(R′)

0

1
5

2
5

1
2

3
5

4
5

1

1
10

3
10

6
10

1
R′

� =∞

� = 4

� = 1

Figure 9.3. Functions R′ �→ Θ�(R′) for � = 1, 4,∞.

9.6. List decoding of alternant codes 281

minimum distance of a given alternant code Calt, then the list-1 decoders
of Chapter 6 will correct up to �(d−1)/2 errors, since d is the minimum
distance of the underlying GRS code. And if the designed minimum distance
d equals the true minimum distance of Calt, then we cannot expect to be able
to correct more errors by a list-1 decoder.

It turns out that when the list size goes beyond 1, we may gain in the
decoding radius of Calt (compared to its underlying GRS counterpart) by
taking into account the fact that the entries of the transmitted codeword
and the received word are restricted to the field F of Calt. Incorporating this
restriction into the Guruswami–Sudan algorithm requires some modification
of the algorithm, as we now describe.

Throughout this section, we fix CGRS to be an [n, n−d+1, d] GRS code
over an extension field Φ of F = GF(q), and the generator matrix of CGRS

is assumed to take the form

GGRS = (αi
j)n−d

i=0
n

j=1 .

We let Calt be the respective alternant code CGRS ∩ Fn that is used for
the transmission and assume a prescribed list size �. (As we will see, the
decoding will depend on the field F and on the parameters n and d of the
underlying code CGRS, yet not on the dimension and true minimum distance
of Calt. Therefore, hereafter we use the notation n−d instead of k−1 to
avoid confusion with the dimension of Calt. Accordingly, δ and R′ should be
understood as d/n and 1− (d/n), respectively.)

Recall that the change from Sudan’s algorithm to the Guruswami–Sudan
algorithm involved the introduction of the parameter r and requiring that
the bivariate polynomial Q(x, z) satisfies (9.11)–(9.13), instead of (9.7)–
(9.9). We now add a second nonnegative integer parameter r < r and
replace (9.11)–(9.13) by the degree constraints

deg0,1 Q(x, z) ≤ � , (9.16)

deg1,n−d Q(x, z) < r(n−τ) + rτ , (9.17)

and the interpolation constraint

Q[s,t](x, z)|(x,z)=(αj ,γ) = 0 , for all j = 1, 2, . . . , n ,

γ ∈ F , and (s, t) ∈
{

T(r) if γ = yj

T(r) if γ �= yj
. (9.18)

That is, the bivariate polynomial Q(x, z) (which is now assumed to be over
the field Φ) and its (s, t)th Hasse derivatives are required to vanish also at
points (αj , γ) where γ �= yj , yet (s, t) ranges for these points over T(r) rather
than T(r). Notice that (9.18) is where we take into account the ground field
F of Calt: the elements γ should range over F (and not Φ).

282 9. List Decoding of Reed–Solomon Codes

Define

Θ�,r,r(R′, q) =
1

(�+1)(r−r)

((
�+1
2

)
(1−R′)−

(
�+1−r

2

)
−
(
r+1
2

)
(q−1)

)
.

Lemmas 9.7 and 9.8 below replace Lemmas 9.5 and 9.6 of Section 9.5. As
the proofs are similar, we include here only the proof of Lemma 9.8.

Lemma 9.7 Let Φ be an extension field of F = GF(q). Given an alter-
nant code of length n and designed minimum distance d = n(1−R′) over F ,
with the underlying GRS code being over Φ and generated by (9.1), let �, r,
r, and τ be integers such that 0 ≤ r < r ≤ � and 0 < τ < nΘ�,r,r(R′, q). For
every vector (y1 y2 . . . yn) in Φn there exists a nonzero bivariate polynomial
Q(x, z) ∈ Φ[x, z] that satisfies (9.16)–(9.18).

Lemma 9.8 Let Φ be an extension field of F . Given an alternant code
over F with the underlying [n, n−d+1, d] GRS code being over Φ and gener-
ated by (9.1), let a nonzero Q(x, z) ∈ Φ[x, z] satisfy (9.17)–(9.18) for positive
integers r and τ , a nonnegative integer r ≤ r, and a vector y = (y1 y2 . . . yn)
in Fn. Suppose that there exists u(x) ∈ Φn−d+1[x] such that the respective
codeword, c = (u(α1) u(α2) . . . u(αn)), is in Fn and d(y, c) ≤ τ . Then
z − u(x) divides Q(x, z).

Proof. We use the same notation as in the proof of Lemma 9.6. By
(9.18) and Lemma 9.4 it follows that

(x− αj)r |Q(x, u(x)) , j = 1, 2, . . . , n .

Combining this with (9.14) we obtain(∏
j∈J

(x− αj)r
∏
j∈J

(x− αj)r
)
|Q(x, u(x)) ,

where J stands for the set of indexes j for which u(αj) �= yj . On the other
hand, by (9.17) we have

deg Q(x, u(x)) ≤ deg1,n−d Q(x, z) < r(n−τ) + rτ ≤ r|J |+ r|J | .

Hence, Q(x, u(x)) is identically zero and the result follows by Lemma 9.1.

The previous two lemmas imply a list-decoding algorithm, which is shown
in Figure 9.4. This algorithm is known as the Koetter–Vardy algorithm
for decoding alternant codes. The Koetter–Vardy algorithm reduces to the
Guruswami–Sudan algorithm when r = 0.

9.6. List decoding of alternant codes 283

Input: received word y = (y1 y2 . . . yn) ∈ Fn, list size �.
Output: list of up to � codewords c ∈ Calt.

1. Interpolation step: find a nonzero bivariate polynomial Q(x, z) ∈ Φ[x, z] that
satisfies

deg0,1 Q(x, z) ≤ � , deg1,n−d Q(x, z) ≤ rn− (r−r)nΘ�,r,r(R′) ,

and

Q[s,t](x, z)|(x,z)=(αj ,γ) = 0 , j = 1, 2, . . . , n , γ ∈ F ,

(s, t) ∈
{

T(r) if γ = yj

T(r) if γ �= yj

(where R′ = 1− (d/n)).

2. Factorization step: compute the set U of all the polynomials f(x) ∈
Φn−d+1[x] such that z − f(x) is a factor of Q(x, z) in Φ[x, z].

3. Output all the codewords c = (u(α1) u(α2) . . . u(αn)) that correspond to
u(x) ∈ U such that c ∈ Fn and d(y, c) < nΘ�,r,r(R′).

Figure 9.4. The Koetter–Vardy list-decoding algorithm for alternant codes.

By maximizing over r and r, the Koetter–Vardy algorithm can reach a
decoding radius �nΘ�(R′, q)� − 1, where

Θ�(R′, q) = max
0≤r<r≤�

Θ�,r,r(R′, q) . (9.19)

Clearly, this maximum is never smaller than Θ�(R′), which is the respective
maximum for the Guruswami–Sudan algorithm, as defined by (9.15). In
fact, there are instances where (q−1)R′ is an integer and

�(q−1)Θ�(R′)� < �(q−1)Θ�(R′, q)�

(e.g., take q = 64, R′ = 1/7, and � = 102). When this happens, the decoding
radius of the Koetter–Vardy algorithm will be larger than its Guruswami–
Sudan counterpart for codes Calt that are as short as n = q−1. Such a code
length, in turn, is attainable by GRS codes over F , i.e., we can select Φ = F
and Calt = CGRS. Hence, the improvement of the Koetter–Vardy algorithm
can sometimes be seen not only for alternant codes, but for GRS codes as
well.

A further analysis of the function R′ �→ Θ�(R′, q) is included in Prob-
lems 9.9 and 9.10.

284 9. List Decoding of Reed–Solomon Codes

9.7 Finding linear bivariate factors

In this section, we present an efficient algorithm for finding the z-roots in
Fk[x] of a nonzero bivariate polynomial Q(x, z) ∈ F [x, z]; this algorithm, in
turn, can be used to implement the factorization step (Step 2) in Figures 9.1,
9.2, or 9.4 (in the latter figure, the roles of F and k are played by Φ and
n−d+1, respectively).

Our algorithm makes use of the recursive procedure BiRoot in Fig-
ure 9.5 (the numbers that are assigned to the lines in the figure will be used
in the sequel for reference). The procedure is initially called with the pa-
rameters (Q, k, 0), where Q = Q(x, z) is a nonzero bivariate polynomial in
F [x, z] and k is a positive integer that defines the space, Fk[x], where the
z-roots are to be found. A third parameter to BiRoot—denoted by λ—is
used for keeping track of the recursion level, with the initial call correspond-
ing to level 0. In addition, two global values are assumed, one of which is a
set U that will ultimately contain the z-roots of Q(x, z) in Fk[x]. This set is
initialized in lines 1 and 2 in BiRoot upon the first call to the procedure.

In line 5 of BiRoot, we assume access to a “black box” that computes
the set of all distinct roots in F of a (univariate) polynomial T (0, z) ∈ F [z].
An exhaustive search over all the elements of F—sometimes referred to as

BiRoot(Q(x, z) ∈ F [x, y], k ∈ N, λ ∈ N)

/∗ Global variables:
set U ⊆ Fk[x],
polynomial g(x) =

∑k−1
s=0 gsx

s ∈ Fk[x].
Call procedure initially with Q(x, z) �= 0, k > 0, and λ = 0.

∗/
if (λ == 0) /∗ 1 ∗/

U ← ∅; /∗ 2 ∗/
m ← largest integer such that xm divides Q(x, z); /∗ 3 ∗/
T (x, z) ← x−mQ(x, z); /∗ 4 ∗/
Z ← set of all distinct (z-)roots of T (0, z) in F ; /∗ 5 ∗/
for each γ ∈ Z do { /∗ 6 ∗/

gλ ← γ; /∗ 7 ∗/
if (λ < k−1) /∗ 8 ∗/

BiRoot(T (x, xz + γ), k, λ+1); /∗ 9 ∗/
else /∗ 10 ∗/

if (Q(x, gk−1) == 0) /∗ 11 ∗/
U ← U ∪ {g(x)}; /∗ 12 ∗/

} /∗ 13 ∗/

Figure 9.5. Recursive procedure for finding the set of z-roots of Q(x, z) in Fk[x].

9.7. Finding linear bivariate factors 285

a Chien search—is one way to implement such a black box. The time com-
plexity of such a search is O(q deg T (0, z)) operations in F ; this complexity
can be considered efficient when q is of the order of deg1,k−1 Q(x, z) (e.g.,
when decoding primitive GRS codes, in which case q exceeds the code length
only by 1). Alternatively, there are known probabilistic algorithms for root
extraction with expected time complexity which grows polynomially with
log q (see the notes on Section 3.2).

We now start analyzing the procedure BiRoot. We first notice that the
check made in line 8 guarantees that the level of recursion cannot go beyond
k−1. Now, every sequence of executions of line 7 along a (finite) recursion
descent is associated with a unique polynomial

f(x) = f0 + f1x + f2x
2 + . . . ,

which stands for the contents of the global polynomial g(x) that is computed
by that sequence. For i ≥ 0, we let Qi(x, z) and Ti(x, z) denote the values of
the bivariate polynomials Q(x, z) and T (x, z), respectively, after the execu-
tion of line 4 during recursion level λ = i, along the particular descent that
computes some given f(x). Clearly, Q0(x, z) = Q(x, z) (�= 0), and for every
i ≥ 0,

Ti(x, z) = x−miQi(x, z) and Qi+1(x, z) = Ti(x, xz + fi) ,

where mi is the largest integer m such that xm divides Qi(x, z). Observe
that the (0, 1)-degrees of the polynomials Qi(x, z) are the same for all i and,
so, Qi(x, z) �= 0 and mi is well-defined. Also, since x does not divide Ti(x, z)
then Ti(0, z) is not identically zero. This means that the set Z, which is
computed in line 5 in BiRoot, is always finite—even in applications where
the field F is taken to be infinite. We readily conclude that the number of
recursive calls to BiRoot is finite and, so, this procedure always halts.

In the next proposition, we show that upon termination of the recursive
calls to BiRoot, the set U consists (only) of z-roots in Fk[x] of the bivariate
polynomial Q(x, z) which BiRoot is initially called with.

Proposition 9.9 Let Q(x, z) be a nonzero bivariate polynomial in
F [x, z] and let U be the set that is computed by the call BiRoot(Q, k, 0).
Every element of U is a z-root of Q(x, z).

Proof. Let f(x) = f0 + f1x + . . . + fk−1x
k−1 be an element of U and let

Qi(x, z) and Ti(x, z) be the values of Q(x, z) and T (x, z) during recursion
level λ = i along the descent that computes f(x). For 0 ≤ i < k, define the
polynomial ψi(x) by

ψi(x) = fi + fi+1x + fi+2x
2 + . . . + fk−1x

k−1−i .

286 9. List Decoding of Reed–Solomon Codes

We show by a backward induction on i = k−1, k−2, . . . , 0 that ψi(x) is a
z-root of Qi(x, z).

The induction base i = k−1 follows from the check made in line 11 in
BiRoot. As for the induction step, suppose that ψi+1(x) is a z-root of
Qi+1(x, z). Then,

x−miQi(x, ψi(x)) = Ti(x, ψi(x))
= Ti(x, x · ψi+1(x) + fi)
= Qi+1(x, ψi+1(x)) = 0 .

That is, ψi(x) is a z-root of Qi(x, z).
In particular, for i = 0 we obtain that ψ0(x) = f(x) is a z-root of

Q0(x, z) = Q(x, z).

The next lemma will help us prove that upon termination of BiRoot,
the set U in fact contains all the z-roots of Q(x, z) in Fk[x].

Lemma 9.10 Let Q(x, z) be a nonzero bivariate polynomial in F [x, z]
and let f(x) = f0 + f1x + . . . + fk−1x

k−1 be a z-root of Q(x, z) in F [x]. For
0 ≤ i < k, define Qi(x, z) and Ti(x, z) inductively by Q0(x, z) = Q(x, z) and

Ti(x, z) = x−miQi(x, z) and Qi+1(x, z) = Ti(x, xz + fi) ,

where mi is the largest integer m such that xm divides Qi(x, z). Then the
following conditions hold for every 0 ≤ i < k:

(i) The polynomial

ψi(x) = fi + fi+1x + fi+2x
2 + . . . + fk−1x

k−1−i

is a z-root of Qi(x, z).

(ii) Ti(0, fi) = 0.

Proof. We prove part (i) by induction on i. The induction base i =
0 is obvious. As for the induction step, if ψi(x) is a z-root of Qi(x, z)
then ψi+1(x) = (ψi(x) − fi)/x is a z-root of Qi(x, xz + fi) and, hence, of
Qi+1(x, z) = Ti(x, xz + fi) = x−miQi(x, xz + fi). This completes the proof
of part (i).

Now, substituting z = ψi(x) in Ti(x, z), we get from part (i) that

Ti(x, ψi(x)) = x−mi Qi(x, ψi(x))︸ ︷︷ ︸
0

= 0 .

In particular,
Ti(0, fi) = Ti(x, ψi(x))|x=0 = 0 ,

thereby proving part (ii).

9.7. Finding linear bivariate factors 287

We are now in a position to prove the following converse of Proposi-
tion 9.9.

Proposition 9.11 Let Q(x, z) be a nonzero bivariate polynomial in
F [x, z] and let U be the set that is computed by the call BiRoot(Q, k, 0).
Every z-root of Q(x, z) in Fk[x] is contained in U .

Proof. Let f(x) = f0 + f1x + . . . + fk−1x
k−1 be a z-root of Q(x, z)

in Fk[x] and define Qi(x, z) and Ti(x, z) as in Lemma 9.10. We prove by
induction on i = 0, 1, . . . , k−1 that there is a recursion descent in BiRoot
along which recursion level i is called with the parameters (Qi, k, i).

The induction base i = 0 is again obvious. Turning to the induction
step, consider an execution of BiRoot at recursion level λ = i < k with the
parameters (Qi, k, i). The result of the computation in line 4 in BiRoot is
then Ti(x, z), and by Lemma 9.10(ii) we get that fi is inserted into the set
Z in line 5. This means that γ equals fi in one of the iterations of the loop
in lines 6–13. If i < k−1, the recursive call in line 9 is made during that
iteration with the parameters (Ti(x, xz + fi), k, λ+1) = (Qi+1(x, z), k, i+1),
thereby completing the proof of the induction step. This proof also shows
that the contents of the global variable g(x) equals f(x) upon one of the exe-
cutions of line 7 at level i = k−1 of the recursion descent; by Lemma 9.10(i)
we then have Qk−1(x, gk−1) = Qk−1(x, fk−1) = 0, which means that line 12
inserts f(x) into U .

We have already seen that the number of recursive calls to BiRoot is
always finite; we next compute an upper bound on this number. Consider
a particular recursion descent of BiRoot and let Ti(x, z) denote the result
of the computation in line 4 during the execution of recursion level i < k−1
along that descent; the number of recursive calls in line 9 then equals the
number of (distinct) roots of Ti(0, z). It might seem at first that the total
number of recursive calls made in a given level i, across all recursion descents,
could grow exponentially with i. However, we show in the next lemma that
along each recursion descent, the degree of Ti(0, z) (for i > 0) is bounded
from above by the largest multiplicity of any root of Ti−1(0, z). Thus, if
Ti(0, z) happens to have many roots, then they will be compensated for by
Ti−1(0, z), as the latter polynomial will necessarily have only a few distinct
roots.

Lemma 9.12 Let Ti−1(x, z) be a bivariate polynomial in F [x, z] such
that Ti−1(0, z) is not identically zero, and let γ be a (z-)root of multiplicity
h of Ti−1(0, z) in F . Define Ti(x, z) = x−mTi−1(x, xz + γ), where m is the
largest integer such that xm divides Ti−1(x, xz + γ). Then deg Ti(0, z) ≤ h.

288 9. List Decoding of Reed–Solomon Codes

Proof. Denote A(x, z) =
∑

t ztA(t)(x) = Ti−1(x, z + γ). Since γ is a
root of multiplicity h of Ti−1(0, z) then z = 0 is a root of multiplicity h of
A(0, z). Therefore, A(t)(0) = 0 for 0 ≤ t < h and A(h)(0) �= 0; equivalently,
x divides A(t)(x) for 0 ≤ t < h but it does not divide A(h)(x). Noting
that A(x, xz) =

∑
t ztxtA(t)(x), it follows that x divides A(x, xz) but xh+1

does not. The largest integer m such that xm divides A(x, xz) thus satisfies
1 ≤ m ≤ h. Now, for this m,

Ti(x, z) = x−mTi−1(x, xz + γ) = x−mA(x, xz)

and, so,

Ti(0, z) = (x−mA(x, xz))|x=0 =
∑

t

zt(xt−mA(t)(x))|x=0

=
∑
t≤m

zt(xt−mA(t)(x))|x=0 .

Hence, deg Ti(0, z) ≤ m ≤ h.

The following proposition is our final result of this section, providing an
upper bound on the number of recursive calls throughout the execution of
BiRoot. This result also implies that BiRoot has polynomial-time com-
plexity, if so does the root extractor called in line 5.

Proposition 9.13 Suppose that BiRoot is initially called with the pa-
rameters (Q, k, 0), where Q = Q(x, z) is a nonzero bivariate polynomial in
F [x, z] with (0, 1)-degree �. Then the overall number of recursive calls made
to BiRoot is at most �(k−1).

Proof. Fix some i in the range 1 ≤ i ≤ k−1 and let Ti−1(x, z) and
Zi−1 denote, respectively, the values of the polynomial T (x, z) and the set
Z during the execution of lines 4 and 5 at level i−1 of some recursion de-
scent. In that level, we make a recursive call to BiRoot in line 9 for each
element γ in Zi−1. Each such recursive call, in turn, computes a new value
for the polynomial T (x, z). Denoting that value by Ti,γ(x, z), we get from
Lemma 9.12 that ∑

γ∈Zi−1

deg Ti,γ(0, z) ≤ deg Ti−1(0, z) . (9.20)

Based on this observation, we next bound from above the sum of the
degrees of the polynomials T (0, z) to which line 5 is applied during level i,
across all recursion descents; note that this sum bounds from above the total
number of recursive calls made during level i (across all recursion descents).
Letting ζi stand for that sum, for i = 0 we clearly have

ζ0 ≤ deg T0(0, z) ≤ deg0,1 Q(x, z) ≤ � ,

9.8. Bounds on the decoding radius 289

where T0(x, z) is the polynomial computed in the first execution of line 4 in
BiRoot. For i > 0 we get from (9.20) that

ζk−2 ≤ ζk−3 ≤ . . . ≤ ζ1 ≤ ζ0 ≤ � .

Therefore, the total number of recursive calls to BiRoot is at most∑k−2
i=0 ζi ≤ �(k−1).

9.8 Bounds on the decoding radius

For an (n,M, d) code C over an alphabet F , denote by Δ�(C) the largest
decoding radius of any list-� decoder for C. Equivalently, Δ�(C) is the largest
integer τ such that all Hamming spheres with radius τ in Fn contain at most
� codewords of C.

When � ≥M , we have a trivial list-� decoder y �→ D(y) that returns the
list D(y) = C for every y ∈ Fn. Thus, when � ≥ M , the value Δ�(C) can be
defined to be any number between n and ∞. In the remaining part of this
section, we focus on the case � < M .

It follows from the Koetter–Vardy algorithm that for every [n, k, δn] GRS
code C over F = GF(q),

Δ�(C) ≥ nΘ�(1−δ, q)− 1 ,

where Θ�(R′, q) is given by (9.19). We will demonstrate that this inequality
is, in fact, a special case of a more general result, which applies to every
(n, M, δn) code (linear or nonlinear) over an alphabet of size q.

For positive integers M and q and a real θ ∈ [0, 1], define

J (M, θ, q) =
(M−ρ−σ+1)Mθ +

(
ρ
2

)
+
(
σ
2

)
(q−1)(

M
2

) , (9.21)

where ρ = �Mθ� and σ = �ρ/(q−1)�. This expression was introduced in
Problem 4.27 while presenting a stronger version of the Johnson bound (see
Proposition 4.11). Specifically, the following result was given as an exercise
in Problem 4.27.

Proposition 9.14 (Improvement on the Johnson bound) Let C be an
(n, M, δn) code over an Abelian group of size q and let θn be the largest
Hamming weight of any codeword in C. If θ ≤ 1− (1/q) then

δ ≤ J (M, θ, q) .

290 9. List Decoding of Reed–Solomon Codes

We also recall from Problem 4.27 the following properties of the mapping

θ �→ J (M, θ, q) ,

when viewed as a function over the real interval [0, 1]: it is continuous and
piecewise linear, and it is strictly increasing for 0 < θ < 1 − (�M/q�/M).
Restricting this function now to the interval θ ∈ [0, 1 − (�M/q�/M)], the
inverse function,

δ �→ J −1(M, δ, q) ,

is well-defined. In fact, it turns out that this inverse is very closely related
to the function Θ�(R′, q) in (9.19): the former can be expressed in terms of
the latter as

J −1(M, δ, q) = ΘM−1(1−δ, q) .

The proof of this equality is given as a guided exercise in Problem 9.9. Thus,
we infer from Proposition 9.14 the following result.

Proposition 9.15 Let C be an (n,M, δn) code over an Abelian group of
size q and suppose that there is an integer τ such that each codeword in C
has Hamming weight at most τ . Then

τ ≥ �nΘM−1(1−δ, q)� .

We next use Proposition 9.15 to obtain a lower bound on Δ�(C) for the
range � < M .

Theorem 9.16 For every (n,M, δn) code C over an alphabet of size q
and every positive integer � < M ,

Δ�(C) ≥ �nΘ�(1−δ, q)� − 1 .

Proof. Let τ be Δ�(C) + 1 and F be the alphabet of C; without loss of
generality we can assume that F is an Abelian group. By the definition of
Δ�(C) it follows that there is a word y ∈ Fn and �+1 codewords in C within
Hamming distance τ from y. By translation, we can assume that y = 0,
thereby implying that C contains a subset C′ of �+1 codewords, all of which
have Hamming weight at most τ . The result is now obtained by applying
Proposition 9.15 to the (n, �+1,≥δn) code C′.

As said earlier, for the special case of GRS codes (and also for alter-
nant codes whose designed minimum distance equals their true minimum
distance), the lower bound of Theorem 9.16 is already implied by the results
of Section 9.6. Furthermore, Section 9.6 provides not just a bound, but also
a polynomial-time decoding algorithm.

Problems 291

Problems

[Section 9.1]
Problem 9.1 Let F = GF(q) and let C be a Hamming code of length n = (qm −
1)/(q − 1) over F . Consider the mapping D : Fn → 2C that is defined for every
y ∈ Fn by

D(y) = {c ∈ C : d(y, c) ≤ 2} .

Show that D is a list-
(

1
2 (qm−q) + 1

)
decoder (with decoding radius 2).

Hint: First argue that it suffices to consider only words y ∈ Fn whose Hamming
weight is 0 or 1. Then show that when w(y) = 1, there are exactly 1

2 (qm−q) =
1
2 (n−1)(q−1) codewords in C of Hamming weight 3 that are at distance 2 from y.

[Section 9.2]
Problem 9.2 Let a(x, z) be a monic nonzero polynomial in F [x][z]. Show that for
every Q(x, z) ∈ F [x, z],

a(x, z) divides Q(x, z) in F (x)[z] ⇐⇒ a(x, z) divides Q(x, z) in F [x, z] .

Problem 9.3 Let Q(x, z) =
∑�

t=0 ztQt(x) be a nonzero polynomial in F [x, z] with
deg0,1 Q(x, z) = �, and suppose that f(x) ∈ F [x] is a z-root of Q(x, z).

1. Show that
deg f ≤ max

0≤t<�

deg Qt − deg Q�

�− t
.

2. Show that if f(x) is identically zero then so is Q0(x), and if f(x) is nonzero
then f(x) |Q0(x).

[Section 9.3]
Problem 9.4 Let CGRS be an [n, k, d] GRS code over F = GF(q), and assume that
the generator matrix of CGRS takes the form (9.1). The purpose of this problem
is to show how the Welch–Berlekamp equations in Problem 6.13 can be obtained
from the degree constraints (9.2) and (9.3), and the interpolation constraint (9.4),
by reducing the number of equations from n to d−1.

Recalling the notation from Problem 6.13, let

c = (u(α1) u(α2) . . . u(αn))

be the transmitted codeword where u(x) ∈ Fk[x], and denote by y = (y1 y2 . . . yn)
the received word. Let ũ(x) be the unique polynomial in Fk[x] that satisfies

ũ(αj) = yj , d ≤ j ≤ n ,

and define the re-encoded codeword to be

c̃ = (ũ(α1) ũ(α2) . . . ũ(αn)) .

Denote the difference y − c̃ by ỹ = (ỹ1 ỹ2 . . . ỹn), where ỹj = 0 for d ≤ j ≤ n.

292 9. List Decoding of Reed–Solomon Codes

Let Q(x, z) = Q0(x) + zQ1(x) be a nonzero bivariate polynomial in F [x, z]
that satisfies the degree constraints (9.2) and (9.3), as well as the interpolation
constraint (9.4) when applied to ỹ, namely,

Q(αj , ỹj) = 0 , j = 1, 2, . . . , n .

1. Show that Q0(x) is divisible by the polynomial

Ω(x) =
n∏

j=d

(x− αj) .

2. Write Q1(x) = V(x) and Q0(x) = N(x)Ω(x), and let A(x) be given by

A(x) =
d−1∏
j=1

(x− αj) .

Also, denote by A′(x) the formal derivative of A(x). Show that the polyno-
mial pair (V(x), N(x)) satisfies the Welch–Berlekamp equations in part 5 of
Problem 6.13, namely,

deg V < 1
2 (d+1) and deg N < 1

2 (d−1)

and
N(αj) = ỹjvjA

′(αj) ·V(αj) , 1 ≤ j < d ,

where v1, v2, . . . , vn denote the column multipliers of the canonical parity-
check matrix (vjα

i
j)

d−2
i=0

n
j=1 of CGRS, as in part 1 of Problem 6.13.

(It follows from part 6 of Problem 6.13 that the following converse also holds:
if a nonzero pair (V(x), N(x)) satisfies the Welch–Berlekamp equations, then
Q(x, z) = V(x) + z N(x)Ω(x) satisfies (9.2)–(9.4), with (9.4) applied to ỹ.)

[Section 9.4]
Problem 9.5 Show that the expression Θ�,1(R′), which appears in Sudan’s algo-
rithm, satisfies

Θ�,1(R′) ≥ Θ�−1,1(R′) ⇐⇒ R′ ≤ 2
�(�+1)

.

[Section 9.5]
Problem 9.6 Verify the following properties of the expression Θ�,r(R′), which ap-
pears in the Guruswami–Sudan algorithm:

1. For 2 ≤ r ≤ �,

Θ�,r(R′) ≥ Θ�,r−1(R′) ⇐⇒ R′ ≥ Υ�,r .

2. For 2 ≤ r ≤ �,

Θ�,r(R′) ≥ Θ�−1,r−1(R′) ⇐⇒ R′ ≥ Υ�,r .

Problems 293

3. For 1 ≤ r ≤ �−1,

Θ�,r(R′) ≥ Θ�−1,r(R′) ⇐⇒ R′ ≤ Υ�,r+1 .

Problem 9.7 Verify the following properties of the expression Θ�(R′) defined
in (9.15):

1. For � > 1,
Θ�(R′) ≥ Θ�−1(R′) .

2. (Limit when � →∞)
lim

�→∞
Θ�(R′) = 1−

√
R′ .

[Section 9.7]

Problem 9.8 Suppose that line 11 is deleted from the procedure BiRoot in Fig-
ure 9.5, namely, the polynomial g(x) is inserted in line 12 to U when λ reaches the
value k−1, regardless of whether Q(x, gk−1) is zero.

1. Show that the size of U is (still) bounded from above by deg0,1 Q(x, z).

Hint: See the proof of Proposition 9.13.

2. Verify that when the modified BiRoot is applied to the polynomial Q(x, z)
in Example 9.2 with k = 2, the procedure will return in U the following four
polynomials:

u1(x) = 18+14x , u2(x) = 8+8x , u3(x) = 14+16x , and u4(x) = 18+15x .

(So, the change in the algorithm may produce polynomials that are not z-
roots of Q(x, z).)

3. Verify that when the modified BiRoot is applied to the polynomial Q̂(x, z)
in Example 9.2, the procedure will return the polynomials

û1(x) = 18 + 14x , û2(x) = 8 + 8x , û3(x) = 13 + 9x , and û4(x) = 10 + x .

[Section 9.8]

Problem 9.9 For a real θ ∈ [0, 1], positive integers M and q, and nonnegative
integers μ and ν, define

Jμ,ν(M, θ, q) =
(M−μ−ν+1)Mθ +

(
μ
2

)
+
(
ν
2

)
(q−1)(

M
2

) .

In particular, if ρ = �Mθ� and σ = �ρ/(q−1)� for some θ ∈ [0, 1] then

Jρ,σ(M, θ, q) = J (M, θ, q) ,

where the expression J (M, θ, q) is given by (9.21).

294 9. List Decoding of Reed–Solomon Codes

1. Show that for every real θ ∈ [0, 1],

Jμ,ν(M, θ, q) ≤ Jμ+1,ν(M, θ, q) ⇐⇒ μ ≥ Mθ

and
Jμ,ν(M, θ, q) ≤ Jμ,ν+1(M, θ, q) ⇐⇒ ν ≥Mθ/(q−1) .

2. Show that for every θ ∈ [0, 1],

J (M, θ, q) = min
μ,ν∈N

Jμ,ν(M, θ, q) .

3. For nonnegative integers μ and ν such that μ + ν ≤ M , let δ �→ J−1
μ,ν (M, δ, q)

be the inverse of the function that is defined for θ ∈ [0, 1] by

θ �→ Jμ,ν(M, θ, q) .

Also, let δ �→ J−1(M, δ, q) be the inverse of θ �→ J (M, θ, q), where the latter
function is restricted to the interval θ ∈ [0, 1 − (�M/q�/M)]. Denote by
δM,q the value of J (M, θ, q) at θ = 1 − (�M/q�/M) (recall from part 4 of
Problem 4.27 that δM,q is the maximum value of J (M, θ, q) over [0, 1]). Show
that for every δ ∈ [0, δM,q],

J−1(M, δ, q) = max
μ,ν∈N : μ+ν≤M

J−1
μ,ν (M, δ, q) .

4. Show that for every two integers r and r such that 0 ≤ r < r < M ,

J−1
M−r,r+1(M, δ, q) = ΘM−1,r,r(1−δ, q) ,

where Θ�,r,r(R′, q) is the expression that appears in the Koetter–Vardy algo-
rithm.

5. Show that for every δ ∈ (0, δM,q],

J−1(M, δ, q) = ΘM−1(1−δ, q) ,

where Θ�(R′, q) is given by (9.19).

Problem 9.10 Using the notation of Problem 9.9, verify the following properties
of the expression Θ�(R′, q) in (9.19):

1. For every real R′ in [1−δ�+1,q, 1),

Θ�(R′, q) = J−1(�+1, 1−R′, q) .

(The expression Θ�(R′, q) is formally defined also for R′ ∈ [0, 1−δ�+1,q), where
it may even take values that are greater than 1; yet this range of R′ is not too
interesting, as argued next. By the improved version of the Plotkin bound (as
presented in Problem 4.29), it follows that over an alphabet of size q, there
can be no codes of size �+1 and relative minimum distance greater than δ�+1,q.
In particular, an alternant code Calt over GF(q) can have a designed relative
minimum distance δ > δ�+1,q only if |Calt| ≤ �. Therefore, when R′ (= 1−δ)
is smaller than 1−δ�+1,q, one can realize a trivial list-� decoder for Calt simply
by returning the whole code Calt as the list.)

Notes 295

2. For every real R′ in [1−δ�+1,q, 1),

Θ�(R′, q) ≥ q−1
q

(
1−

√
�qR′ + q−�−1
(� + 1)(q − 1)

)
.

Hint: Comparing the Johnson bound in Proposition 4.11 with its improved
version in Problem 4.27, verify that for θ ∈ [0, δM,q],

J (M, θ, q) ≤ M

M−1
· (2θ − q

q−1θ2) .

3. (Limit when � →∞) For every real R′ ∈ (1/q, 1),

lim
�→∞

Θ�(R′, q) =
q−1
q

(
1−

√
qR′ − 1
q − 1

)
.

Hint: Verify that lim�→∞ δ�+1,q = 1− (1/q) and that

lim
M→∞

J (M, θ, q) = 2θ − q
q−1θ2 .

4. (Limit when q →∞)
lim

q→∞
Θ�(R′, q) = Θ�(R′) ,

where Θ�(R′) is given by (9.15).

Notes

[Section 9.1]

The notion of list decoding was first studied by Elias and Wozencraft in the late
1950s (see [116]).

[Section 9.2]

Properties of multivariate polynomials and related algorithms can be found in the
book by Zippel [403].

[Section 9.3]

As demonstrated in Problem 9.4, the GRS list-1 decoder through bivariate poly-
nomials is, in fact, equivalent to solving the Welch–Berlekamp equations; see
Berlekamp [37], Blackburn [45], Dabiri and Blake [89], Ma and Wang [244], and
Welch and Berlekamp [380].

296 9. List Decoding of Reed–Solomon Codes

[Sections 9.4 and 9.5]
Sudan’s decoder is taken from [346] and the Guruswami–Sudan algorithm is taken
from [168].

While Step 1 in these algorithms can be implemented using Gaussian elimi-
nation, there are faster methods for computing the polynomial Q(x, z), by taking
advantage of the particular form of the equations involved. See Alekhnovich [7],
Feng [123], Nielsen and Høholdt [269], O’Keeffe and Fitzpatrick [274], Olshevsky
and Shokrollahi [275], Roth and Ruckenstein [302], and Sakata et al. [316]. The
fastest implementation currently known is that of Alekhnovich [7], with a time
complexity of (�/R′)O(1)n log2 n log log n operations in F .

[Section 9.6]
The presentation of the Koetter–Vardy algorithm in this section is an adaptation of
their results in [216] to the hard-decision list decoding of GRS codes and alternant
codes (for fixed list sizes �). See also Tal and Roth [353].

[Section 9.7]
The algorithm BiRoot is taken from Roth and Ruckenstein [302], where a full
complexity analysis of the algorithm can be found. Denoting N = deg1,k−1 Q(x, y),
Alekhnovich shows in [7] how by a divide-and-conquer implementation of BiRoot,
one can achieve a time complexity of �O(1)N log N operations in F , plus O(�N) calls
to the univariate root extractor. See also Augot and Pecquet [25], Feng [123], and
Gao and Shokrollahi [142].

[Section 9.8]
Somewhat weaker versions of Theorem 9.16 can be found in Goldreich et al. [151,
Section 4.1] (where the theorem is stated with Θ�(1−δ, q) replaced by the bound in
part 2 of Problem 9.10), Ruckenstein [309], and Ruckenstein and Roth [310] (where
Θ�(1−δ, q) is replaced by Θ�(1−δ)); see also Tal and Roth [353].

Recall from Problem 4.28 that for any given Abelian group F of size q, positive
integer �, and rational θ ∈ (0, 1−(1/q)], there always exists an (n, �+1, δn) code C
over F whose codewords all have Hamming weight θn and

δ = J (�+1, θ, q) .

The decoding radius of every list-� decoder D for such a code C is necessarily smaller
than θn, or else we would have |D(0)| = |C| > �; therefore,

Δ�(C) ≤ �θn� − 1 = �nΘ�(1−δ, q)� − 1 .

Hence, the bound in Theorem 9.16 is tight in the sense that for every q and � and
every rational δ in (0, 1−(1/q)], there is an (n,M>�, δn) code over an alphabet
of size q for which the bound holds with equality; see also Goldreich et al. [151,
Section 4.3] and Justesen and Høholdt [201]. On the other hand, the references [309]
and [310] identify a range of values of �, n, R′, and q for which

Δ�(CGRS) > �nΘ�(R′, q)� − 1 ,

Notes 297

for every [n, nR′+1] GRS code CGRS over GF(q); namely, for the mentioned range
of parameters, the Koetter–Vardy algorithm does not attain the largest possible
decoding radius (and, hence, neither does the Guruswami–Sudan algorithm).

Chapter 10

Codes in the Lee Metric

The study of error-correcting codes concentrates primarily on codes in the
Hamming metric. Such codes are designed to correct a prescribed number
of errors, where by an error we mean a change of an entry in the transmitted
codeword, irrespective of the (nonzero) error value. The assignment of the
same weight to each nonzero error value is reflected also in the model of the
q-ary symmetric channel, where all nonzero error values occur with the same
probability.

In this chapter, we consider codes in the Lee metric. This metric is de-
fined over the ring of integer residues modulo q and it corresponds to an error
model where a change of an entry in a codeword by ±1 is counted as one
error. This type of errors is found in noisy channels that use phase-shift key-
ing (PSK) modulation, or in channels that are susceptible to synchronization
errors.

Our focus herein will be on GRS codes and alternant codes: we first study
their distance properties in the Lee metric, and then present an efficient
decoding algorithm for these codes, which corrects any error pattern whose
Lee weight is less than half the designed minimum Lee distance of the code.

We also describe another family of codes in the Lee metric, due to
Berlekamp. For certain parameters, these codes are shown to be perfect
in that metric; namely, they attain the Lee-metric analog of the sphere-
packing bound. The latter bound and a Gilbert–Varshamov-type bound
conclude our treatment of this metric. Several more bounds are included in
the problems and the notes at the end of this chapter.

10.1 Lee weight and Lee distance

Let Zq denote the ring of integer residues modulo the positive integer q. For
an element α ∈ Zq, denote by 〈α〉 the smallest nonnegative integer m such
that α = m · 1, where 1 stands for the multiplicative unity in Zq.

298

10.1. Lee weight and Lee distance 299

The Lee weight of an element α ∈ Zq, denoted by wL(α) or |α|, takes
nonnegative integer values and is defined by

wL(α) = |α| =
{
〈α〉 if 0 ≤ 〈α〉 ≤ q/2
q − 〈α〉 otherwise

.

We refer to the elements 1, 2, . . . , �q/2 as the “positive” elements of Zq,
for which 〈α〉 = |α|; the remaining elements in Zq \ {0} are the “negative”
elements of the ring. The set of positive (respectively, negative) elements of
Zq will be denoted by Z+

q (respectively, Z−
q).

Example 10.1 In Z8 we have

|0| = 0 , |1| = |7| = 1 , |2| = |6| = 2 , |3| = |5| = 3 , and |4| = 4 .

The sets Z+
8 and Z−

8 are given by {1, 2, 3, 4} and {5, 6, 7}, respectively.

Even though Zq is not necessarily a field, we will use the vector notation
(x1 x2 . . . xn) for words in Zn

q . Clearly, Zn
q is an Abelian group, with the

addition of two words being their sum, component by component, over Zq.
The multiplication of a vector over Zq by a scalar in Zq is defined similarly
to fields.

For a word c = (c1 c2 . . . cn) in Zn
q , define the Lee weight by

wL(c) =
n∑

j=1

|cj |

(with the summation being taken over the integers). The Lee distance be-
tween two words x,y ∈ Zn

q is defined as wL(x− y); we denote that distance
by dL(x,y). One can verify (Problem 10.1) that the Lee distance satisfies
the following properties of a metric for every x,y, z ∈ Zn

q : (a) dL(x,y) ≥ 0,
with equality holding if and only if x = y, (b) dL(x,y) = dL(y,x), and
(c) dL(x,y) ≤ dL(x, z) + dL(z,y) (the triangle inequality).

The minimum Lee distance of an (n,M) code C over Zq with M > 1 is
defined by

dL(C) = min
c1,c2∈C : c1 �=c2

dL(c1, c2) .

A code C of length n over Zq is called a group code if it is an (Abelian)
subgroup of Zn

q under the addition operation in Zn
q ; a code C of length n is

linear over Zq if C is a group code over Zq and c ∈ C =⇒ a · c ∈ C for every
a ∈ Zq (see Problems 2.9 and 2.20). The minimum Lee distance of a group
code C �= {0} over Zq is the minimum Lee weight of any nonzero codeword
in C (Problem 10.2).

300 10. Codes in the Lee Metric

Example 10.2 Consider the (2, 15) code C over Z15 that is defined by

C = {(a 6a) : a ∈ Z15} .

This code is linear over Z15. Examining the 14 nonzero codewords in C yields
that those with the smallest Lee weight are

±(2 −3) and ± (5 0) .

Therefore, dL(C) = 5.

10.2 Newton’s identities

In upcoming sections, we will see how GRS codes and alternant codes per-
form as Lee-metric codes over Zq, where q is a prime. Our analysis will make
use of properties of formal power series over fields, as we summarize next.
Some of these properties have already been described in Section 6.3.2 and
are repeated here for completeness.

Recall from Section 6.3.2 that the set of formal power series over a field
Φ is defined by

Φ[[x]] =
{

a(x) =
∑∞

i=0aix
i : ai ∈ F

}
.

This set forms an integral domain, and an element
∑∞

i=0 aix
i is invertible in

Φ[[x]] if and only if a0 �= 0. Given a(x) =
∑∞

i=0 aix
i and b(x) =

∑∞
i=0 bix

i in
Φ[[x]], we write a(x) ≡ b(x) (mod xt) if ai = bi for 0 ≤ i < t.

The formal derivative of a(x) =
∑∞

i=0 aix
i ∈ Φ[[x]] is defined by a′(x) =∑∞

i=1 iaix
i−1. Given a(x), b(x) ∈ Φ[[x]], the following rules of differentiation,

(a(x) + b(x))′ = a′(x) + b′(x)

and
(a(x)b(x))′ = a′(x)b(x) + a(x)b′(x) ,

extend easily from their polynomial counterparts. The next lemma provides
the rule for differentiating the ratio of two elements of Φ[[x]].

Lemma 10.1 Let a(x) and b(x) be elements in Φ[[x]] where b(x) is in-
vertible. Then, (

a(x)
b(x)

)′
=

a′(x)b(x)− a(x)b′(x)
b2(x)

.

The proof is left as an exercise (Problem 10.4).
The following lemma presents a useful relation between a polynomial

and the power sums of its roots. This relation is commonly referred to as
Newton’s identities.

10.2. Newton’s identities 301

Lemma 10.2 (Newton’s identities) Let β1, β2, . . . , βh be (not necessarily
distinct) nonzero elements in a field Φ and define the polynomial σ(x) =∑h

i=0 σix
i ∈ Φ[x] by

σ(x) =
h∏

j=1

(1− βjx) .

Let S(x) =
∑∞

�=1 S�x
� ∈ Φ[[x]] be defined by

S� =
h∑

j=1

β�
j , � ≥ 1 .

Then σ(x) and S(x) are related by

σ(x)S(x) = −xσ′(x) ,

or, equivalently,
i−1∑
�=0

σ�Si−� = −iσi , i ≥ 1 .

Proof. By the definition of S(x) we have,

S(x) =
∞∑

�=1

(h∑
j=1

β�
j

)
x� =

h∑
j=1

∞∑
�=1

(βjx)� =
h∑

j=1

(βjx)
∞∑
i=0

(βjx)i =
h∑

j=1

βjx

1− βjx

(see Example 6.2). Hence,

σ(x)S(x) =
h∑

j=1

(βjx)
∏

1≤m≤h:
m�=j

(1− βmx) = −xσ′(x) ,

thereby completing the proof.

The main result of this section is given by the next lemma, which gener-
alizes Lemma 10.2.

Lemma 10.3 Let β1, β2, . . . , βh, γ1, γ2, . . . , γk be (not necessarily dis-
tinct) nonzero elements in a field Φ and let ψ(x) be the (unique) formal
power series in Φ[[x]] that satisfies

ψ(x) =

∏h
j=1(1− βjx)∏k
j=1(1− γjx)

.

302 10. Codes in the Lee Metric

Define the formal power series S(x) =
∑∞

�=1 S�x
� ∈ Φ[[x]] by

S� =
(h∑

j=1

β�
j

)
−
(k∑

j=1

γ�
j

)
, � ≥ 1 .

Then ψ(x) and S(x) are related by

ψ(x)S(x) = −xψ′(x) .

Proof. Let the formal power series S+(x) =
∑∞

�=1 S+
� x� and S−(x) =∑∞

�=1 S−
� x� be defined by

S+
� =

h∑
j=1

β�
j and S−

� =
k∑

j=1

γ�
j , � ≥ 1 ,

and let the polynomials σ+(x) and σ−(x) be given by

σ+(x) =
h∏

j=1

(1− βjx) and σ−(x) =
k∏

j=1

(1− γjx) .

By Lemma 10.2 we have

σ+(x)S+(x) = −x(σ+(x))′ and σ−(x)S−(x) = −x(σ−(x))′ . (10.1)

Now multiply the first equality in (10.1) by 1/σ−(x) and the second equality
by σ+/(σ−(x))2, then subtract one resulting equation from the other; this
yields

σ+(x)
σ−(x)

(S+(x)− S−(x)) = −x
(σ+(x))′σ−(x)− σ+(x)(σ−(x))′

(σ−(x))2
.

Recalling that S(x) = S+(x) − S−(x) and that ψ(x) = σ+(x)/σ−(x), the
result is obtained from Lemma 10.1.

10.3 Lee-metric alternant codes and GRS codes

Let F be the field GF(p) where p is a prime. Throughout this section, we
fix an [n, n−�] normalized GRS code CGRS over a finite extension field Φ of
F with (nonzero) code locators α1, α2, . . . , αn and redundancy �. Denote by
Calt the respective alternant code over F ; namely, Calt = CGRS ∩ Fn.

The next theorem is the first step in our study of the performance of
alternant codes in the Lee metric: this theorem provides a lower bound on
the minimum Lee distance of Calt.

10.3. Lee-metric alternant codes and GRS codes 303

Theorem 10.4 If Calt �= {0} and 1 ≤ � ≤ p/2 then

dL(Calt) ≥ 2� .

Proof. Assume that c is a codeword of Calt with wL(c) < 2�. We
show that c = 0. Letting F+ (respectively, F−) denote the set of positive
(respectively, negative) elements of F , define the index sets J+ and J− by

J± =
{

j ∈ {1, 2, . . . , n} : cj ∈ F±
}

,

and let the polynomials σ+(x), σ−(x) ∈ Φ[x] be given by

σ±(x) =
∏

j∈J±
(1− αjx)|cj | .

Observe that

wL(c) =
n∑

j=1

|cj | = deg σ+ + deg σ− . (10.2)

Define the formal power series S(x) =
∑∞

�=1 S�x
� ∈ Φ[[x]] by

S� =
n∑

j=1

cjα
�
j =

(∑
j∈J+

|cj |α�
j

)
−
(∑

j∈J−
|cj |α�

j

)
, � ≥ 1 .

By Lemma 10.3 we obtain

σ+(x)
σ−(x)

S(x) = −x

(
σ+(x)
σ−(x)

)′
.

Let ϕ(x) = 1+
∑2�−1

i=1 ϕix
i be the unique polynomial in Φ2�[x] such that

ϕ(x) ≡ σ+(x)
σ−(x)

(mod x2�) . (10.3)

Taking derivatives of both sides of the congruence (10.3), we obtain

ϕ′(x) ≡
(

σ+(x)
σ−(x)

)′
(mod x2�−1)

(note the degree of the modulus). From the last three equations we get

ϕ(x)S(x) ≡ −xϕ′(x) (mod x2�) . (10.4)

Now, c ∈ Calt implies that S(x) ≡ 0 (mod x�); therefore, by (10.4) we obtain
that x�−1 |ϕ′(x). Hence, iϕi = 0 for 1 ≤ i < � (≤ p), or

ϕ(x) ≡ 1 (mod x�) . (10.5)

304 10. Codes in the Lee Metric

Next, consider the (integer) difference

deg σ+ − deg σ− =
(∑

j∈J+

|cj |
)
−
(∑

j∈J−
|cj |

)
.

Since c ∈ Calt implies that
∑n

j=1 cj = 0, this difference satisfies

deg σ+ − deg σ− ≡ 0 (mod p) ,

from which we deduce that

either deg σ+ = deg σ− or |deg σ+ − deg σ−| ≥ p .

We next examine each of these two cases.
Case 1: deg σ+ = deg σ−. By (10.2) and our assumption on the Lee

weight of c, we have

deg σ+ = deg σ− = 1
2 wL(c) < �

and, so, from (10.3) and (10.5) we obtain σ+(x) = σ−(x). However, J+ ∩
J− = ∅ implies that gcd(σ+(x), σ−(x)) = 1; so, σ+(x) = σ−(x) = 1, i.e.,
c = 0.

Case 2: |deg σ+−deg σ−| ≥ p. We again use (10.2) and our assumption
on wL(c): here we get

p ≤ deg σ+ + deg σ− = wL(c) < 2� ,

yet this is impossible given the condition that � ≤ p/2.

We mention that Theorem 10.4 would not hold in general if we removed
the condition � ≤ p/2: it turns out that for certain code locators, the min-
imum Lee distance of Calt is bounded from above by p. Indeed, suppose
that [Φ : F] ≥ 2 and n ≥ p and let the first p code locators be given by
αj = β + γj , where β ∈ Φ \ F and γj ranges over all the elements of F .
Now,

∑p
j=1 γr

j = 0 for every 0 ≤ r < p−1 (Problem 3.22). Therefore, for
0 ≤ � < p−1,

p∑
j=1

α�
j =

p∑
j=1

(β + γj)� =
p∑

j=1

�∑
i=0

(
�
i

)
βiγ�−i

j =
�∑

i=0

(
�
i

)
βi

p∑
j=1

γ�−i
j = 0 .

It follows that for every � < p, the code Calt contains the codeword

(1 1 . . . 1︸ ︷︷ ︸
p

0 0 . . . 0︸ ︷︷ ︸
n−p

) ,

thus implying the upper bound dL(Calt) ≤ p.
Still, the condition � ≤ p/2 can be removed from Theorem 10.4 in the

special case where (Φ = F and) Calt = CGRS. The next theorem handles this
case.

10.3. Lee-metric alternant codes and GRS codes 305

Theorem 10.5 If Φ = F and 1 ≤ � < n (< p) then

dL(CGRS) ≥ 2� .

Proof. The range � ≤ p/2 has already been covered by Theorem 10.4,
so we can assume here that � > p/2. Using the same notation as in the
proof of Theorem 10.4, we will amend the last paragraph of that proof for
the case where |deg σ+−deg σ−| = p. Without loss of generality we assume
that deg σ+ − deg σ− = p (or else apply the proof to −c).

Multiplying both sides of (10.5) by S(x) yields

ϕ(x)S(x) ≡ S(x) (mod x2�) ;

hence, by (10.4), we obtain

S(x) ≡ −xϕ′(x) (mod x2�) . (10.6)

Since each code locator αj is in F , we have αp−1
j = 1 and, therefore,

S�+p−1 =
n∑

j=1

cjα
�+p−1
j =

n∑
j=1

cjα
�
j = S� , � ≥ 0 ,

where S0 =
∑n

j=1 cj = 0; namely, (S�)∞�=0 is a periodic sequence whose
period divides p−1 (see Problem 6.8). This implies that S� = 0 for p−1 ≤
� < p+�−1, which, with (10.6), leads to

iϕi = 0 for p−1 ≤ i < 2�

or
ϕi = 0 for i = p−1 or p < i < 2� .

In particular, deg ϕ(x) ≤ p. It follows that

deg(σ−(x)ϕ(x)) ≤ p + deg σ− = deg σ+ ≤ wL(c) < 2� ;

so, the congruence (10.3) can be replaced by the equality

σ−(x)ϕ(x) = σ+(x) .

Recalling that gcd(σ+(x), σ−(x)) = 1, we get that σ−(x) = 1 and σ+(x) =
ϕ(x) with

deg ϕ = deg σ+ = p + deg σ− = p .

Observe that since deg σ+ > 0, the codeword c is nonzero and, therefore,
so must be the formal power series S(x). We let t be the smallest positive
integer such that St �= 0. By periodicity we have Sp−1 = Sp = . . . =

306 10. Codes in the Lee Metric

Sp+t−2 = 0; consequently, we can increase the power of x in the modulus
in (10.6) to obtain

S(x) ≡ −xϕ′(x) (mod xp+t−1) ,

and then apply Lemma 10.2 to yield

ϕ(x)S(x) ≡ S(x) (mod xp+t−1) .

Now, from the definition of t we also have S(x) �≡ 0 (mod xt+1); hence, by
the last equation we get

ϕ(x) ≡ 1 (mod xp−1) .

Furthermore, we have shown that ϕp−1 = 0, so we are left with

σ+(x) = ϕ(x) = 1 + ϕpx
p = (1 + ϕpx)p ,

where ϕp �= 0. This means that σ+(x) has a root of multiplicity p, thereby
contradicting the fact that the multiplicity of each root of σ+(x) must be a
valid Lee weight of some element in F . We thus reach the conclusion that
it is impossible to have |deg σ+ − deg σ−| = p.

10.4 Decoding alternant codes in the Lee metric

Let Calt be an alternant code over F = GF(p), p prime, with an underlying
[n, n−�] normalized GRS code CGRS with redundancy � > 0 over a finite
extension field Φ of F . In this section, we present a decoding procedure for
Calt, based upon Euclid’s algorithm, that will correct all error words with
Lee weight less than � whenever � ≤ 1

2(p+1), and detect all error words of
Lee weight � whenever � ≤ p/2.

We first establish some notation. Denote by c = (c1 c2 . . . cn) the
codeword in Calt that is transmitted and by y = (y1 y2 . . . yn) the word in
Fn that is received, with the error word given by e = (e1 e2 . . . en) = y−c.
Define the index sets J+ and J− by

J± =
{

j ∈ {1, 2, . . . , n} : ej ∈ F±
}

.

Namely, J+ (respectively, J−) is the set of locations of the positive (respec-
tively, negative) entries in e. We assume that wL(e) < �.

Let the infinite sequence (S�)∞�=0 be defined by

S� =
n∑

j=1

ejα
�
j =

∑
j∈J+

|ej |α�
j −

∑
j∈J−

|ej |α�
j , � ≥ 0 .

10.4. Decoding alternant codes in the Lee metric 307

The first � elements of this sequence form the syndrome, (S0 S1 . . . S�−1)T ,
of y (and e) with respect to a canonical parity-check matrix,

HGRS = (α�
j)�−1

�=0
n

j=1 ,

of CGRS. The formal power series S(x) is then defined as

S(x) =
∞∑

�=1

S�x
�

(note that the first element of the syndrome, S0, is excluded from S(x)).
We also associate with e positive and negative error-locator polynomials

Λ(x) and V(x), which are defined by

Λ(x) =
∏

j∈J+

(1− αjx)|ej | and V(x) =
∏

j∈J−
(1− αjx)|ej | .

We will write these two polynomials formally as an expression Λ(x) : V(x)
and refer to the latter as the error-locator ratio. In fact, we will find it con-
venient to extend this notation to any two polynomials a(x), b(x) ∈ Φ[x] and
write a(x) : b(x) instead of (a(x), b(x)). (The notation a(x) : b(x) should
not be confused with a(x)/b(x); the latter stands for an element of Φ[[x]],
which is defined whenever gcd(b(x), x) = 1.) If an irreducible polynomial
P (x) over Φ has multiplicity s and t, respectively, in the irreducible factor-
ization of a(x) and b(x) over Φ, then the multiplicity of P (x) in a(x) : b(x)
is defined as the integer s− t. So, if mj is the multiplicity of 1− αjx in the
error-locator ratio Λ(x) : V(x), then |mj | ≤ p/2 and ej = mj · 1.

Since J+ ∩ J− = ∅, we have

gcd(Λ(x),V(x)) = 1 , (10.7)

and from
(∑

j∈J+ |ej |
)

+
(∑

j∈J− |ej |
)

=
∑n

j=1 |ej | = wL(e) < � we obtain

deg Λ + deg V < � . (10.8)

Noting that V(x) is invertible in the ring Φ[x]/x�, there is a unique polyno-
mial Ψ(x) =

∑�−1
i=0 Ψix

i in Φ�[x] such that

Ψ(x) ≡ Λ(x)
V(x)

(mod x�) . (10.9)

Furthermore, from Λ(0) = V(0) = 1 we have Ψ(0) = Ψ0 = 1. Finally, the
equality (∑

j∈J+

|ej | −
∑

j∈J−
|ej |

)
· 1 =

n∑
j=1

ej = S0

308 10. Codes in the Lee Metric

yields

deg Λ− deg V ≡ 〈S0〉 (mod p) (10.10)

(recall the notation 〈·〉 from the beginning of Section 10.1).
Equations (10.7)–(10.10) form the key equation of the Lee-metric decod-

ing of GRS codes and alternant codes. One can readily see the resemblance
to the key equation that we obtained for the Hamming metric in Section 6.3,
and this similarity will be reflected also in the decoding algorithm that we
present. We do point out one notable difference, however: only one coeffi-
cient of the syndrome—namely, S0—seems to appear explicitly in the new
key equation. The dependence of the equation on the remaining syndrome
coefficients has now become implicit through the polynomial Ψ(x). Still,
this polynomial can be uniquely computed from the syndrome coefficients
S1, S2, . . . , S�−1; we demonstrate this next.

By Lemma 10.3 we obtain

Λ(x)
V(x)

S(x) = −x

(
Λ(x)
V(x)

)′
,

and from (10.9) we have

Ψ′(x) ≡
(

Λ(x)
V(x)

)′
(mod x�−1) .

The last two equations, along with (10.9), yield

Ψ(x)S(x) ≡ −xΨ′(x) (mod x�) , (10.11)

and (10.11), in turn, can be re-written as

i∑
�=1

Ψi−�S� = −iΨi , 1 ≤ i < � . (10.12)

When � ≤ p, the index i in (10.12) ranges over invertible integers modulo
p. Starting with Ψ0 = 1, we can therefore apply (10.12) iteratively to solve
(uniquely) for the values Ψi for i = 1, 2, . . . , �−1. Hence, (10.12) induces a
mapping

(S1 S2 . . . S�−1) �→ Ψ(x) ;

furthermore, since Ψ(x) is invertible in the ring Φ[x]/x�, this mapping is
one-to-one: from (10.11) we get that the coefficients S1, S2, . . . , S�−1 are
uniquely determined by

�−1∑
�=1

S�x
� ≡ −xΨ′(x)

Ψ(x)
(mod x�) .

10.4. Decoding alternant codes in the Lee metric 309

It follows that whenever dL(Calt) ≥ 2�, distinct error words e with wL(e) < �
correspond to distinct syndromes (S0 S1 S2 . . . S�−1)T and, therefore, to
distinct pairs (S0,Ψ(x)).

We next proceed as in Section 6.4 and solve the key equation for Λ(x) :
V(x) by making use of (the extended version of) Euclid’s algorithm. For
the sake of completeness, we recall here the algorithm and several properties
thereof. Given polynomials a(x) and b(x) over a field Φ such that a(x) �= 0
and deg a > deg b, the algorithm computes remainders ri(x), quotients qi(x),
and auxiliary polynomials ti(x), as shown in Figure 10.1 (the algorithm here
is the same as in Figure 6.1, except that we have omitted the second set of
auxiliary polynomials, si(x), which are not needed for the decoding).

r−1(x) ← a(x); r0(x) ← b(x);
t−1(x) ← 0; t0(x) ← 1;
for (i← 1; ri−1(x) �= 0; i++) {

qi(x) ← ri−2(x) div ri−1(x);
ri(x) ← ri−2(x)− qi(x)ri−1(x);
ti(x) ← ti−2(x)− qi(x)ti−1(x);

}

Figure 10.1. Euclid’s algorithm.

Let ν denote the largest index i for which ri(x) �= 0.

Lemma 10.6 Using the notation of Euclid’s algorithm, deg ri − deg ti
strictly decreases for i = 0, 1, . . . , ν+1.

Proof. On the one hand, the degrees of ri strictly decrease. On the
other hand, by part 3 of Problem 3.3,

deg ti + deg ri−1 = deg a , i = 0, 1, . . . , ν+1 ;

i.e., the degrees of ti strictly increase.

We have also shown the following result (see Proposition 6.3).

Proposition 10.7 Using the notation of Euclid’s algorithm, suppose
that t(x) and r(x) are nonzero polynomials over Φ satisfying the following
conditions:

(C1) gcd(t(x), r(x)) = 1.

(C2) deg t + deg r < deg a.

(C3) t(x)b(x) ≡ r(x) (mod a(x)).

310 10. Codes in the Lee Metric

Then there is an index h ∈ {0, 1, . . . , ν+1} and a constant c ∈ Φ such that

t(x) ← c · th(x) and r(x) ← c · rh(x) .

Comparing Equations (10.7)–(10.9) with conditions (C1)–(C3) in Propo-
sition 10.7, we can solve for Λ(x) : V(x) by applying Euclid’s algorithm to

a(x) ← x� and b(x) ← Ψ(x) ,

to produce
Λ(x) ← c · rh(x) and V(x) ← c · th(x) .

The value of h is determined by the degree constraint (10.10); specifically, if
� ≤ 1

2(p+1) then

|deg rh − deg th| = |deg Λ(x)− deg V(x)| ≤ wL(e) < � ≤ 1
2(p+1)

and, so, (10.10) implies that h is an index such that

deg rh − deg th =
{
〈S0〉 if 0 ≤ 〈S0〉 < �
〈S0〉 − p if p−� < 〈S0〉 < p

.

And Lemma 10.6 then guarantees that such an index h is unique.
Note that when � ≤ p/2, there is a nonempty range of values of 〈S0〉,

namely, � ≤ 〈S0〉 ≤ p−�, which corresponds to detectable but uncorrectable
error patterns. Uncorrectable errors are detected also when the computed
ratio Λ(x) : V(x) violates (10.8), or when Λ(x) or V(x) does not factor into
linear terms 1−αjx for code locators αj . When � ≤ p/2, an (uncorrectable)
error word that has Lee weight exactly � will always be detected.

Having determined the error-locator ratio Λ(x) : V(x), we can now solve
for the error word e = (e1 e2 . . . en) by finding for j = 1, 2, . . . , n the
multiplicity, mj , of 1 − αjx in Λ(x) : V(x); the value ej then equals mj · 1.
If α−1

j is a root of Λ(x), then mj equals the multiplicity of α−1
j as such a

root; we compute mj by finding the smallest integer i ≥ 0 for which the ith
Hasse derivative of Λ(x),

Λ[i](x) =
∑
�≥i

(
�
i

)
Λ�x

�−i ,

does not vanish at x = α−1
j (see Problem 3.40; here Λ� stands for the coef-

ficient of x� in Λ(x)). Otherwise, if α−1
j is a root of V(x), then mj is the

negative integer whose absolute value equals the multiplicity of α−1
j as a

root of V(x); this multiplicity, in turn, is computed by evaluating the Hasse
derivatives of V(x) at x = α−1

j . If α−1
j is neither a root of Λ(x) nor of V(x)

then mj = 0.

10.4. Decoding alternant codes in the Lee metric 311

Input: received word (y1 y2 . . . yn) ∈ Fn.
Output: error word (e1 e2 . . . en) ∈ Fn, or an error-detection indicator “e”.

1. Compute the syndrome values S� ←
∑n

j=1 yjα
�
j for 0 ≤ � < �.

2. Compute the polynomial Ψ(x) =
∑�−1

i=0 Ψix
i iteratively by

Ψ0 ← 1 and Ψi ← −1
i

i∑
�=1

Ψi−�S� , 1 ≤ i < � .

3. Apply Euclid’s algorithm to the polynomials a(x) ← x� and b(x) ← Ψ(x) to
obtain ratios ri(x) : ti(x), i = 0, 1, 2, . . . , until deg ri − deg ti ≤ 〈S0〉 − p.

4. For an integer h such that deg rh − deg th ∈ {〈S0〉, 〈S0〉 − p} and deg rh +
deg th < � do:

(a) let Λ(x) : V(x) ← rh(x) : th(x);

(b) using Hasse derivatives find, for j = 1, 2, . . . , n, the multiplicity mj of
1− αjx in Λ(x) : V(x);

(c) if
∑n

j=1 |mj | = deg Λ + deg V, set ej ← mj · 1 for j = 1, 2, . . . , n.

5. If no integer h satisfies the condition in Step 4, or if the values ej were not
set in Step 4c, return “e”.

Figure 10.2. Lee-metric decoding algorithm for alternant codes.

Figure 10.2 presents a decoding algorithm for an alternant code Calt over
F = GF(p) with an underlying [n, n−�] normalized GRS code whose code
locators are α1, α2, . . . , αn. When � ≤ 1

2(p+1), there can be at most one
integer h that satisfies the condition

deg rh − deg th ∈
{
〈S0〉, 〈S0〉 − p

}
and deg rh + deg th < � , (10.13)

which is tested in Step 4 in Figure 10.2. Therefore, when � ≤ 1
2(p+1), the

algorithm will recover correctly any error word e with wL(e) < �. Further-
more, when � ≤ p/2, the algorithm will detect all error words with Lee
weight �.

An attempt to apply the algorithm in Figure 10.2 to alternant codes with
1
2(p+1) < � ≤ p may result in an incorrect decoding. Still, for this range of �,
there can be no more than two integers h that satisfy the condition (10.13).
Hence, when � ≤ p, the decoding algorithm is a Lee-metric list-2 decoder for
alternant codes (see Chapter 9).

312 10. Codes in the Lee Metric

10.5 Decoding GRS codes in the Lee metric

We next consider the decoding of normalized GRS codes; recall that by
Theorem 10.5, the lower bound 2� on the minimum Lee distance applies in
this case also when � > p/2. Yet, as we have pointed out, when � > 1

2(p+1),
the stopping rule (10.13) might become ambiguous. We illustrate this in the
following example.

Example 10.3 Consider the [p−1, p−1−�] normalized GRS code over
F = GF(p) with p = 7, � = 5, and α1 = 1, and assume the error word

e = (e1 e2 . . . e6) = (4 0 0 0 0 0) .

The syndrome of e is given by

(S0 S1 . . . S4)T = (4 4 . . . 4)T ,

and the respective polynomial Ψ(x) equals 1 + 3x + 6x2 + 3x3 + x4. Now,
the stopping rule (10.13) is satisfied for h = 0, yielding

Λ(x) : V(x) = r0(x) : t0(x) = (1−x)4 : 1 ,

and also for h = 4, yielding

Λ̂(x) : V̂(x) = 4t4(x) : 4r4(x) = 1 : (1−x)3 .

Both ratios, Λ : V and Λ̂ : V̂, satisfy all four equations (10.7)–(10.10). How-
ever, the multiplicity, 4, of 1−x in the irreducible factorization of Λ(x) is
not a valid Lee weight (even though it does equal 〈e1〉 in this case). Disre-
garding this inconsistency, both error-locator ratios correspond to the same
true error word.

This (seeming) ambiguity in the stopping rule is resolved by the next
proposition.

Proposition 10.8 Given an [n, n−�] normalized GRS code CGRS over
F = GF(p), p prime, let e = (e1 e2 . . . en) be an error word in Fn such that
wL(e) < � and let Ψ(x) be obtained from the syndrome (S0 S1 . . . S�−1)T

of e by (10.12).
Suppose that Λ(x) and V(x) are polynomials that factor into linear terms

over F and satisfy (10.7)–(10.10). For any code locator αj of CGRS, let μj

be the multiplicity of 1− αjx in the ratio Λ(x) : V(x). Then,

ej = μj · 1 , 1 ≤ j ≤ n .

10.5. Decoding GRS codes in the Lee metric 313

Proof. First observe that if p−1−n zeros are appended to each codeword
of CGRS, the resulting words form a subset of a primitive GRS code over F
(that is, CGRS is obtained from a primitive GRS code by shortening—see
Problem 2.14). Hence, it suffices to prove the result for primitive GRS
codes, and we assume hereafter in the proof that CGRS is primitive, with its
code locators ranging over all the elements of F ∗.

Let the ratio Λ(x) : V(x) satisfy the conditions in the proposition.
By (10.7) and (10.9) (and since Ψ(0) = 1), we can rule out the possibil-
ity of having the term x as one of the linear factors of Λ(x) or V(x); thus,
we can write

Λ(x) =
∏

j : μj>0

(1− αjx)μj and V(x) =
∏

j : μj<0

(1− αjx)−μj .

For every code locator αj ∈ F ∗ define

mj =

⎧⎨⎩
μj if |μj | ≤ p/2
μj − p if μj > p/2
μj + p if μj < −p/2

, (10.14)

and let the ratio Λ̂(x) : V̂(x) be given by

Λ̂(x) =
∏

j : mj>0

(1− αjx)mj and V̂(x) =
∏

j : mj<0

(1− αjx)−mj .

It is easy to see that Λ̂(x) : V̂(x) is the error-locator ratio of the error word
ê = (m1 m2 . . . mn) · 1, and

wL(ê) = deg Λ̂ + deg V̂ =
n∑

j=1

|mj | ≤
n∑

j=1

|μj | = deg Λ + deg V < � .

Let (Ŝ�)
�−1
�=0 be the syndrome of ê and let Ψ̂(x) be the polynomial in Φ�[x]

that satisfies (10.9) with respect to Λ̂ : V̂. Now, by construction we have

Λ(x)
Λ̂(x)

· V̂(x)
V(x)

=

∏
j : mj=μj−p(1− αjx)p∏
j : mj=μj+p(1− αjx)p

=

∏
j : mj=μj−p(1− αjx

p)∏
j : mj=μj+p(1− αjxp)

(10.15)

and, so,
Λ(x)
V(x)

≡ Λ̂(x)
V̂(x)

(mod xp) .

It follows from the latter equality and (10.9) that Ψ̂(x) = Ψ(x). Also,
from (10.10) and (10.15) we have

〈S0〉 ≡ deg Λ− deg V ≡ deg Λ̂− deg V̂ ≡ 〈Ŝ0〉 (mod p) ,

314 10. Codes in the Lee Metric

i.e., Ŝ0 = S0. Therefore, (Ŝ0, Ψ̂(x)) = (S0,Ψ(x)), which implies that the
syndromes of e and ê must be the same. Hence, ê is equal to e and the
result now follows from (10.14).

We can conclude from Proposition 10.8 that when we apply the algorithm
in Figure 10.2 to [n, n−�] normalized GRS codes over prime fields GF(p),
the decoding of less than � errors will be correct also when � > 1

2(p+1),
provided that we insert the following change into the algorithm: if Step 4c
fails to produce an error word, then Steps 4a–4c are applied also to the
second integer h (if any) that satisfies (10.13). (There are examples—such
as the one presented in Problem 10.5—where two integers h satisfy (10.13),
yet only one of them produces an error word.)

10.6 Berlekamp codes

So far we have considered codes whose minimum Lee distance is guaranteed
to be at least some prescribed even number. In this section, we introduce
codes whose designed minimum Lee distance is odd.

Let F = GF(p) where p is a prime and let β1, β2, . . . , βn be distinct
nonzero elements in a finite extension field Φ of F such that

βi + βj �= 0 for all 1 ≤ i < j ≤ n . (10.16)

Consider the linear [n, n−τ] code C over Φ with a parity-check matrix

HBer =

⎛⎜⎜⎜⎜⎜⎜⎝
β1 β2 . . . βn

β3
1 β3

2 . . . β3
n

β5
1 β5

2 . . . β5
n

...
...

...
...

β2τ−1
1 β2τ−1

2 . . . β2τ−1
n

⎞⎟⎟⎟⎟⎟⎟⎠ . (10.17)

The intersection C ∩ Fn is called a Berlekamp code and will be denoted by
CBer. When p = 2, Berlekamp codes coincide with narrow-sense alternant
codes. Note that when p > 2, the requirement (10.16) bounds the code
length n from above by 1

2(|Φ|−1) (Problem 10.6).
Next, we show that when the transmitted codewords are taken from CBer

and τ < p/2, one can recover correctly every error word with Lee weight ≤ τ ;
this, in turn, will imply that dL(CBer) ≥ 2τ + 1. In fact, we will transform
the decoding problem of CBer into that of some alternant code Calt. We start
by specifying this alternant code.

Let N = 2n and � = 2τ +1 (≤ p) and let the elements α1, α2, . . . , αN ∈ Φ
be defined by

αj =
{

βj for 1 ≤ j ≤ n
−βj−n for n < j ≤ N

. (10.18)

10.6. Berlekamp codes 315

By (10.16), all of these elements are nonzero and distinct. We let Calt be
the alternant code CGRS ∩Fn, where CGRS is the [N, N−�] normalized GRS
code over Φ with code locators α1, α2, . . . , αN .

Suppose that a codeword of CBer is transmitted, and denote by y and
e = (e1 e2 . . . en) the received word and the error word, respectively, both
in Fn. We assume that wL(e) ≤ τ < p/2.

Let (S1 S3 . . . S2τ−1)T be the syndrome of y (and e) with respect to the
parity-check matrix HBer, namely,

S� =
n∑

j=1

ejβ
�
j , � = 1, 3, . . . , 2τ−1 .

Define the word ê = (ê1 ê2 . . . êN) ∈ FN by

êj =
{

ej for 1 ≤ j ≤ n
−ej−n for n < j ≤ N

; (10.19)

clearly, wL(ê) = 2wL(e) ≤ 2τ < �. We regard ê as if it were an error word
in a transmission of a codeword of Calt, and we let (Ŝ�)

�−1
�=0 be the syndrome

of ê with respect to a canonical parity-check matrix of CGRS; that is,

Ŝ� =
N∑

j=1

êjα
�
j , 0 ≤ � < � .

By (10.18) and (10.19) we have the following relation between the syndromes
(Ŝ�)

�−1
�=0 and (S2u−1)τ

u=1:

Ŝ� =
n∑

j=1

êjα
�
j +

N∑
j=n+1

êjα
�
j

=
n∑

j=1

ej

(
β�

j − (−βj)�
)

=
{

2S� for � = 1, 3, . . . , �−2
0 for � = 0, 2, . . . , �−1

.

Noting that wL(ê) < �, we can now apply the decoding algorithm in
Figure 10.2 to the code Calt with the syndrome (Ŝ�)

�−1
�=0 . Indeed, it turns

out that the decoding will be successful also when � > (p+1)/2: since the
syndrome entry Ŝ0 equals zero, the condition (10.13) reduces to the unam-
biguous stopping rule

deg rh − deg th = 0 , (10.20)

whenever (2τ+1 =) � ≤ p. We are therefore able to decode ê and, hence, e.
Since every error word of Lee weight τ or less is correctable, it follows

(from a Lee-metric counterpart of Problem 1.10) that the minimum Lee
distance of CBer is at least 2τ+1. We summarize this in the next theorem.

316 10. Codes in the Lee Metric

Theorem 10.9 Let CBer �= {0} be defined over F = GF(p), p prime, by
the parity-check matrix (10.17). If τ < p/2 then

dL(CBer) ≥ 2τ+1 .

The particular choice of the code locators αj in (10.18) and the form
of the word ê in (10.19) allow a significant shortcut in the algorithm of
Figure 10.2. Specifically, let the index sets J+ and J− be defined by

J± =
{

j ∈ {1, 2, . . . , n} : ej ∈ F±
}

;

then the error-locator ratio Λ : V that is associated with ê is given by

Λ(x) =
∏

j∈J+

(1− βjx)|ej | ·
∏

j∈J−
(1 + βjx)|ej |

and
V(x) =

∏
j∈J+

(1 + βjx)|ej | ·
∏

j∈J−
(1− βjx)|ej | = Λ(−x) .

Hence, it suffices to compute only one polynomial, say Λ(x), and its roots—
each with its multiplicity—determine the error word e completely, as follows.
Let mj be the multiplicity of either β−1

j or −β−1
j whenever one of these

elements is a root of Λ(x) (note that Λ(x) cannot have both as roots); then

ej =
{
±mj · 1 if Λ(±β−1

j) = 0
0 otherwise

.

Sufficing to compute Λ(x) only, a simpler version of Euclid’s algorithm can
be used where ti(x) need not be computed, and by Lemma 10.6 we can
express the stopping rule (10.20) only in terms of the remainders ri(x) as

deg rh + deg rh−1 = 2τ+1 .

Equivalently, h is the unique value of i for which

deg rh ≤ τ < deg rh−1 .

Figure 10.3 summarizes the decoding algorithm for a Berlekamp code
CBer over F = GF(p) with a parity-check matrix (10.17).

10.7 Bounds for codes in the Lee metric

In this section, we develop two bounds on the parameters of codes in the Lee
metric. Specifically, we present the Lee-metric counterparts of the sphere-
packing bound and the Gilbert–Varshamov bound. More bounds can be

10.7. Bounds for codes in the Lee metric 317

Input: received word (y1 y2 . . . yn) ∈ Fn.
Output: error word (e1 e2 . . . en) ∈ Fn, or an error-detection indicator “e”.

1. Compute the syndrome values S� ←
∑n

j=1 yjβ
�
j for � = 1, 3, 5, . . . , 2τ−1.

2. Compute the polynomial Ψ(x) =
∑�−1

i=0 Ψix
i iteratively by

Ψ0 ← 1 and Ψi ← −2
i

�i/2	∑
u=1

Ψi+1−2uS2u−1 , 1 ≤ i ≤ 2τ .

3. Apply Euclid’s algorithm to a(x) ← x2τ+1 and b(x) ← Ψ(x) and compute
remainders ri(x), i = 0, 1, 2, . . . , until deg ri ≤ τ ; let h be the last value of i.

4. If deg rh + deg rh−1 = 2τ+1 then do:

(a) let Λ(x) ← rh(x);

(b) using Hasse derivatives find, for j = 1, 2, . . . , n, the multiplicity mj of
either β−1

j or −β−1
j as a root of Λ(x); if both are roots let mj ←∞;

(c) if
∑n

j=1 |mj | = deg Λ, set

ej ←
{
±mj · 1 if Λ(±β−1

j) = 0
0 otherwise

, j = 1, 2, . . . , n .

5. If deg rh + deg rh−1 �= 2τ+1, or if the values ej were not set in Step 4c,
return “e”.

Figure 10.3. Decoding algorithm for Berlekamp codes.

found in Problems 10.14 and 10.15, and in the notes on this section at the
end of this chapter.

For a word c ∈ Zn
q , denote by SL(c, t) the Lee sphere with radius t in Zn

q

that is centered at c; that is,

SL(c, t) =
{
y ∈ Zn

q : dL(y, c) ≤ t
}

.

Equivalently,

SL(c, t) =
{
c + e : e ∈ Zn

q , wL(e) ≤ t
}

.

We see from the latter characterization of SL(c, t) that the size of SL(c, t)
does not depend on the center c; we denote this size by VL|q(n, t) (we will
sometimes omit the subscript q if it can be understood from the context).

As was the case in the Hamming metric, sizes of Lee spheres will appear
in our bounds. The next proposition is therefore useful.

318 10. Codes in the Lee Metric

Proposition 10.10 The size of a Lee sphere in Zn
q with radius t < q/2

is given by

VL(n, t) =
n∑

i=0

2i

(
n

i

)(
t

i

)
(where

(
t
i

)
= 0 if i > t).

Proof. Fix a subset J ⊆ {1, 2, . . . , n} of size |J | = i and let the set SJ

consist of all the words in SL(0, t) whose support is J ; namely, an entry of
a word in SJ is nonzero if and only if that entry is indexed by some j ∈ J .
Also, let S+

J be the set of all words in SJ whose nonzero entries are all in
Z+

q . From t < q/2 it follows that

|SJ | = 2i · |S+
J | .

Now, |S+
J | equals the number of words of length i over the (strictly) positive

integers such that the sum of entries in each word is at most t; namely,
|S+

J | = |Q(t, i)|, where

Q(t, i) =
{

(m1 m2 . . . mi) | m1,m2, . . . , mi ∈ Z+ ,
∑i

s=1 ms ≤ t
}

.

The size of Q(t, i), in turn, equals
(
t
i

)
: as (m1 m2 . . . mi) ranges over the

elements of Q(t, i), the set

{m1, m1+m2, . . . , m1+m2+ · · ·+mi}

ranges over all the subsets of {1, 2, . . . , t} of size i. We thus have,

VL(n, t) = |SL(0, t)| =
∑

J⊆{1,2,...,n}
|SJ | =

∑
J

2|J | · |S+
J |

=
n∑

i=0

∑
J : |J |=i

2i
(
t
i

)
=

n∑
i=0

2i
(
n
i

)(
t
i

)
,

as claimed.

The triangle inequality was the basis for proving the sphere-packing
bound in the Hamming metric (Theorem 4.3); we now use essentially the
same proof also for the Lee metric.

Theorem 10.11 (Sphere-packing bound in the Lee metric) Let C be an
(n, M) code of size M > 1 over Zq and let t = �1

2(dL(C)− 1). Then,

M · VL(n, t) ≤ qn .

10.7. Bounds for codes in the Lee metric 319

Proof. By the triangle inequality we have SL(c1, t) ∩ SL(c2, t) = ∅ for
every two distinct codewords c1, c2 ∈ C. Hence,

M · VL(n, t) =
∑
c∈C

|SL(c, t)| =
∣∣∣⋃
c∈C
SL(c, t)

∣∣∣ ≤ qn ,

as claimed.

A code that attains the bound of Theorem 10.11 is called a perfect code
in the Lee metric.

Example 10.4 Let F = GF(p) and Φ = GF(pm) for an odd prime p
and a positive integer m, and construct the [n, k] Berlekamp code CBer over
F by the parity-check matrix (10.17) with τ = 1 and n = 1

2(pm−1). For this
code we have n−k ≤ m and, so,

|CBer| · VL(n, 1) = |CBer| · (1 + 2n) ≥ pn−m · (1 + 2n) = pn ,

where the first equality follows from Proposition 10.10. Since dL(CBer) ≥ 3,
we conclude that a Berlekamp code with τ = 1 and n = 1

2(|Φ|−1) is a perfect
code in the Lee metric.

While the construction in Example 10.4 is seemingly restricted to alpha-
bets of prime size, it can in fact be generalized to every alphabet Zq of odd
size q (see Problem 10.13).

Example 10.5 Let the ring Zq be such that q = 2t2+2t+1 for a positive
integer t. Consider the following linear code

C =
{

c · (1 2t+1) | c ∈ Zq

}
(of length 2 and size q) over Zq. Notice that −(2t+1) is the multiplicative
inverse of 2t+1 in Zq; therefore, c = (c1 c2) belongs to C if and only if
−(2t+1)c = (−c2 c1) does.

We claim that dL(C) ≥ 2t+1. Suppose to the contrary that there is a
nonzero codeword c = (c1 c2) in C such that wL(c) = |c1| + |c2| < 2t+1.
Then either |c1| ≤ t or |c2| ≤ t. Without loss of generality we can assume
that |c1| ≤ t: otherwise, select (−c2 c1) for the codeword c. By possibly
taking −c instead of c, we can further assume that c1 ∈ Z+

q .
Write s = 〈c1〉; since 1 ≤ s ≤ t we have

〈c2〉 = 〈(2t+1)c1〉 = (2t+1)s

and, so,

|c2| =
{

(2t+1)s if 1 ≤ s ≤ t/2
q − (2t+1)s if t/2 < s ≤ t

.

320 10. Codes in the Lee Metric

Hence,

wL(c) = |c1|+ |c2| =
{

(2t+2)s if 1 ≤ s ≤ t/2
(2t2 + 2t + 1)− 2ts if t/2 < s ≤ t

.

In either case we reach the contradiction wL(c) ≥ 2t + 1. We thus conclude
that dL(C) ≥ 2t+1.

The code C is perfect in the Lee metric: by Proposition 10.10 we have

VL(2, t) = 1 + 2t + 2t2 = q

and, so, |C| · VL(2, t) = q2.

Our next theorem is a Gilbert–Varshamov-type bound in the Lee metric
over prime fields of odd size.

Theorem 10.12 (Gilbert–Varshamov bound in the Lee metric) Let p
be an odd prime and let n, k, and d be positive integers such that

pn−k+1 − 1
p− 1

>
VL|p(n, d−1)− 1

2
.

Then there exists a linear [n, k] code C over F = GF(p) with dL(C) ≥ d.

Proof. Starting with C0 = {0}, we construct iteratively a sequence of
codes C1, C2, . . . , Ck such that each code Ci is a linear [n, i] code over F with
dL(Ci) ≥ d.

Suppose that we have constructed the codes C1, C2, . . . , Ci−1 for some
i ≤ k. For a word e ∈ Fn \ Ci−1, let the set Ci−1(e) be defined by

Ci−1(e) =
{
c + a · e : c ∈ Ci−1 , a ∈ F ∗

}
.

Note that Ci−1(e) is a union of p−1 distinct cosets of Ci−1 in Fn and that
distinct sets Ci−1(e) must be disjoint. Ranging over all e ∈ Fn \ Ci−1, it
follows that the number of distinct sets Ci−1(e) is given by

1
p−1

(
pn

|Ci−1|
− 1

)
=

pn−i+1 − 1
p− 1

>
VL|p(n, d−1)− 1

2
.

The right-hand side of the last inequality is the size of the set, S∗
L(0, d−1), of

all nonzero words in SL(0, d−1) whose leading nonzero entry is in F+. There-
fore, there is at least one set Ci−1(e0) for which Ci−1(e0) ∩ S∗

L(0, d−1) = ∅.
Moreover, c ∈ Ci−1(e0) ⇐⇒ −c ∈ Ci−1(e0), and 0 �∈ Ci−1(e0); so,
Ci−1(e0) ∩ SL(0, d−1) = ∅. The union Ci−1 ∪ Ci−1(e0) thus forms a linear
[n, i] code, Ci, with minimum Lee distance at least d.

Problems 321

Problems

[Section 10.1]

Problem 10.1 Consider the Lee distance mapping (x,y) �→ dL(x,y) over Zq×Zq.

1. Show that the Lee distance satisfies the properties of a metric.

2. Verify that for q = 2, 3, the Lee distance is identical to the Hamming distance.

Problem 10.2 Show that the minimum Lee distance of a group code C �= {0} over
Zq equals the minimum Lee weight of any nonzero codeword in C.

Problem 10.3 Let m and h be positive integers and write q = mh. A Gray
mapping (commonly known as a “Gray code”) is a one-to-one mapping Γ : Zq → Zh

m

that satisfies the following distance-preserving property for every x, y ∈ Zq:

|x− y| = 1 =⇒ d(Γ (x),Γ (y)) = 1

(here | · | stands for the Lee weight in Zq and d(·, ·) stands for the Hamming distance
in Zh

m).

1. Show that for every two elements x, y ∈ Zq and a Gray mapping Γ : Zq → Zh
m,

d(Γ (x),Γ (y)) ≤ |x− y| .

2. For an element x ∈ Zq, denote by �x = (x1 x2 . . . xh) the word in Zh
m whose

entries form the h-digit representation of the integer 〈x〉 to the base m, with
the first entry in �x being the least significant digit of the representation; i.e.,
the entries xj are determined by

〈x〉 =
h∑

j=1

〈xj〉 ·mj−1 .

Consider the mapping Γ : Zq → Zh
m where for every x ∈ Zq, the value

Γ (x) = (y1 y2 . . . yh) is obtained from �x = (x1 x2 . . . xh) by

yj =
{

xj − xj+1 if 1 ≤ j < h
xh if j = h

(where the subtraction is in Zm). Show that x�→ Γ (x) is a Gray mapping.

3. Let C be an (nh,M, d) code over Zm. Define the (n,M) code Ĉ over Zq by

Ĉ =
{

(c1 c2 . . . cn) ∈ Zn
q : (Γ (c1) |Γ (c2) | . . . |Γ (cn)) ∈ C

}
,

where (·|·) denotes concatenation of words. Show that dL(Ĉ) ≥ d.

322 10. Codes in the Lee Metric

[Section 10.2]

Problem 10.4 Let Φ be a field. Prove the following properties of the formal
derivative, for every a(x), b(x) ∈ Φ[[x]] and c ∈ Φ:

1. (a(x) + b(x))′ = a′(x) + b′(x).

2. (c · a(x))′ = c · a′(x).

3. (a(x)b(x))′ = a′(x)b(x) + a(x)b′(x).

4. If b(x) is invertible then(
a(x)
b(x)

)′
=

a′(x)b(x)− a(x)b′(x)
b2(x)

.

[Section 10.5]

Problem 10.5 Let CGRS be an [n, n−�] normalized GRS code over F = GF(p),
where p is a prime such that p ≡ 3 (mod 4) and

� = 1
2 (p+3) ≤ n < p .

Denote the code locators of CGRS by α1, α2, . . . , αn.

1. Show that there must be at least two indexes r and s such that αs = αr + 1.

Hint: Assume without loss of generality that the code locators αj are ordered
so that 〈αj〉 < 〈αj+1〉 for 1 ≤ j < n. Then show that there is an index r such
that 〈αr+1〉 = 〈αr〉+ 1.

2. Let m be the smallest positive integer such that � | (pm−1) (why does such
an integer exist?) and let β ∈ GF(pm) be such that O(β) = �. Show that
β� ∈ F if and only if � | �.
Hint: gcd(�, p−1) = 1.

3. Show that the field element 3
2 (three times the multiplicative inverse of 2) is

in Z−
p and that | 32 | =

1
2 (p−3).

4. Let r and s be as in part 1 and let the error word e = (e1 e2 . . . en) be given
by

ej =

⎧⎨⎩
3
2 if j = r
−1 if j = s
0 otherwise

.

Show that when applying the algorithm of Figure 10.2 to the decoding of e,
there are two integers h that satisfy (10.13), yet only one of them will produce
an error word in Step 4c.

Hint: Let m and β be as in part 2 and denote by ĈGRS the [n+�−1, n−1]
normalized GRS code over GF(pm) whose code locators are

α̂j =
{

αj if 1 ≤ j ≤ n
βj−n + αr if n < j < n+�

.

Problems 323

Consider the error word ê = (ê1 ê2 . . . ên+�−1) whose entries are given by

êj =
{

1 if n < j < n+�
0 otherwise .

Show that with respect to a canonical parity-check matrix of ĈGRS, the word
ê has the same syndrome as the error word that is obtained by appending
�−1 zeros to e. Deduce that when applying the algorithm of Figure 10.2 to
that syndrome, the value h for which deg rh − deg th = 〈S0〉 = 1

2 (p+1) will
generate in Step 4a polynomials that do not factor into linear terms over F .

[Section 10.6]
Problem 10.6 Let Φ be a finite field with odd characteristic and let B be a set
of distinct nonzero elements of Φ such that every two elements β, γ ∈ B satisfy
β+γ �= 0. Show that |B| ≤ 1

2 (|Φ|−1), and construct sets B for which this inequality
holds with equality.

Problem 10.7 (Negacyclic codes) A linear [n, k] code C over a field F is called
negacyclic if

(c0 c1 . . . cn−1) ∈ C =⇒ (−cn−1 c0 c1 . . . cn−2) ∈ C .

Let C be a negacyclic [n, k>0] code over a field F , and associate each codeword
(c0 c1 . . . cn−1) in C with the polynomial

c(x) = c0 + c1x + . . . + cn−1x
n−1

in Fn[x].

1. Show that C is an ideal in the ring F [x]/(xn + 1).

2. Show that there is a unique monic polynomial g(x) ∈ F [x] such that for every
c(x) ∈ Fn[x],

c(x) ∈ C ⇐⇒ g(x) | c(x)

(compare with Proposition 8.1). The polynomial g(x) is called the generator
polynomial of the negacyclic code C.

3. Show that deg g = n− k.

4. Show that g(x) |xn + 1.

5. Show that every monic polynomial g(x) ∈ Fn[x] that divides xn + 1 is a
generator polynomial of a negacyclic [n, n− deg g] code over F .

6. Suppose that F = GF(p) for an odd prime p. Let n be a positive integer not
divisible by p and let β be an element of multiplicative order 2n in a finite
extension field Φ of F (verify that such a field Φ always exists). Define the
τ × n matrix H over Φ by

H =

⎛⎜⎜⎜⎜⎜⎝
1 β . . . βn−1

1 β3 . . . β3(n−1)

1 β5 . . . β5(n−1)

...
...

...
...

1 β2τ−1 . . . β(2τ−1)(n−1)

⎞⎟⎟⎟⎟⎟⎠ ,

324 10. Codes in the Lee Metric

and let C be the code

C = { c ∈ Fn : HcT = 0 } .

Show that C is both a negacyclic code and a Berlekamp code.

Problem 10.8 (Chiang–Wolf codes) Let F = GF(p), p prime, and let n be an odd
integer not divisible by p. Select an element β of multiplicative order n in a finite
extension field of F and let g(x) be the product of the distinct minimal polynomials
(with respect to F) of the elements β, β3, . . . , β2t−1. Show that g(x) generates a
cyclic [n, n− deg g] code over F and that this code is a Berlekamp code.

[Section 10.7]
Problem 10.9 Show that VL(n, t) is strictly smaller than

∑n
i=0 2i

(
n
i

)(
t
i

)
whenever

t ≥ q/2 (and n > 0).

Problem 10.10 Let δ be a nonnegative real number. Show that for every two
positive integers n and m,

V (n+m, �δ(n+m)) ≥ V (n, �δn) · V (m, �δm) ,

where V (·, ·) stands for a sphere volume either in the Hamming metric or in the Lee
metric.

Problem 10.11 Let Zq be such that q = (2t+1)M for positive integers t and
M > 1. Construct a (1, M) code C over Zq with dL(C) ≥ 2t+1 and show that C is
perfect in the Lee metric.

Problem 10.12 Let q be divisible by m = 2t2 + 2t + 1 for some positive integer t.
Construct a (2, q2/m) code C over Zq with dL(C) ≥ 2t+1 and show that C is perfect
in the Lee metric.

Hint: Let Ĉ be obtained by applying the construction in Example 10.5 to the ring
Zm, and consider the code

C =
{

(a1m+〈c1〉 a2m+〈c2〉) · 1 : (c1 c2) ∈ Ĉ, 0 ≤ a1, a2 < q/m
}

.

Problem 10.13 Given an odd integer q > 2 and a positive integer m, write n =
1
2 (qm−1) and let h1,h2, . . . ,hn be the nonzero column vectors in Zm

q whose leading
nonzero entries are in Z+

q . Define the code C over Zq by

C =
{

(c1 c2 . . . cn) ∈ Zn
q :

∑n
j=1cjhj = 0

}
.

1. Verify that C is a linear code over Zq.

2. Show that dL(C) ≥ 3.

3. Show that |C| = qn−m.

4. Show that C is a perfect code in the Lee metric.

Problems 325

Problem 10.14 (Eigenvalues of the Lee adjacency matrix) A q × q matrix A =
(ai,j)

q−1
i,j=0 over a field K is called circulant if ai,j = a0,j−i for every 0 ≤ i, j < q,

with indexes taken modulo q. Associate with a circulant matrix A the polynomial
ϑA(x) =

∑q−1
j=0 a0,jx

j (i.e., the coefficients of ϑA(x) form the first row of A), and
suppose that K contains an element ω with multiplicative order q.

1. Show that the eigenvalues of A are given by ϑA(ωm), 0 ≤ m < q, with the
respective associated right eigenvectors (1 ωm ω2m . . . ω(q−1)m)T .

2. Show that rank(A) = n− deg gcd(ϑA(x), xq−1).

3. For an integer q > 1, let Dq be the following q × q matrix over the real field
R: the rows and columns of Dq are indexed by the elements of Zq, and entry
(a, b) in Dq equals |a−b| for every a, b ∈ Zq; e.g., for q = 5,

D5 =

⎛⎜⎜⎜⎜⎝
0 1 2 2 1
1 0 1 2 2
2 1 0 1 2
2 2 1 0 1
1 2 2 1 0

⎞⎟⎟⎟⎟⎠ .

The matrix Dq is called the Lee adjacency matrix for Zq.
Let ω be a root of order q of unity in the complex field C; that is, ω = e2πı/q,
where e = 2.71828 · · · is the base of natural logarithms, π = 3.14159 · · · , and
ı =

√
−1. Show that the eigenvalues, (λa)a∈Zq , of Dq are given by

λ0 = ϑDq (1) =

⎧⎨⎩ 1
4 (q2−1) if q is odd
1
4q2 if q is even

and

λm·1 = ϑDq
(ωm) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)m cos(πm/q)− 1

2 sin2(πm/q)
if q is odd

(−1)m − 1
2 sin2(πm/q)

if q is even

, 1 ≤ m < q .

Hint: Consider the polynomial f(x) ∈ Rq[x] that satisfies

f(x) ≡
(

1
2 (x + x−1)− 1

)
· ϑDq (x) (mod (xq − 1)) .

Denoting by da the row of Dq that corresponds to the element a ∈ Zq, show
that the vector of coefficients of f(x) is given by 1

2 (d1 + d−1)− d0 and, so,

f(x) =
{

1− 1
2

(
x(q−1)/2 + x(q+1)/2

)
if q is odd

1− xq/2 if q is even
.

Recalling that ωm(q−1)/2 and ωm(q+1)/2 are conjugate elements in C, deduce
that

f(ωm) =
{

1− Re
{
ωm(q−1)/2

}
if q is odd

1− (−1)m if q is even
, 0 ≤ m < q ,

326 10. Codes in the Lee Metric

where Re {y} stands for the real value of y ∈ C. Finally, recall that Re
{
eıθ

}
=

cos θ and apply known trigonometric identities to

ϑDq (ω
m) =

f(ωm)
1
2 (ωm + ω−m)− 1

=
f(ωm)

Re {ωm} − 1
, 1 ≤ m < q .

4. Let P = (Pa,b) denote the q× q complex matrix whose rows and columns are
indexed by the elements of Zq, and its entries are given by

Pa,b =
√

1/q · ω〈ab〉 , a, b ∈ Zq .

Let P ∗ denote the q × q conjugate transpose of P ; that is,

P ∗
a,b =

√
1/q · ω−〈ab〉 , a, b ∈ Zq .

Show that P ∗P = I and that Dq can be written as PΛP ∗, where Λ is a q× q
diagonal matrix with its main diagonal equaling to (λa)a∈Zq .

Problem 10.15 (Plotkin bound in the Lee metric) Let C be an (n, M>1) code
over Zq.

1. For a ∈ Zq and j ∈ {1, 2, . . . , n}, denote by xa,j the number of codewords in C
whose jth entry equals a. Show that when ranging over all pairs of codewords
in C, the total sum of the Lee distances between the codewords satisfies

∑
c1,c2∈C

dL(c1, c2) =
n∑

j=1

∑
a,b∈Zq

xa,jxb,j |a−b| .

2. Let Dq be the Lee adjacency matrix for Zq as defined in Problem 10.14.
Denote by xj the row vector (xa,j)a∈Zq in Rq; namely, the entries of xj are
indexed by the elements of Zq, and the entry that is indexed by a equals xa,j .
Show that ∑

c1,c2∈C
dL(c1, c2) =

n∑
j=1

xjDqxT
j .

3. Show that for every j = 1, 2, . . . , n,

xjDqxT
j ≤ χL(q) ·M2 ,

where χL(q) is the average Lee weight of the elements of Zq, namely,

χL(q) =

⎧⎪⎪⎨⎪⎪⎩
q2−1
4q

if q is odd

q

4
if q is even

.

Hint: Let Dq = PΛP ∗ be the decomposition in part 4 of Problem 10.14.
Define the row vector yj = (ya,j)a∈Zq = xjP and let y∗

j be the column
vector (y∗

a,j)a∈Zq where y∗
a,j denotes the complex conjugate of ya,j . Verify

Notes 327

that y0,j = M/
√

q and that all the eigenvalues of Dq other than λ0 are (real
and) nonpositive. Conclude by justifying the equalities and the inequality in
the following chain:

xjDqxT
j = yjΛy∗

j =
∑
a∈Zq

λa|ya,j |2 ≤ λ0y
2
0,j = χL(q) ·M2 .

4. Show that
dL(C)

n
≤ χL(q)

1− (1/M)
.

Hint: Bound dL(C) from above by

1
M(M−1)

∑
c1,c2∈C

dL(c1, c2) .

5. Verify that when q is an odd prime, the following codes attain the bound in
part 4:

(a) The shortened first-order Reed–Muller code over Zq, which is the linear
[qm−1, m] code over Zq with an m × (qm−1) generator matrix whose
columns range over all the nonzero vectors in Zm

q .

(b) A linear code over Zq of length n = 1
2 (qm−1) and dimension m, where

the columns of the generator matrix range over the nonzero vectors in
Zm

q whose leading nonzero entries are in Z+
q .

Notes

[Section 10.1]

The Lee metric was developed as an alternative to the Hamming metric for certain
noisy channels—primarily channels that use phase-shift keying (PSK) modulation
(see Nakamura [266]). Codes in the Lee metric have also been proposed in chan-
nels that are susceptible to synchronization errors. In this error model, symbols
(which are typically over the binary alphabet) may be deleted from—or inserted
into—the transmitted sequence. Looking at the sequence of run-lengths of iden-
tical symbols, a synchronization error within a run translates into adding ±1 to
the respective run-length; hence, if the run-lengths are set according to the entries
of a codeword of a Lee-metric code (over the proper alphabet), then a prescribed
number of synchronization errors can be corrected. A similar coding method can be
applied to channels that are prone to bit-shift (or peak-shift) errors, where a dele-
tion (respectively, insertion) within a run is followed by an insertion (respectively,
deletion) in the next run. Coding methods for channels with synchronization or
bit-shift errors were studied by Hilden et al. [176], Iizuka et al. [191], Kuznetsov
and Vinck [220], Levenshtein [225]–[227], Levenshtein and Vinck [228], Tanaka and
Kasai [355], Tenengolts [358], [359], and Ullman [366], [367]. For the application of
Lee-metric codes in such channels see Bours [63], Roth and Siegel [306], Saitoh [312],

328 10. Codes in the Lee Metric

and Saitoh et al. [313]. Orlitsky presents in [276] an application of Lee-metric codes
in the area of interactive communication.

Codes in the Lee metric were first described in the late 1950s by Lee [222] and
Ulrich [368]. Constructions of Lee-metric codes have been obtained since by quite a
few authors: Astola [23], Berlekamp [36, Chapter 9], Chiang and Wolf [78] (see Prob-
lem 10.8), Golomb and Welch [154], [155], Nakamura [266], Roth and Siegel [306],
and Satyanarayana [319]. The construction of Lee-metric codes from Hamming-
metric codes through a Gray mapping (Problem 10.3) was suggested by Orlit-
sky [276] (the Gray mapping in Problem 10.3 is due to Sharma and Khanna [332]);
see also Davydov [92]. Hammons et al. showed in [170] that certain known families
of nonlinear codes over GF(2) become linear over Z4 under the Gray mapping; these
families include (a modified version of) the (n=22m,M=2n−4m, d=6) Preparata
codes [285], and the family of the Delsarte–Goethals codes [98], with their special
case of the (n=22m,M=24m, d=2m−1(2m−1)) Kerdock codes [209].

The Lee metric can be defined also over the integer ring, with the Lee weight of
a ∈ Z being the ordinary absolute value of a. The Lee weight of a word in Zn then
coincides with the L1-norm of that word when the latter is regarded as an element
of Rn.

[Section 10.2]

Newton’s identities (Lemma 10.2) are also referred to as the Newton–Girard formu-
las. See Lidl and Niederreiter [229, pp. 29–30] or Problem 5.18 in van der Waer-
den [377, Section 5.7].

[Sections 10.3–10.5]

The Lee-metric properties of alternant codes and GRS codes are taken from Roth
and Siegel [306], where one can also find the decoding algorithm in Figure 10.2.
There are other known lower bounds on dL(CGRS) that improve on Theorem 10.5
for values of � that are close to p. For example, it is shown in [306] that

dL(CGRS) ≥ �+1
2

+
(�+1)2

4(p−1−�)
.

This bound is better than Theorem 10.5 for � ≥ 6
7p, and it becomes quadratic in �

for � = p−O(1). Mazur [257] has proved that

dL(CGRS) ≥ 1
4

(
p2−1− (p−�−2) · p3/2

)
,

and this bound becomes quadratic in � when � = p−O(
√

p).
List decoding of alternant codes in the Lee metric was studied by Tal [352],

[353].
One can obtain a counterpart of an alternant code for the case where the un-

derlying ring is the integer ring Z, by starting with an [n, n−�] normalized GRS
code CGRS over the rational field Q (i.e., by letting the code locators be distinct
nonzero elements of Q) and then considering the intersection C = CGRS ∩ Zn. We
have dL(C) ≥ dL(CGRS) ≥ 2�, and the decoding algorithm in Figure 10.2 also fits

Notes 329

the code C, except that in Step 4, one only needs to consider the case where the
difference deg rh − deg th equals S0.

Suppose now that the code CGRS (over Q) has code locators αj = j for 1 ≤ j ≤ n.
By performing elementary linear operations on the rows of HGRS, we can get an
alternative parity-check matrix of CGRS which takes the form

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1(
0
1

) (
1
1

) (
2
1

)
. . .

(
n−1

1

)(
0
2

) (
1
2

) (
2
2

)
. . .

(
n−1

2

)
...

...
...

...
...(

0
�−1

) (
1

�−1

) (
2

�−1

)
. . .

(
n−1
�−1

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(where

(
j
i

)
= 0 if i > j). Associating every word (c0 c1 . . . cn−1) in Zn with the

polynomial
c(x) = c0 + c1x + . . . + cn−1x

n−1

in Zn[x], it is easy to verify that the entries of HcT equal the values of the first �
Hasse derivatives, c(x), c[1](x), . . . , c[�−1](x), at x = 1. We thus get the following
equivalent characterization for the respective alternant code C = CGRS ∩ Zn:

C =
{

c(x) ∈ Zn[x] : (x−1)� | c(x)
}

.

A word in C with coefficients in {+1,−1} is said to have an �th order spectral
null at zero frequency. The requirement of having words with a prescribed spectral
null at zero frequency appears in several recording applications; see Immink [192],
[193] and Karabed and Siegel [204]. An �th order spectral-null code is a subset of
X (n, �) = C ∩ {±1}n. It can be easily verified that

d(X (n, �)) = 1
2dL(X (n, �)) ≥ dL(C) ≥ 2�

whenever X (n, �) �= ∅.
Determining the exact value of d(�) = minn :X (n,�) �=∅ d(X (n, �)) is equivalent

to a known problem in number theory referred to as the Prouhet–Tarry problem:
given �, find the smallest positive integer d(�) for which there exist two disjoint
subsets A,B ∈ Z+ of total size d(�) such that∑

α∈A
α� =

∑
β∈B

β� , 0 ≤ � < �

(for � = 0 this equality becomes |A| = |B|). It is known that d(�) equals 2� for
� ≤ 10 and is bounded from above by 1

2�(�−1) + 1 for larger �; see Hardy and
Wright [171, p. 329] and Hua [189, p. 507]. Roth et al. [307] showed that X (n, �)
is nonempty only if n is divisible by 2
log2 ��+1. Freiman and Litsyn [134] then
showed that this condition is also sufficient for every fixed � and large enough n;
furthermore, they proved that for every fixed �,

lim inf
n→∞

n− log2 |X (n, �)|
log2 n

=
�2

2
.

330 10. Codes in the Lee Metric

Determining the smallest value of n for which X (n, �) is nonempty remains an open
problem. This value equals 2� for � ≤ 5, yet for � = 6 the set X (n, 6) is already
nonempty for n = 48; see Boyd [64], [65]. For more on spectral-null codes, see
Eleftheriou and Cideciyan [113], Immink [192], [193], Immink and Beenker [194],
Karabed and Siegel [204], Monti and Pierobon [264], Roth [298], Roth et al. [307],
Skachek et al. [341], and Tallini and Bose [354].

[Section 10.6]
Berlekamp codes were obtained in [36, Chapter 9], where their description is given
in the form of negacyclic codes (see Problem 10.7). While the analysis of Berlekamp
codes is based here on the decoding algorithm of alternant codes, Berlekamp codes
and their decoding algorithm were obtained much earlier than the respective work
on alternant codes.

[Section 10.7]
The sphere-packing bound in the Lee metric (stated in Theorem 10.11) is due to
Berlekamp [36, Chapter 13] and Golomb and Welch [154], [155]; these references
also contain the constructions in Example 10.5 and Problems 10.11–10.13. From
Problem 10.1 it follows that all perfect codes in the Hamming metric over GF(2)
and GF(3) are also perfect codes in the Lee metric; this includes the Hamming
codes and the Golay codes over these fields. It is conjectured that for q > 3, there
are no perfect codes in the Lee metric over Zq with code length greater than 2 and
minimum Lee distance greater than 3. See Astola [19]–[22], Bassalygo [31], Gravier
et al. [162], Lepistö [223], [224], Post [284], and Riihonen [295].

The Gilbert–Varshamov bound in the Lee metric (Theorem 10.12) is from
Berlekamp [36, Chapter 13], and the Plotkin bound (part 4 of Problem 10.15)
is due to Wyner and Graham [390]. The properties of circulant matrices , which
are used in the proof of the Plotkin bound, can be found in the book by Davis [91].

The Lee-metric counterpart of the Johnson bound, due to Berlekamp [36, Chap-
ter 13], takes the following form.

Proposition 10.13 (Johnson bound in the Lee metric) Let C be an (n,M>1)
code over Zq and denote by χL(q) the average Lee weight of the elements of Zq,
namely,

χL(q) =
{

(q2−1)/(4q) if q is odd
q/4 if q is even .

Suppose that there is a real θ ∈ (0, χL(q)] such that each codeword in C has Lee
weight at most θn. Then,

dL(C)
n

≤ M

M−1
·
(

2θ − θ2

χL(q)

)
.

Proof. Denote by ε and 1 the column vectors (1 0 0 . . . 0)T and (1 1 . . . 1)T ,
respectively, in Rq. Using the notation in part 3 of Problem 10.15, for every j ∈
{1, 2, . . . , n} we have,∑

a∈Zq

xa,j |a| = xjDqε = xjPΛP ∗ε =
√

1/q · yjΛ1 =
√

1/q ·
∑
a∈Zq

λaya,j . (10.21)

Notes 331

Now, it is assumed that wL(c) ≤ θn for every c ∈ C; hence,

n∑
j=1

∑
a∈Zq

xa,j |a| =
∑
c∈C

wL(c) ≤ Mθn ,

which, by (10.21), translates into

n∑
j=1

∑
a∈Zq

λaRe {ya,j} ≤ Mθn
√

q . (10.22)

On the other hand,

M(M−1) · dL(C) ≤
∑

c1,c2∈C
dL(c1, c2) =

n∑
j=1

xjDqxT
j (10.23)

(see part 2 of Problem 10.15). Now, for every real v,

xjDqxT
j =

∑
a∈Zq

λa|ya,j |2 =
∑
a∈Zq

λa|ya,j − v|2 + 2v
∑
a∈Zq

λaRe {ya,j} − v2
∑
a∈Zq

λa .

Recall that the sum of the eigenvalues of a matrix equals its trace (namely, the
sum of elements on its main diagonal) and, so

∑
a∈Zq

λa = 0. Furthermore, all
the eigenvalues λa other than λ0 are (real and) nonpositive, and y0,j = M/

√
q;

therefore,

xjDqxT
j ≤ λ0|y0,j − v|2 + 2v

∑
a∈Zq

λaRe {ya,j}

= λ0

(
M
√

q
− v

)2

+ 2v
∑
a∈Zq

λaRe {ya,j} .

Summing over j ∈ {1, 2, . . . , n} we obtain from (10.22) and (10.23) that for every
v ≥ 0,

M(M−1) · dL(C) ≤
n∑

j=1

xjDqxT
j ≤ λ0n

(
M
√

q
− v

)2

+ 2v
n∑

j=1

∑
a∈Zq

λaRe {ya,j}

≤ λ0n

(
M
√

q
− v

)2

+ 2vMθn
√

q .

Finally, substituting

v ← M
√

q

(
1− qθ

λ0

)
=

M
√

q

(
1− θ

χL(q)

)
yields the desired result.

We next turn to the Elias bound in the Lee metric, also due to Berlekamp [36,
Chapter 13]. Let (an)∞n=0 be an infinite all-positive real sequence. We say that this
sequence is super-multiplicative if an+m ≥ anam for every n,m ≥ 0. The following
lemma is by Kingman [214] (see also Seneta [328, p. 249]).

332 10. Codes in the Lee Metric

Lemma 10.14 If (an)∞n=0 is a super-multiplicative sequence then the limit

a = lim
n→∞

a1/n
n

exists, and an ≤ an for every n ≥ 0.

It follows from the last lemma and Problem 10.10 that for every nonnegative
real δ, the limit

HL|q(δ) = lim
n→∞

1
n
· logq VL|q (n, �δn)

exists. Combining this with Proposition 10.13, we obtain the next theorem.

Theorem 10.15 (Elias bound in the Lee metric) Let C be an (n, qnR) code
over Zq with dL(C) = δn where δ ≤ χL(q). Then,

R ≤ 1− HL|q

(
χL(q) ·

(
1−

√
1− (δ/χL(q))

))
+ o(1) ,

where o(1) stands for an expression that goes to zero as n → ∞ (this expression
may depend on q or δ).

We omit the proof, as it is very similar to that of the Hamming-metric Elias
bound (Theorem 4.12). The Elias bound in the Lee metric was also studied by
Astola [22], [24] and Lepistö [223].

Chiang and Wolf [78] obtained a bound that can be viewed as the Lee-metric
version of the Singleton bound.

Chapter 11

MDS Codes

In Section 4.1, we defined MDS codes as codes that attain the Singleton
bound. This chapter further explores their properties. The main topic to
be covered here is the problem of determining for a given positive integer
k and a finite field F = GF(q), the largest length of any linear MDS code
of dimension k over F . This problem is still one of the most notable un-
resolved questions in coding theory, as well as in other disciplines, such as
combinatorics and projective geometry over finite fields. The problem has
been settled so far only for a limited range of dimensions k. Based on the
partial proved evidence, it is believed that within the range 2 ≤ k ≤ q−1
(and with two exceptions for even values of q), linear [n, k] MDS codes exist
over F if and only if n ≤ q+1. One method for proving this conjecture for
certain values of k is based on identifying a range of parameters for which
MDS codes are necessarily extended GRS codes. To this end, we will devote
a part of this chapter to reviewing some of the properties of GRS codes and
their extensions.

11.1 Definition revisited

We start by recalling the Singleton bound from Section 4.1. We will prove
it again here, using a certain characterization of the minimum distance of a
code, as provided by the following lemma.

Lemma 11.1 Let F be an alphabet of size q and C be an (n,M, d) code
over F . Denote by T the M × n array whose rows form the codewords of C,
and let � be the smallest integer such that the rows in every M × � sub-array
of T are all distinct. Then,

d = n− � + 1 .

333

334 11. MDS Codes

Proof. Since no two distinct codewords in C agree on any n−d+1 coor-
dinates, we have � ≤ n−d+1. On the other hand, there exist two distinct
codewords that agree on n−d coordinates; hence, � > n−d.

Corollary 11.2 (The Singleton bound) For any (n,M, d) code over an
alphabet of size q,

d ≤ n− (logq M) + 1 .

Proof. The definition of � in Lemma 11.1 requires that q� ≥M .

Codes that attain the bound in Corollary 11.2 are called maximum dis-
tance separable (MDS). The following are examples of MDS codes of length
n over any finite Abelian group F of size q.

• The (n, qn, 1) code Fn.

• The (n, qn−1, 2) parity code {c1c2 . . . cn ∈ Fn :
∑n

i=1 ci = 0}, with the
summation taken in the group F .

• The (n, q, n) repetition code {aa . . . a : a ∈ F}.

We will refer to these codes as the trivial MDS constructions.
Let T be an M × n array over an alphabet F of size q and let k be

a positive integer. We say that T is an orthogonal array with parameters
(M, n, q, k) (in short, OA(M,n, q, k)) if each element of F k appears as a row
in every M × k sub-array of T exactly M/qk times (in particular, qk must
divide M). The value M/qk is called the index of the orthogonal array. Our
interest will be focused on orthogonal arrays with index 1, in which case
M = qk and the rows of every qk× k sub-array of T range over the elements
of F k.

We can use the notion of orthogonal arrays to obtain an equivalent defi-
nition of MDS codes. We demonstrate this through the next proposition.

Proposition 11.3 Let F be an alphabet of size q and C be an (n,M, d)
code over F . Denote by T the M × n array whose rows form the codewords
of C. Then C is MDS if and only if M = qk for some integer k and T is an
OA(qk, n, q, k) (with index 1).

Proof. Clearly, C is MDS only if logq M is an integer. Now, suppose
that M = qk for an integer k and let � be as in Lemma 11.1; note that
� ≥ logq M = k. By Lemma 11.1 we obtain that C is MDS if and only if
� = k. The latter equality, in turn, is equivalent to saying that the rows in
every qk× k sub-array of T are all distinct, and that can happen if and only
if T is an OA(qk, n, q, k).

11.2. GRS codes and their extensions 335

We next turn to the linear case and state necessary and sufficient condi-
tions that a given linear code is MDS. One of the conditions makes use of the
following definition: a k × r matrix A over a field F is called super-regular
if every square sub-matrix in A is nonsingular.

Proposition 11.4 Let C be a linear [n, k<n, d] code over a field F . Each
of the following conditions is necessary and sufficient for the code C to be
MDS:

(i) Every set of n−k columns in any parity-check matrix of C is linearly
independent.

(ii) Every set of k columns in any generator matrix of C is linearly inde-
pendent.

(iii) The dual code C⊥ is MDS.

(iv) The code C has a systematic generator matrix (I |A) where A is super-
regular.

Proof. Part (i) follows from the characterization of the minimum dis-
tance of C as the largest integer d such that every set of d−1 columns in a
parity-check matrix of C is linearly independent (Theorem 2.2). Parts (ii)
and (iii) were given as an exercise in Problem 4.1 (alternatively, part (ii) can
be obtained by recasting Proposition 11.3 to the linear case, and part (iii)
follows from (ii) by applying part (i) to the dual code C⊥). Finally, part (iv)
was given as an exercise in Problem 4.2.

11.2 GRS codes and their extensions

Our primary interest in this chapter will be determining, for a given positive
integer k and field size q, the largest n for which there exist linear [n, k] MDS
codes over F = GF(q). The GRS code construction readily yields linear [n, k]
MDS codes over F for every n and k such that 1 ≤ k ≤ n ≤ q−1. A code
length n = q can be attained with a singly-extended GRS code, in which one
of the code locators is zero.

As shown in Problem 5.2, GRS codes can be further extended by one
additional symbol while preserving the MDS property. Specifically, let
α1, α2, . . . , αn−1 be distinct elements of F and v1, v2, . . . , vn be elements of
F ∗. An [n, k] doubly-extended GRS code is the linear code over F with a

336 11. MDS Codes

parity-check matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1 0
α1 α2 . . . αn−1 0
α2

1 α2
2 . . . α2

n−1 0
...

...
...

...
...

αn−k−2
1 αn−k−2

2 . . . αn−k−2
n−1 0

αn−k−1
1 αn−k−1

2 . . . αn−k−1
n−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎝
v1

v2 0
0 . . .

vn

⎞⎟⎟⎟⎠ .

This code is MDS, and its dual code is also a doubly-extended GRS code.
Hereafter, by an extended GRS code we will mean either a singly-

extended or doubly-extended GRS code. In fact, every (ordinary) GRS code
CGRS is also an extended GRS code, since the zero element can always be
assumed to be one of the code locators of CGRS (see Problem 5.4).

Recall from Problem 5.9 that a (generalized) Cauchy matrix over a field
F is a k × r matrix whose (i, j)th entry is given by

ηj+k/ηi

αj+k − αi
, 1 ≤ i ≤ k , 1 ≤ j ≤ r ,

where α1, α2, . . . , αr+k are distinct elements of F and η1, η2, . . . , ηr+k are
elements of F ∗ (strictly speaking, Cauchy matrices are commonly defined
with all the values ηi being 1; however, herein we will use the more general
definition where each ηi can take any nonzero element of F). A k × (r+1)
extended Cauchy matrix is obtained from a Cauchy matrix by appending
the column

ηr+k+1 ·
(
η−1
1 η−1

2 . . . η−1
k

)T

for some element ηr+k+1 in F ∗; the (r+k+1)st column is said to correspond
to αr+k+1 = ∞ (i.e., the “infinity” code locator). Every Cauchy matrix is
an extended Cauchy matrix (Problem 11.8).

Let A be a k× r matrix over F such that all the entries in A are nonzero
and let Ac be the k×r matrix whose (i, j)th entry is the multiplicative inverse
of the (i, j)th entry of A. We have the following result, which describes the
form of the systematic matrices of extended GRS codes.

Proposition 11.5 Let A be a k × r matrix whose entries are nonzero
elements of a field F . The following three conditions are equivalent:

(i) A is an extended Cauchy matrix.

(ii) Every 2×2 sub-matrix of Ac is nonsingular and every 3×3 sub-matrix
of Ac is singular.

(iii) The matrix G = (I |A) generates an [r+k, k] extended GRS code
over F .

11.2. GRS codes and their extensions 337

The proof of the proposition is given as an exercise (Problem 5.9).
Let A be an extended Cauchy matrix over a field F . Combining Propo-

sition 11.4(iv) with Proposition 11.5, we deduce that A is super-regular
(see also Problem 5.9). This, in turn, forces every 1 × 1 and 2 × 2 sub-
matrix in Ac to be nonsingular. Yet, other than the nonsingularity of
these small sub-matrices in Ac, we get from Proposition 11.5 that Ac is
“highly singular”: every 3 × 3 sub-matrix in Ac is singular, which means
that rank(Ac) = min{k, r, 2}; so, every t× t sub-matrix of Ac is singular also
for all t ≥ 3.

Proposition 11.5 provides a useful criterion for testing whether a given
matrix generates an extended GRS code.

Example 11.1 Let α1, α2, and α3 be distinct nonzero elements of a field
F such that αi + αj �= 0 for 1 ≤ i < j ≤ 3. Consider the 3× 3 Vandermonde
matrix

A =

⎛⎜⎝ 1 1 1
α1 α2 α3

α2
1 α2

2 α2
3

⎞⎟⎠
over F . It is easy to see that A is super-regular; so, by Proposition 11.4,
the matrix (I |A) generates a linear [6, 3, 4] MDS code C over F . On the
other hand, the matrix Ac (which is also of a Vandermonde form) has rank
3, thereby implying by Proposition 11.5 that A is not an extended Cauchy
matrix. Hence, C is not an extended GRS code, even though it is MDS.

When F is a finite field of even size, doubly-extended GRS codes can be
further extended in certain cases, while still maintaining the MDS prop-
erty. Specifically, let F be the finite field GF(2m) and for n > 3, let
α1, α2, . . . , αn−2 be distinct elements of F and v1, v2, . . . , vn be elements of
F ∗. An [n, n−3] triply-extended GRS code is the linear code over F with a
parity-check matrix

⎛⎜⎝ 1 1 . . . 1 0 0
α1 α2 . . . αn−2 0 1
α2

1 α2
2 . . . α2

n−2 1 0

⎞⎟⎠
⎛⎜⎜⎜⎝

v1

v2 0
0 . . .

vn

⎞⎟⎟⎟⎠ .

This code is MDS (see Problem 5.3) and, by Proposition 11.4(iii), so is its
[n, 3] dual code.

Table 11.1 summarizes the range of values of n, k, and q for which there
exist linear [n, k] MDS codes over GF(q) that are obtained either by exten-
sions of GRS codes or by the trivial constructions of Section 11.1.

338 11. MDS Codes

Table 11.1. Constructions of linear [n, k] MDS codes over GF(q).

Range of n Range of k Construction Remarks
n ≥ 1 k = n Whole space —
n > 1 k = n−1 Parity code —
n > 1 k = 1 Repetition code —

3 < n ≤ q+1 2 ≤ k ≤ n−2 Doubly-extended GRS code —
4 < n ≤ q+2 k = n−3 Triply-extended GRS code q even
4 < n ≤ q+2 k = 3 Dual of triply-extended code q even

11.3 Bounds on the length of linear MDS codes

Given a finite field F = GF(q) and a positive integer k, denote by Lq(k)
the largest length of any linear MDS code of dimension k over F ; if such
codes exist for arbitrarily large lengths, define Lq(k) = ∞. By part (ii) of
Proposition 11.4, we can define Lq(k) equivalently as follows:

Lq(k) is the size of the largest subset S ⊆ F k such that every k
elements in S form a basis of F k.

(The subset S corresponds to the set of columns of the generator matrix
in that proposition.) An alternate definition of Lq(k) can be inferred from
part (iv) of Proposition 11.4:

Lq(k)−k is the largest number of columns, r, in any k× r super-
regular matrix A over F .

In this section, we present several bounds on Lq(k).
Based on the constructions in Table 11.1, we can bound Lq(k) from below

as follows.

Proposition 11.6

Lq(k) ≥

⎧⎪⎪⎨⎪⎪⎩
∞ when k = 1

q+1 when 2 ≤ k ≤ q−1
q+2 when k ∈ {3, q−1} and q is even
k+1 when k ≥ q

.

Proof. The values ∞, q+1, q+2, and k+1 correspond, respectively,
to the longest possible repetition code, doubly-extended GRS code, triply-
extended GRS code (or its dual code), and parity code.

We next show that for certain values of k, the lower bound in Proposi-
tion 11.6 is tight. We do this through a sequence of lemmas.

11.3. Bounds on the length of linear MDS codes 339

Lemma 11.7

Lq(2) ≤ q+1 .

Proof. Let G be a 2×n generator matrix of a linear [n, 2] MDS code over
F = GF(q). Partition the set F 2 \ {0} into equivalence classes, where two
nonzero vectors are considered to be equivalent if one is a scalar multiple of
the other. By Proposition 11.4(ii), the columns of G must belong to distinct
classes. Hence, n is bounded from above by the number of these classes,
which is (q2−1)/(q−1) = q+1.

Lemma 11.8

Lq(k+1) ≤ Lq(k) + 1 .

Proof. Let H be an (n−k) × (n+1) parity-check matrix of a linear
[n+1, k+1] MDS code of length n+1 = Lq(k+1) over GF(q). By Proposi-
tion 11.4(i), every set of n−k columns in H is linearly independent. There-
fore, the first n columns in H form a parity-check matrix of a linear [n, k]
MDS code over F and, so, Lq(k+1)− 1 = n ≤ Lq(k).

Lemma 11.9 Given F = GF(q), let each of the sequences

β1, β2, . . . , βq−1 and γ1, γ2, . . . , γq−1

consist of all the elements of F ∗. Assume in addition that the q−2 ratios

β1/γ1, β2/γ2, . . . , βq−2/γq−2

are all distinct. Then these ratios range over all the elements of F ∗ \
{−βq−1/γq−1}.

Proof. Recall from Problem 3.21 that the product of all the elements of
F ∗ is −1. Therefore,

q−1∏
j=1

βj

γj
=

∏q−1
j=1 βj∏q−1
j=1 γj

=
−1
−1

= 1

and, so, ⎛⎝q−2∏
j=1

βj

γj

⎞⎠ · (−βq−1

γq−1

)
= −1 .

340 11. MDS Codes

Denote by δ the (only) element of F ∗ that is missing from the ratios βj/γj ,
1 ≤ j ≤ q−2. Using Problem 3.21 again, we have,⎛⎝q−2∏

j=1

βj

γj

⎞⎠ · δ = −1 .

The last two equations imply that δ = −βq−1/γq−1.

Lemma 11.10

Lq(3) ≤
{

q+1 when q is odd
q+2 when q is even

.

Proof. By combining Lemmas 11.7 and 11.8 we obtain that Lq(3) ≤
q+2. It remains to be shown that Lq(3) ≤ q+1 when q is odd.

Suppose to the contrary that there exists a linear [q+2, q−1] MDS code
over F and let (I |A) be a 3 × (q+2) systematic generator matrix of C.
By Proposition 11.4(iv), every 1 × 1 and 2 × 2 sub-matrix in A must be
nonsingular. Clearly, this property is maintained if each column of A is
multiplied by some element of F ∗; therefore, we can assume without loss of
generality that

A =

⎛⎝ 1 1 . . . 1
β1 β2 . . . βq−1

γ1 γ2 . . . γq−1

⎞⎠ ,

where the q−1 elements βj are nonzero and distinct for 1 ≤ j ≤ q−1, and so
are the q−1 elements γj and the q−1 ratios βj/γj . Yet, by Lemma 11.9 we
get that βq−1/γq−1 (which differs from −βq−1/γq−1) equals βj/γj for some
j < q−1, thereby reaching a contradiction.

Lemma 11.11

Lq(k) ≤
{

q+k−2 when k ≥ 3 and q is odd
q+k−1 when k ≥ 3 and q is even

.

Proof. Combine Lemmas 11.8 and 11.10.

(We point out that the inequality Lq(k) ≤ q+k−1 for k > 1 can be
obtained also from the Griesmer bound (see part 2 of Problem 4.4): this
bound states that for every linear [n, k, d] code C over GF(q),

n ≥
k−1∑
i=0

⌈ d

qi

⌉
,

11.3. Bounds on the length of linear MDS codes 341

or, equivalently,

n−d ≥
k−1∑
i=1

⌈ d

qi

⌉
.

Now, if C is MDS then n−d = k−1 and, so, the bound becomes

k−1 ≥
k−1∑
i=1

⌈ d

qi

⌉
.

But the latter inequality can hold only if �d/qi� = 1 for every 1 ≤ i < k; in
particular, we must have (n−k+1 =) d ≤ q, i.e., n ≤ q+k−1.)

Lemma 11.12 For k ≥ 2 and n ≥ Lq(k),

Lq(n−k+1) ≤ n .

Proof. Suppose to the contrary that n+1 ≤ Lq(n−k+1). Then there
exists a linear [n+1, n−k+1] MDS code C over F . Its dual code, C⊥, is
therefore a linear [n+1, k] MDS code whose length, n+1, absurdly exceeds
Lq(k).

Lemma 11.13 For k ≥ q,

Lq(k) ≤ k+1 .

Proof. Substituting k = 2 and n = q+1 (≥ Lq(2)) in Lemma 11.12
yields Lq(q) ≤ q+1. The result for dimensions larger than q is obtained
from Lemma 11.8.

Lemma 11.14 For odd q,

Lq(q−1) ≤ q+1 .

Proof. Substitute k = 3 and n = q+1 (≥ Lq(3)) in Lemma 11.12.

Lemmas 11.7, 11.10, 11.13, and 11.14 identify values of k for which the
lower bound in Proposition 11.6 is tight. We summarize these values in the
next proposition.

Proposition 11.15

Lq(k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∞ when k = 1

q+1 when k = 2
q+1 when k ∈ {3, q−1} and q is odd
q+2 when k = 3 and q is even
k+1 when k ≥ q

.

342 11. MDS Codes

Determining Lq(k) for general values of k and q is still an open problem.
It is believed that Lq(k) is always attained by one of the constructions in
Table 11.1. This can be posed as follows.

Conjecture 11.16 (The MDS conjecture)

Lq(k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∞ when k = 1

q+1 when k ∈ {2} ∪ {4, 5, . . . , q−2}
q+1 when k ∈ {3, q−1} and q is odd
q+2 when k ∈ {3, q−1} and q is even
k+1 when k ≥ q

.

In the next two sections, we present an approach that adds to Proposi-
tion 11.15 more cases for which the conjecture is proved (refer also to the
notes on this section at the end of the chapter for additional information
about the current state of this conjecture).

11.4 GRS codes and the MDS conjecture

One method for proving the MDS conjecture in certain cases is based on
showing that for a range of values of k and q, every linear MDS code is
necessarily an extended GRS code. We describe this method in this section
and then demonstrate how it is used to prove that for q odd,

Lq(4) = Lq(q−2) = q+1 .

Let F = GF(q) and for 2 ≤ k ≤ q−1, let Γq(k) be the smallest integer,
if any, such that every linear [n, k] MDS code over F with n ≥ Γq(k) is an
extended GRS code. If no such integer exists, define Γq(k) = q+2.

The next lemma readily follows from the definition of Γq(k).

Lemma 11.17 Suppose that Γq(k) ≤ q+1 for some k in the range 2 ≤
k ≤ q−1. Then,

Lq(k) = q+1 .

In the sequence of lemmas that follows, we present several properties of
the value Γq(k).

Lemma 11.18 For q ≥ 3,

Γq(2) = 2 .

11.4. GRS codes and the MDS conjecture 343

Proof. Every linear [n, 2] MDS code over GF(q) is necessarily an ex-
tended GRS code (refer to the proof of Lemma 11.7 for the characterization
of the generator matrices of linear [n, 2] MDS codes).

The proof of the next two lemmas is given as an exercise (Problems 11.13–
11.15).

Lemma 11.19 Let C be a linear [n, k] MDS code over F where n > k+3.
For i = 1, 2, . . . , n, denote by Ci the code over F obtained by puncturing C
at the ith coordinate, namely,

Ci = {(c1 c2 . . . ci−1 ci+1 . . . cn) : (c1 c2 . . . cn) ∈ C} .

Suppose that there are two distinct indexes i and j for which Ci and Cj are
extended GRS codes over F . Then C is an extended GRS code as well.

Lemma 11.20 Let C be a linear [n, k] MDS code over F where k > 3.
For i = 1, 2, . . . , n, denote by C(i) the code obtained by shortening C at the
ith coordinate, namely,

C(i) = {(c1 c2 . . . ci−1 ci+1 . . . cn) : (c1 c2 . . . ci−1 0 ci+1 . . . cn) ∈ C} .

Suppose that there are two distinct indexes i and j for which C(i) and C(j)

are extended GRS codes over F . Then C is an extended GRS code.

Lemma 11.21 Let k and N be such that 2 ≤ k ≤ q−2 and k+3 ≤
N ≤ q+1, and suppose that every linear [N, k] MDS code over GF(q) is an
extended GRS code. Then,

Γq(k) ≤ N ≤ q+1 .

Proof. We show by induction on n = N, N+1, N+2, · · · that every linear
[n, k] MDS code over F = GF(q) is an extended GRS code.

The induction base n = N follows from the assumption of the lemma.
Turning to the induction step, let n be such that every linear [n, k] MDS
code over F is an extended GRS code. Given a linear [n+1, k] MDS code
C over F , let Ci be the result of puncturing C at the ith coordinate, where
i ∈ {1, 2}. It follows from Problem 2.3 that a generator matrix of Ci is
obtained by deleting the ith column from a generator matrix of C; hence,
Ci is a linear [n, k] MDS code. By the induction hypothesis on n we deduce
that each Ci is, in fact, an extended GRS code, and by Lemma 11.19 we
conclude that so is C.

Lemma 11.22 For 3 ≤ k ≤ q−2,

Γq(k+1) ≤ Γq(k) + 1 .

344 11. MDS Codes

Proof. We assume that Γq(k) ≤ q, since otherwise the result is obvious.
Let C be a linear [n, k+1] MDS code C over GF(q) where n ≥ Γq(k) + 1,
and for i = 1, 2, let C(i) be the result of shortening C at the ith coordi-
nate. A parity-check matrix of each code C(i) is obtained by deleting a col-
umn from a parity-check matrix of C (see Problem 2.14); so, C(i) is a linear
[n−1, k] MDS code. Furthermore, the length, n−1, of C(i), is at least Γq(k);
hence, each code C(i) is an extended GRS code. The result now follows from
Lemma 11.20.

Lemma 11.23 Let k and n be such that 3 ≤ k ≤ n−2 and Γq(k) ≤ n ≤
q+2. Then

Γq(n−k) ≤ n .

Proof. The result is obvious when n = q+2, so we assume that n
is in the range Γq(k) ≤ n ≤ q+1. Let C be a linear [n, n−k] MDS code
over F = GF(q). Its dual code, C⊥, being a linear [n, k] MDS code of
length n ≥ Γq(k), is necessarily an extended GRS code; hence, so is C. By
Lemma 11.21 we thus obtain Γq(n−k) ≤ n.

(At this point, it is interesting to observe the seeming parallels between
the quantities Lq(k) and Γq(k): compare Lemma 11.8 with Lemma 11.22,
and Lemma 11.12 with Lemma 11.23.)

The previous sequence of lemmas leads to the following result.

Proposition 11.24 Let K be such that 3 ≤ K ≤ q−1 and Γq(K) ≤
q+1, and define the value J by

J = max {Γq(K)−K, 2} .

Then the following conditions hold:

(i) Γq(k) ≤ q+1 whenever k belongs to any of the following two integer
intervals:

K ≤ k ≤ q+1−J or J ≤ k ≤ q+1−K .

(ii) Lq(k) = q+1 whenever k belongs to any of the following two integer
intervals:

K ≤ k ≤ q+2−J or J ≤ k ≤ q+2−K .

Proof. By repeatedly applying Lemma 11.22 we obtain

Γq(k) ≤ Γq(K) + k −K ≤ J + k ≤ q+1 ,

11.4. GRS codes and the MDS conjecture 345

whenever K ≤ k ≤ q+1−J . This proves part (i) for the first integer interval
therein. The proof for the second interval is now obtained by substituting
n = q+1 in Lemma 11.23.

Turning to part (ii), by combining part (i) with Lemma 11.17 we get the
desired result except possibly for k = q+2−J or k = q+2−K. These two
exceptions are handled by applying Lemma 11.12 with n = q+1 to k = J
and k = K, respectively.

Our results in this section can be used to prove the MDS conjecture for
certain instances of k and q, in the following manner. As the first (and most
crucial) step, we identify fields F = GF(q) and positive integers K and N in
the range K+3 ≤ N ≤ q+1, such that every linear [N,K] MDS code over F
is an extended GRS code. Having found such q, K, and N , we then get by
Lemma 11.21 that

Γq(K) ≤ N .

Finally, we combine this inequality with Proposition 11.24(ii) and infer that
Lq(k) = q+1 whenever

K ≤ k ≤ q+2−N+K or N−K ≤ k ≤ q+2−K .

Example 11.2 In Proposition 11.25 below, we show that for odd field
size q ≥ 5, every linear [q+1, 3] MDS code over GF(q) is a doubly-extended
GRS code. Substituting k = 3 and N = q+1 in Lemma 11.21, we obtain
that for odd q ≥ 5,

Γq(3) ≤ q+1

and, so, by Proposition 11.24(ii),

Lq(3) = Lq(4) = Lq(q−2) = Lq(q−1) = q+1 .

The technique that we have now described for proving instances of the
MDS conjecture, is illustrated in Figure 11.1 for the case of K = 3 and
q odd. (Note that when q is even, Proposition 11.24 is vacuous for K =
3: we already know that for such q, the value Lq(3) equals q+2 and—by
Lemma 11.17—so does Γq(3).)

The horizontal and vertical axes in Figure 11.1 correspond, respectively,
to the dimension k and the redundancy r of linear MDS codes over F =
GF(q). Equivalently, k and r stand, respectively, for the number of rows
and columns of super-regular matrices over F . The line r : k �→ q+1−k
marks the upper boundary of the existence range of [r+k, k] extended GRS
codes (or k×r extended Cauchy matrices) over F , for 2 ≤ k ≤ q−1. The two
shaded right-angled triangles in the figure form a set of pairs (k, r) for which

346 11. MDS Codes

�

�
r

0

1

2

3

Γq(3)−3

q−1

1 2 3 Γq(3)−3 q−1
k

�

(3, q−2)

�

(q−1, 2)

�

(q+5−Γq(3),Γq(3)−4)

�

(Γq(3)−3, q+4−Γq(3))

�

r = q+1−k

Figure 11.1. Existence range of linear [r+k, k] MDS codes over GF(q), for odd q.

every linear [r+k, k] MDS code over F is necessarily an extended GRS code:
the horizontal leg of the upper-left triangle is drawn based on Lemma 11.22,
and the other triangle is obtained by duality.

The solid line intervals in Figure 11.1 that pass through the points

(3, q−2) −→ (q+5−Γq(3),Γq(3)−4)

and

(Γq(3)−3, q+4−Γq(3)) −→ (q−1, 2)

depict part (ii) of Proposition 11.24: for the respective values of k, these
lines mark the upper bound, q+1−k, on the redundancy r of every linear
[r+k, k] MDS code over F . Incorporating now also Lemma 11.8 and Propo-
sition 11.15, we obtain an upper bound on Lq(k)−k, which is represented by
the solid piecewise linear line in the figure.

11.5. Uniqueness of certain MDS codes 347

11.5 Uniqueness of certain MDS codes

In this section, we prove the following result.

Proposition 11.25 Let F = GF(q) for odd q ≥ 5. Then every linear
[q+1, 3] MDS code over F is a doubly-extended GRS code.

Proof. Let G = (A | I) be a generator matrix of a linear [q+1, 3] MDS
code C over F . Without loss of generality we can assume that

G =
(

A I
)

=

⎛⎝ 1 1 . . . 1 1 0 0
a1 a2 . . . aq−2 0 1 0
b1 b2 . . . bq−2 0 0 1

⎞⎠ , (11.1)

where the entries aj are distinct elements of F ∗, the entries bj are distinct
elements of F ∗, and so are the ratios aj/bj , 1 ≤ j ≤ q−2. Let a0 and b0 be
the elements of F ∗ that are missing from the second and third rows of A,
respectively. By Lemma 11.9, the ratios aj/bj range over all the elements of
F ∗ except −a0/b0.

Consider the codewords of Hamming weight q in C (these are the code-
words of C that contain exactly one zero entry). As shown in Prob-
lem 11.17, there are (q+1)(q−1) such codewords in C, and for every index
� ∈ {1, 2, . . . q+1}, there exists a unique (up to scaling) codeword c� of Ham-
ming weight q whose �th entry is zero. We next find the linear combination
of the rows of G that yields the codeword c� for every � ∈ {1, 2, . . . , q−2},
in two different ways.

(a) For � ∈ {1, 2, . . . , q−2}, let the 3× 3 matrix P� be given by

P� =

⎛⎝ 1 0 1
0 1 a�

0 0 b�

⎞⎠ .

The inverse of P� is

P−1
� =

⎛⎝ 1 0 −1/b�

0 1 −a�/b�

0 0 1/b�

⎞⎠ .

Consider the generator matrix P−1
� G of C. The columns of P−1

� G that are
indexed by {�, q−1, q} form a 3 × 3 identity matrix (with column � being
(0 0 1)T), and the remaining columns in P−1

� G form a 3 × (q−2) matrix,
which we denote by B. A column in B is given either by

P−1
�

⎛⎝ 1
aj

bj

⎞⎠ =
bj

b�

⎛⎝ (b�/bj)−1
(b�aj/bj)−a�

1

⎞⎠ when j �∈ {�, q−1, q, q+1} (11.2)

348 11. MDS Codes

or by

P−1
�

⎛⎝ 0
0
1

⎞⎠ =
1
b�

⎛⎝ −1
−a�

1

⎞⎠ when j = q+1 . (11.3)

In what follows, we find it convenient to associate with this last column the
“infinity” element bq+1 =∞ and define the expression 1/bq+1 to be zero.

Using this convention, we now let j range over the q−2 values in the set
{1, 2, . . . , q+1} \ {�, q−1, q} (which is the set of column indexes of B). The
elements 1/bj then range over all the elements of F except 1/b� and 1/b0;
accordingly, the elements

λj = (b�/bj)− 1

range over all the elements of F ∗ except λ0 = (b�/b0)− 1.
Similarly, when j ranges over the column indexes of B, the ratios aj/bj

range over all the elements of F except a�/b� and −a0/b0; therefore, the
elements

μj = b�(aj/bj)− a�

range over all the elements of F ∗ except μ0 = −b�(a0/b0)− a�.
From (11.2) and (11.3) we get that the ratios between the elements in

the first row of B and the respective elements in the second row range over
the q−2 values

λj

μj
=

b�/bj − 1
b�(aj/bj)− a�

, j �∈ {�, q−1, q} ,

and these ratios must all be distinct (or else P−1
� G would not generate an

MDS code). By Lemma 11.9, these ratios exhaust all the elements of F ∗

except

−λ0

μ0
=

b�/b0 − 1
b�(a0/b0) + a�

=
b�−b0

b�a0+a�b0
.

Recalling that column � in P−1
� G equals (0 0 1)T , we conclude that c� is a

linear combination of the first two rows of P−1
� G; specifically,

c� = y�P
−1
� G = u�G ,

where, up to scaling,

y� = (μ0 λ0 0) = − 1
b0

(
b�a0+a�b0 b0−b� 0

)
and

u� = y�P
−1
� = − 1

b0

(
b�a0+a�b0 b0−b� a�−a0−2

a�

b�
b0

)
. (11.4)

11.5. Uniqueness of certain MDS codes 349

Thus, we have identified the coefficient vector u� in the linear combination,
u�G, which yields c�.

(b) We next obtain a second expression for the linear combination of the
rows of G that yields the codeword c�. For � ∈ {1, 2, . . . , q−2}, define the
3× 3 matrix

Q� =

⎛⎝ 1 0 0
a� 1 0
b� 0 1

⎞⎠ .

The inverse Q−1
� is given by

Q−1
� =

⎛⎝ 1 0 0
−a� 1 0
−b� 0 1

⎞⎠ .

The columns of Q−1
� G that are indexed by {�, q, q+1} form a 3× 3 identity

matrix (where now column � is (1 0 0)T), while the remaining columns form
a 3× (q−2) matrix, denoted as C; the columns of C are given by

Q−1
�

⎛⎝ 1
aj

bj

⎞⎠ =

⎛⎝ 1
aj−a�

bj−b�

⎞⎠ , j �∈ {�, q, q+1} ,

where aq−1 and bq−1 are defined to be zero. The elements

ρj = aj − a�

in the second row of C range over all the elements of F ∗ except ρ0 = a0−a�,
and the elements

σj = bj − b�

in the third row of C range over all the elements of F ∗ except σ0 = b0−b�.
It follows from Lemma 11.9 that the q−2 ratios

ρj

σj
=

aj−a�

bj−b�
, j �∈ {�, q, q+1} ,

range over all the elements of F ∗ except

−ρ0

σ0
= −a0−a�

b0−b�
.

Combining this with the fact that column � in Q−1
� G equals (1 0 0)T , we

conclude that c� is a linear combination of the last two rows of Q−1
� G; namely,

c� = z�Q
−1
� G = v�G ,

350 11. MDS Codes

where, up to scaling,

z� = (0 σ0 ρ0) =
(
0 b0−b� a0−a�

)
and

v� = z�Q
−1
� =

(
(−a�b0+2a�b�−b�a0) b0−b� a0−a�

)
. (11.5)

This completes our second method for expressing c� as a linear combination
of the rows of G.

The two coefficient vectors that we have found, u� and v�, must be equal
up to scaling. Comparing the second entry in the right-hand side of (11.4)
with the respective entry in (11.5), we find that the scaling factor equals
−b0; that is, v� = −b0u� and, so,

−a�b0 + 2a�b� − b�a0 = b�a0 + a�b0

and
a0−a� = a�−a0 − 2

a�

b�
b0 .

Either one of the last two equations yields the equality

2a0b� + 2a�b0 = 2a�b� . (11.6)

Since q is odd, we can divide both sides of (11.6) by 2a�b�, thus obtaining

a0

a�
+

b0

b�
= 1 , 1 ≤ � ≤ q−2 .

Equivalently,
(−1 a0 b0)Ac = 0 ,

where Ac is the 3×(q−2) matrix whose entries are the multiplicative inverses
of the entries of the matrix A, which was defined by (11.1). Therefore,
rank(Ac) ≤ 2, which means that every 3 × 3 sub-matrix of Ac is singular.
On the other hand, every 2×2 sub-matrix of A is nonsingular and, therefore,
so is every 2× 2 sub-matrix of Ac. Hence, by Proposition 11.5, G generates
a doubly-extended GRS code.

Having proved Proposition 11.25, we can now use the arguments made
in Example 11.2 to reach the following conclusion.

Proposition 11.26 For odd field size q ≥ 5,

Lq(4) = Lq(q−2) = q+1 .

Problems 351

We mention without proof that Proposition 11.25 can be further im-
proved as follows.

Proposition 11.27 Let F = GF(q) for odd q ≥ 7. Then for

N = q+2−
⌈

1
4

√
q − 9

16

⌉
,

every linear [N, 3] MDS code over F is an extended GRS code.

By Lemma 11.21 it follows that for odd q ≥ 7,

Γq(3) ≤ q − 1
4

√
q + 41

16 ,

and from Proposition 11.24 we obtain the following result.

Corollary 11.28 Let F = GF(q) for odd q ≥ 7. Then the following
conditions hold:

(i) Γq(k) ≤ q+1 whenever

2 ≤ k < 1
4

√
q + 39

16 or q − 1
4

√
q − 23

16 < k ≤ q−1 .

(ii) Lq(k) = q+1 whenever

2 ≤ k < 1
4

√
q + 55

16 or q − 1
4

√
q − 23

16 < k ≤ q−1 .

Problems

[Section 11.1]

Problem 11.1 A Latin square of order q is a q × q array Λ over an alphabet F
of q elements such that the elements in each row of Λ are distinct, and so are the
elements in each column. For example, the 4× 4 array

Λ =

⎛⎜⎜⎝
a b c d
d c b a
b a d c
c d a b

⎞⎟⎟⎠
over F = {a, b, c, d} is a Latin square of order 4. As a convention, the rows and
columns of a Latin square will be indexed by the elements of F .

Two Latin squares Λ = (Λi,j) and Λ′ = (Λ′
i,j) of order q are said to be orthogonal

if the q2 pairs (Λi,j ,Λ′
i,j) are all distinct when i and j range over F , i.e.,{

(Λi,j , Λ′
i,j)

}
i,j∈F

= F × F .

352 11. MDS Codes

For example, the two Latin squares

Λ =

⎛⎜⎜⎝
a b c d
d c b a
b a d c
c d a b

⎞⎟⎟⎠ and Λ′ =

⎛⎜⎜⎝
a b c d
b a d c
c d a b
d c b a

⎞⎟⎟⎠
are orthogonal.

1. Let Λ(1),Λ(2), . . . , Λ(m) be m pairwise orthogonal Latin squares of order q
over an alphabet F . For i, j ∈ F , define the word

c(i, j) = i j Λ(1)
i,j Λ(2)

i,j . . . Λ(m)
i,j

in Fm+2. Show that the set

{c(i, j) : i, j ∈ F}

forms an (m+2, q2,m+1) MDS code over F .

2. Let C be an (n, q2, n−1) MDS code over an alphabet F of size q, where
n > 2. For i, j ∈ F , denote by c(i, j) the unique codeword c1c2 . . . cn in C
for which c1 = i and c2 = j (verify that such a codeword indeed exists). For
� = 1, 2, . . . , n−2, let Λ(�) be the q×q array over F whose entry Λ(�)

i,j , which is
indexed by (i, j) ∈ F ×F , equals the (�+2)nd entry in c(i, j). Show that the
arrays Λ(1),Λ(2), . . . ,Λ(n−2) are pairwise orthogonal Latin squares of order q.

Problem 11.2 Let C be an (n,M, d) MDS code over an Abelian group F of size q,
and suppose that C contains the all-zero word as a codeword. Show that for every
set J of d coordinates there are exactly q−1 codewords in C whose support is J .
Conclude that the number of codewords of Hamming weight d in C is

(
n
d

)
(q − 1).

Hint: Let J ′ be a set of n−d+1 coordinates that intersects with J at one coordinate.
Consider the codewords of C that are zero on each of the coordinates in J ′, except
for the coordinate in J ∩ J ′.

Problem 11.3 (Constant-weight codes with d = w revisited) Let F be an Abelian
group of size q. Recall from Problem 4.10 that an (n,M, d) code C over F is called
an (n,M, d; w) constant-weight code if each codeword in C has Hamming weight w.

1. Show that for every (n,M, d; w=d) constant-weight code over F ,

M ≤
(

n

d

)
(q − 1) .

Hint: Show that no q codewords in the code may have the same support.

2. Show that given n and d, the bound in part 1 is attained by some (n,M, d; d)
constant-weight code over F , whenever there is an (n, qn−d+1, d) MDS code
over F .

Hint: See Problem 11.2.

Problems 353

Problem 11.4 (Singleton bound in the rank metric) Let F be the field GF(q) and
denote by Fm×n the set of all m×n matrices over F . The rank distance between two
matrices A and B in Fm×n is defined as rank(A−B) and denoted by drank(A,B).
Recall from Problem 1.3 that the rank distance is a metric.

An (m× n,M) (array) code over F is a nonempty subset of Fm×n whose size
is M . Given an (m × n,M) code C over F with size M > 1, the minimum rank
distance μ of C is defined by

μ = min
A,B∈C : A �=B

drank(A,B) .

An (m×n,M) code C with minimum rank distance μ will be called a μ-(m×n,M)
code. If, in addition, C is a linear subspace of Fm×n with dimension k (= logq M),
then C is said to be a linear μ-[m× n, k] code over F .

1. Show that for every linear μ-[m × n, k] code C over F , the minimum rank
distance can be written as

μ = min
A∈C\{0}

rank(A) .

2. Let m and n be positive integers where m ≤ n. Show that for every μ-(m×
n,M) code over F ,

logq M ≤ n(m−μ+1) .

Hint: Assume the contrary and show that this implies that the array code
necessarily contains two matrices A and B whose first m−μ+1 rows are iden-
tical.

3. A polynomial f(x) over GF(qn) is called a linearized polynomial with respect
to F if it has the form

∑
i fix

qi

. The mapping GF(qn) → GF(qn) that is
defined by x �→ f(x) is a linear transformation over F (see Problem 3.32).
Denote by F

[n]
r [x] the set of all linearized polynomials over GF(qn) (with

respect to F) whose degree is less than qr.
Fix a basis Ω = (ω1 ω2 . . . ωn) of GF(qn) over F , and for every polynomial
f(x) ∈ F

[n]
n [x], denote by Af the n × n matrix representation over F of the

mapping x �→ f(x); that is, if u is a column vector in Fn that represents an
element u ∈ GF(qn) by u = Ωu, then Afu is a vector representation of f(u),
namely, f(u) = ΩAfu.
Given a positive integer μ ≤ n, consider the array code

C =
{

Af ∈ Fn×n : f(x) ∈ F
[n]
n−μ+1[x]

}
.

Show that C is a linear μ-[n × n, k] code where k = n(n−μ+1) (as such, C
attains the bound in part 2).

Hint: | ker(Af)| ≤ deg f(x) for every nonzero f(x) ∈ F
[n]
n [x].

4. Show that the bound in part 2 can be attained for every 1 ≤ μ ≤ m ≤ n.

Hint: Let C be the construction in part 3 and consider a sub-code of C that
consists of the matrices in C whose first n−m rows are all zero.

354 11. MDS Codes

Problem 11.5 (Singleton bound in the cover metric) Let F be a finite Abelian
group of size q and denote by Fm×n the set of all m × n arrays (matrices) over
F . A cover of an array A = (ai,j) m

i=1
n

j=1 in Fm×n is a pair (X, Y) that consists
of subsets X ⊆ {1, 2, . . . , m} and Y ⊆ {1, 2, . . . , n} such that the rows of A that
are indexed by X and the columns that are indexed by Y contain all the nonzero
entries in A; that is, for every entry ai,j in A,

ai,j �= 0 =⇒ (i ∈ X) or (j ∈ Y) .

The size of a cover (X,Y) is defined by |X|+ |Y |. The cover weight of A, denoted
by wcov(A), is the size of a smallest cover of A.

For example, the 4× 4 array

A =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
1 0 1 1
0 1 0 0

⎞⎟⎟⎠
over GF(2) has two covers of size 3, namely, ({1, 3}, {2}) and ({3}, {1, 2}). Fur-
thermore, since the three nonzero elements on the main diagonal of A belong to
distinct rows and columns, the cover weight of A must be at least 3. Therefore,
wcov(A) = 3.

The cover distance between two arrays A and B in Fm×n is defined as
wcov(A−B) and denoted by dcov(A,B).

An (m × n,M) (array) code over an Abelian group F is a nonempty subset C
of Fm×n of size M . When M > 1, define the minimum cover distance d of C by

d = min
A,B∈C : A �=B

dcov(A, B) .

An (m × n,M, d) code is an (m × n,M) code with M > 1 and minimum cover
distance d. A linear [m× n, k, d] code over the field F = GF(q) is an (m× n, qk, d)
code over F that forms a k-dimensional linear subspace of Fm×n.

1. Show that the cover distance is a metric (see Section 1.3).

2. Show that if F is a field then for every two matrices A and B in Fm×n,

wcov(A) ≥ rank(A)

and
dcov(A,B) ≥ drank(A, B) ,

where drank(A,B) = rank(A−B).

Hint: Show that a matrix A can be written as a sum of wcov(A) matrices of
rank 1.

3. Suppose that 1 ≤ m ≤ n and let C1 be an (ordinary) (m,M1, d) code over F .
Consider the array code C2 over F that is defined by

C2 =
{

(ai,j) m
i=1

n
j=1 ∈ Fm×n :

(a1,t+1 a2,t+2 . . . am,t+m) ∈ C1 for all 0 ≤ t < n
}

Problems 355

(when an index t+i exceeds n it should be read as t+i−n). Show that C2 is
an (m× n,Mn

1 , d) code over F .

4. Assuming that 1 ≤ m ≤ n, show that for every (m× n,M, d) code over F ,

logq M ≤ n(m−d+1) .

Hint: See the hint in part 2 of Problem 11.4.

5. Show that when the code C1 in part 3 is taken to be MDS, then the respective
array code C2 attains the bound in part 4.

6. Show that when F = GF(q), the bound in part 4 can be attained for every
1 ≤ d ≤ m ≤ n (this holds even when (m, qm−d+1, d) MDS codes over F do
not exist!).

Hint: Consider the construction in parts 3 and 4 of Problem 11.4.

Problem 11.6 Let F = GF(q) and Φ = GF(qm), and let H = (h1 h2 . . . hn)
be an m × n parity-check matrix of a linear [n, k=n−m, d≥2] code over F . Fix a
basis Ω = (ω1 ω2 . . . ωm) of Φ over F , and let the elements α1, α2, . . . , αn of Φ be
defined by

αj = Ωhj , 1 ≤ j ≤ n .

Denote by C(H,Ω) the linear [N=n,K, D] code over Φ with a parity-check matrix⎛⎜⎜⎜⎜⎜⎜⎝

α1 α2 . . . αn

αq
1 αq

2 . . . αq
n

αq2

1 αq2

2 . . . αq2

n
...

...
...

...

αqd−2

1 αqd−2

2 . . . αqd−2

n

⎞⎟⎟⎟⎟⎟⎟⎠ .

1. Show that D = d and that C(H, Ω) is MDS.

Hint: Recall from Problem 3.33 that an r × r matrix over Φ of the form(
βqi

j

)r−1 r

i=0 j=1

is nonsingular if and only if β1, β2, . . . , βr, when regarded as elements of the
linear space Φ over F , are linearly independent over F .

2. Identify the code C(H, Ω) ∩ FN .

Problem 11.7 (MDS codes over polynomial rings) Let F = GF(q) and p be a
prime not dividing q. Denote by Bp(x) the polynomial 1 + x + x2 + . . . + xp−1 and
by Φ the ring F [ξ]/Bp(ξ) (the polynomial Bp(x) is not necessarily irreducible over
F—see Problem 7.15). For a positive integer � < p, let H be the following � × p
matrix over Φ:

H =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 . . . 1
1 ξ ξ2 . . . ξp−1

1 ξ2 ξ4 . . . ξ2(p−1)

...
...

...
...

...
1 ξ�−1 ξ2(�−1) . . . ξ(p−1)(�−1)

⎞⎟⎟⎟⎟⎟⎠ .

356 11. MDS Codes

Define the code C over Φ by

C =
{
c ∈ Φp : HcT = 0

}
;

this code is linear over Φ (see Problem 2.20).

1. Show that the determinant of every �×� sub-matrix of H has a multiplicative
inverse in Φ; therefore, every set of � columns in H is linearly independent
over Φ.

Hint: Recall from Problem 3.13 that each determinant is a product of terms
of the form ξj − ξi = ξi(ξj−i − 1) where 0 ≤ i < j < p. Show that gcd(xj −
xi, xp − 1) = x− 1 and, so, gcd(xj − xi, Bp(x)) = 1 (see Problem 3.5).

2. Show that |C| = qp−� and that d(C) ≥ �+1; deduce that C is MDS.

3. Let Ω denote the basis (1 ξ ξ2 . . . ξp−2) of Φ as a vector space over F , and
consider the following subset Ĉ of the set of all (p−1)× p matrices over F :

Ĉ =
{

A ∈ F (p−1)×p : ΩA ∈ C
}

.

Show that Ĉ is a linear subspace of F (p−1)×p over F and that a matrix A =
(ai,j)

p−1
i=1

p−1
j=0 over F belongs to Ĉ if and only if

p−1∑
j=0

at−j�,j = 0 , 1 ≤ t ≤ p , 0 ≤ � < � ,

where each index t−j� is read as the remainder (in {0, 1, . . . , p−1}) obtained
when that index is divided by p, and a0,j is defined as zero.

Hint: If u0, u1, . . . , up−1 are elements in F such that
∑p−1

t=0 utξ
t = 0 (in Φ),

then u0 = u1 = . . . = up−1.

[Section 11.2]

Problem 11.8 Show that every Cauchy matrix is an extended Cauchy matrix.

Hint: Use Problem 5.4 to claim that the last code locator in an extended GRS code
can always be assumed to be infinity. Then apply Problems 5.8 and 5.9.

Problem 11.9 Let F = GF(q) and let A be a k × k circulant matrix of the form

A =

⎛⎜⎜⎜⎜⎜⎝
a0 a1 . . . ak−2 ak−1

ak−1 a0 a1 . . . ak−2

ak−2 ak−1 a0 a1 . . .

. . .
.

a1 . . . ak−2 ak−1 a0

⎞⎟⎟⎟⎟⎟⎠ ,

where a0, a1, . . . , ak−1 are nonzero elements of F . Denote by ak and ak+1 the
elements a0 and a1, respectively.

Problems 357

1. Show that the matrix (I |A) generates a [2k, k] extended GRS code if and
only if the following two conditions hold:

(i) The ratios
aj+1/aj , 0 ≤ j < k ,

are all distinct.

(ii) There exist σ, τ ∈ F such that

a−1
j+2 + σa−1

j+1 + τa−1
j = 0 , 0 ≤ j < k .

2. Let F = GF(9) and let δ be a root in F of the polynomial x2 +2x+2. Define
the 5× 5 matrix A as in part 1, where

(a0 a1 a2 a3 a4) = (1 δ7 δ5 δ5 δ7) .

Show that the matrix (I |A) generates a [10, 5, 6] doubly-extended GRS code
over F .

3. For F and δ as in part 2, let now A be the 5 × 5 circulant matrix that is
defined by

(a0 a1 a2 a3 a4) = (δ7 δ5 1 1 δ5) .

Show that G = (I |A) does not generate a [10, 5, 6] doubly-extended GRS
code (still, one can verify that G generates a linear [10, 5, 6] MDS code).

Problem 11.10 Let C be a linear [n, n−3] code over F = GF(q) with a parity-
check matrix ⎛⎝ 1 1 . . . 1 u

α1 α2 . . . αn−1 v

α2
1 α2

2 . . . α2
n−1 w

⎞⎠ ,

where α1, α2, . . . , αn−1 are distinct elements of F . The purpose of this problem is
to find conditions on the last column (u v w)T so that C is MDS. Assume hereafter
that (u v w) is nonzero.

1. Let β and γ be distinct elements of F and consider the 3× 3 matrix

A =

⎛⎝ 1 1 u
β γ v
β2 γ2 w

⎞⎠
over F . Show that A is singular if and only if

uβγ − v(β + γ) + w = 0 .

2. Show that C is MDS if and only if for every distinct i and j in the range
1 ≤ i, j < n,

uαiαj − v(αi + αj) + w �= 0 .

Assume from now on in this problem that v2 �= uw (note that v2 = uw if and only
if (u v w) is a scalar multiple of either (0 0 1) or (1 δ δ2) for some δ ∈ F ; hence,
when v2 = uw, the code C is MDS if and only if either u = v = 0 or uαj �= v for
every 1 ≤ j < n). Furthermore, when q is even assume that either u �= 0 or w �= 0.

358 11. MDS Codes

3. Show that there are at least �(q−3)/2� disjoint subsets {β, γ} ⊆ F , each
consisting of two distinct elements β and γ that satisfy

uβγ − v(β + γ) + w = 0 .

Hint: Exclude the (up to three) elements β ∈ F that satisfy either uβ2 −
2vβ + w = 0 or uβ − v = 0. For each of the remaining elements β consider
the subset {β, γ} where

γ =
vβ − w

uβ − v
.

Verify that the condition v2 �= uw guarantees that any two distinct subsets
thus obtained are disjoint.

4. Show that when n ≥ �(q+7)/2 (and with the current assumptions on
(u v w)), the code C is not MDS.

Hint: Show by a counting argument that at least one of the subsets in part 3
is wholly contained in {α1, α2, . . . , αn−1}.

Problem 11.11 Let F be the finite field GF(q) where q = 2m and m > 1, and
denote by α1, α2, . . . , αq−1 the nonzero elements of F . For � ∈ {1, 2, . . . , m−1}, let
C� be the linear [q+1, 3] code over F that is generated by the 3× (q+1) matrix

G� =

⎛⎜⎝ 1 1 . . . 1 1 0
α1 α2 . . . αq−1 0 0
α2�

1 α2�

2 . . . α2�

q−1 0 1

⎞⎟⎠ .

1. Show that C� is MDS if and only if gcd(�,m) = 1.

Hint: gcd(2�−1, 2m−1) = 1 if and only if gcd(�,m) = 1.

2. Show that C� is an extended GRS code if and only if � = 1.

Hint: First use Problem 5.4 to show that if C� is an extended GRS code then,
without loss of generality, one can assume that C� is generated by

GGRS =

⎛⎝ 1 1 . . . 1 1 0
β1 β2 . . . βq−1 0 0
β2

1 β2
2 . . . β2

q−1 0 1

⎞⎠
⎛⎜⎜⎜⎜⎝

v1

v2 0
0 . . .

vq+1

⎞⎟⎟⎟⎟⎠ ,

where β1, β2, . . . , βq−1 range over the nonzero elements of F . Then, by identi-
fying the codewords in C� that end with two zeros, argue that v1, v2, . . . , vq−1

can be assumed to take the values

vj =
αj

βj
, 1 ≤ j ≤ q−1 .

By expressing the first and third rows of GGRS as linear combinations of the
rows of G�, show that there exist two polynomials over F ,

f(x) = f0 + f1x and g(x) = g1x + g2x
2�

,

Problems 359

such that
αj

βj
= f(αj) and αjβj = g(αj) , 1 ≤ j ≤ q−1 ,

and, so,
f(αj)g(αj) = α2

j , 1 ≤ j ≤ q−1 .

Deduce that
f(x)g(x) = x2

and, finally, conclude that f(x) must be a constant.

3. Let Ĝ� be the 3× (q+2) matrix obtained by appending the column (0 1 0)T

to G�. Show that when gcd(�,m) = 1, the code that is generated by Ĝ� is a
linear [q+2, 3] MDS code over F .

4. For � ∈ {1, 2, . . . , m−1}, let C′� be the linear [q+1, 4] code over F that is
generated by the 4× (q+1) matrix⎛⎜⎜⎜⎝

1 1 . . . 1 1 0
α1 α2 . . . αq−1 0 0
α2�

1 α2�

2 . . . α2�

q−1 0 0

α2�+1
1 α2�+1

2 . . . α2�+1
q−1 0 1

⎞⎟⎟⎟⎠ .

Show that C′� is MDS if and only if gcd(�,m) = 1.

[Section 11.3]
Problem 11.12 (“Almost converse” to Lemma 11.12) Show that for 1 < k < n ≤
Lq(k),

n ≤ Lq(n−k) .

Hint: Since n ≤ Lq(k), there exists a linear [n, k] MDS code over F = GF(q).
Consider its dual code.

[Section 11.4]
Problem 11.13 Let A be a k× r super-regular matrix over a field F where r > 3.
Suppose that A contains at least two k×(r−1) sub-matrices which are both extended
Cauchy matrices. Show that A is an extended Cauchy matrix. Does the result hold
also for r = 3?

Hint: Denote by A1 and A2 the two k×(r−1) extended Cauchy sub-matrices. Show
that rank(Ac) ≤ 2, taking into account that A1 and A2 share at least two columns.

Problem 11.14 Let C be a linear [n, k] MDS code over F = GF(q) where n > k+3.
For i = 1, 2, . . . , n, denote by Ci the code over F obtained by puncturing C at the
ith coordinate. Suppose that there are two distinct indexes i and j for which Ci

and Cj are extended GRS codes. Show that C is an extended GRS code.

Hint: Assume without loss of generality that i, j > k and consider a systematic
generator matrix (I |A) of C. Then use Problem 11.13.

360 11. MDS Codes

Problem 11.15 Let C be a linear [n, k] MDS code over F = GF(q) where k > 3.
For i = 1, 2, . . . , n, denote by C(i) the code over F obtained by shortening C at the
ith coordinate. Suppose that there are two distinct indexes i and j for which C(i)

and C(j) are extended GRS codes. Show that C is an extended GRS code.

Hint: Assume that i, j > n−k and consider a parity-check matrix of C of the form
(I |A). Then use Problem 11.13.

Problem 11.16 (“Almost converse” to Lemma 11.23) Show that for k ≥ 2 and
k+3 < n ≤ Γq(k),

n ≤ Γq(n−k−1) .

Hint: Suppose to the contrary that (q+1 ≥) n−1 ≥ Γq(n−k−1), namely, that
every linear [n−1, n−k−1] MDS code over F is an extended GRS code. Apply
duality to deduce that the same holds for every linear [n−1, k] MDS code. Then
use Lemma 11.21.

[Section 11.5]
Problem 11.17 Let C be a linear [q+1, 3] MDS code over F = GF(q).

1. Let c and c′ be two codewords in C of Hamming weight q, both having their
(unique) zero entry at the same location. Show that c and c′ are linearly
dependent.

Hint: Suppose to the contrary that c and c′ are linearly independent, and
consider a 3× (q+1) generator matrix G of C whose first two rows are c and
c′. Show that G contains a set of three linearly dependent columns.

2. Show that the number of codewords of Hamming weight q in C equals
(q+1)(q−1).

Hint: Compute Wq in Example 4.6.

3. Show that for every index � ∈ {1, 2, . . . q+1} there are q−1 codewords of
Hamming weight q whose �th entry is zero (and these codewords are all scalar
multiples of the same codeword).

Problem 11.18 Let C be a linear [q+1, 3] MDS code over F = GF(q) where q is
odd, and let G = (A | I) be a generator matrix of C as defined by (11.1). The
purpose of this problem is to obtain a necessary and sufficient algebraic condition
on the coefficients u0, u1, u2 ∈ F that correspond to codewords (u0 u1 u2)G of
Hamming weight q in C.

1. Let (u0 u1 u2)G be a codeword of Hamming weight q in C. Show that

(u0 + a0u1 + b0u2)2 = 4a0b0u1u2 ,

where a0 and b0 are the elements of F ∗ that are missing from the second and
third rows of A, respectively.

Hint: Let � denote the location of the zero entry in the codeword, and assume
first that � ≤ q−2. Use (11.4) and (11.5) to show that for some t ∈ F ∗,

u0 = (b�a0 + a�b0)t , u1 = (b0−b�)t , and u2 = (a0−a�)t .

Notes 361

Deduce that
u0 + a0u1 + b0u2 = 2a0b0t

and that
u1u2 = (b0−b�)(a0−a�)t2 = a0b0t

2 ,

and then eliminate t from the last two equations. Finally, consider the code-
words whose zero entry is indexed by q−1, q, or q+1.

2. Show that the solutions of the equation in part 1 for triples (u0 u1 u2) over
F with u1u2 �= 0 are all the (q−1)2 triples over F such that

u2 = a0b0s/u1 and u0 = −a0u1 − b0u2 ± 2a0b0

√
s ,

where s ranges over all the (q−1)/2 quadratic residues (i.e., squares) in F ∗

and u1 ranges over all the elements of F ∗.

3. Show that the equation in part 1 has (q+1)(q−1) nontrivial solutions for
(u0 u1 u2) over F . Deduce that there is a one-to-one correspondence between
the solutions of that equation and the codewords of Hamming weight q in C
(see Problem 11.17).

Notes

[Section 11.1]

The treatment of MDS codes in this chapter is inspired to a great extent by the
exposition of MacWilliams and Sloane [249, Chapter 11]. MDS codes are of interest
not only in coding theory, but in other areas as well—primarily projective geometry
over finite fields and combinatorics; see the books by Hirschfeld [181] and Hirschfeld
and Thas [186], and the Handbook of Combinatorial Designs [84, Part II].

We next present a characterization of linear MDS codes through the language
of projective geometry. Recalling from the notes on Section 2.3, let PG(k−1, q)
denote the (k−1)-dimensional projective geometry over F = GF(q). An n-arc in
PG(k−1, q) is a set of n points in PG(k−1, q) such that no k points in the set
belong to the same (k−2)-dimensional hyper-plane in PG(k−1, q). Let S be the
set of columns of a k × n matrix G over F , where each column is nonzero and is
regarded as a projective point in PG(k−1, q). Then S is an n-arc if and only if
every k columns in G are linearly independent. Equivalently, S is an n-arc if and
only if G is a parity-check matrix (and, by Proposition 11.4(ii), also a generator
matrix) of a linear MDS code over F . See Thas [361].

The connection between Latin squares and MDS codes (Problem 11.1) was
made by Golomb and Posner in [153]. For more on Latin squares, see Brualdi
and Ryser [67, Chapter 8], Colbourn and Dinitz (and other authors) [84, Chap-
ters II.1–3], and Dénes and Keedwell [101], [102]. Orthogonal arrays are treated by
Bierbrauer and Colbourn in [84, Chapters II.4–5].

The Singleton bound in the rank metric (Problem 11.4) was first obtained by
Delsarte [97], along with the attaining construction. See also Gabidulin [135] and
Roth [297], [299].

362 11. MDS Codes

The cover metric (Problem 11.5) was introduced in connection with handling
crisscross errors. Under this error model, entries in an array may become erro-
neous only within a prescribed number of rows or columns (or both). Roth [297]
lists several applications where such error patterns may be found. Constructions
of array codes that attain the Singleton bound in the cover metric have been ob-
tained by Blaum and Bruck [51], Gabidulin [136], Gabidulin and Korzhik [137], and
Roth [297], [299].

Given a finite Abelian group F , the term rank of an array A = (ai,j) m
i=1

n
j=1 in

Fm×n equals the largest number of nonzero entries in A, no two of which belong
to the same row or column of A. By König’s Theorem, the term rank of A equals
its cover weight (see the book by Brualdi and Ryser [67, p. 6]). Associate with
A = (ai,j) the following undirected bipartite graph G = GA (see Section 13.1): the
vertices of G are given by the rows and columns of A, and connect row i with
column j by an edge in G if and only if ai,j > 0. A matching in G is a largest set
of edges no two of which are incident with the same vertex. It follows from König’s
Theorem that the cover weight of A equals the size of the largest matching in G.
There is an efficient algorithm for finding a largest matching in a bipartite graph
(see Biggs [44, Section 17.5]); hence, one can efficiently compute the cover weight
of a given array A.

The codes in Problem 11.7 are taken from Blaum and Roth [53]. See also the
related work by Deutsch [103] and Keren and Litsyn [210], [211]. Let C be a code
obtained by the construction in Problem 11.7 for given F = GF(q), p, and �. Each
(p−1) × p array A in the respective code Ĉ (as defined in part 3 of that problem)
can be transformed into a vector in F (p−1)p simply by concatenating the columns of
A. When doing so, the set of resulting vectors forms a linear [p(p−1), (p−�)(p−1)]
code CF over F . The code CF can be shown to have a �(p−1) × p(p−1) parity-
check matrix HF over F with at most 2� − 1 nonzero entries in each column.
Sparse parity-check matrices in turn, are desirable as they allow efficient syndrome
computation. This motivates the problem of designing for a given field F and “byte
length” b, an MDS code over F b that is linear over F and has the sparsest possible
parity-check matrix; one may require, in addition, that the sparsest parity-check
matrix be also systematic—in which case the code will have a sparsest systematic
generator matrix as well (for given code parameters, the aforementioned matrix
HF is apparently neither the sparsest possible, nor is it systematic). The design
problem of such MDS codes has been dealt with by Blaum et al. [50], [52], Blaum
and Roth [54], Louidor [237], Louidor and Roth [238], and Zaitsev et al. [392].
(Linear codes that have sparse parity-check matrices are referred to as low-density
parity-check—in short, LDPC—codes.)

[Section 11.2]

In projective geometry, the particular (q+1)-arc in PG(k−1, q) that is formed by
the columns of a generator matrix of a [q+1, k] doubly-extended GRS code is called
a normal rational curve. See, for example, Hirschfeld and Thas [186, Chapter 27]
and Thas [361].

The characterization of circulant extended Cauchy matrices in Problem 11.9 is
taken from Roth and Lempel [301].

Notes 363

[Section 11.3]

Table 11.2 presents a range of values for which the MDS conjecture is proved (see
also the notes on Section 11.5). In addition, the conjecture has been confirmed to
hold in every field GF(q) for k ≤ 5 (and, thus, also for k ≥ q−3).

Table 11.2. Values of q and k for which the MDS conjecture is proved.

q = pm, p prime Range of k

p = 2 k < 1
2

√
q + 15

4 or k > q − 1
2

√
q − 7

4

p = 3, even m ≥ 8 k < 1
2

√
q + 2 or k > q − 1

2

√
q

p ≥ 5 k < 1
2

√
q or k > q − 1

2

√
q + 2

p ≥ 3, odd m k < 1
4

√
pq − 29

16p + 4 or k > q − 1
4

√
pq + 29

16p− 2

m = 1 k < 1
45q + 37

9 or k > q − 1
45q − 19

9

Let C be a linear [n, k, d] code over F = GF(q). We say that C is almost MDS (in
short, AMDS) if d = n−k; that is, we allow a slack of 1 between d and the Singleton
bound. The code C is near-MDS (in short, NMDS) if both C and C⊥ are AMDS. The
[7, 4, 3] Hamming code over GF(2) and the [11, 6, 5] ternary Golay code over GF(3)
are examples of NMDS codes. It can be shown that when n > k + q, every linear
[n, k] AMDS code over GF(q) is NMDS. Constructions and bounds for AMDS and
NMDS codes were obtained by de Boer [59], Dodunekov and Landjev [106], [107],
Faldum and Willems [118], and Marcugini et al. [250].

[Section 11.4]

The presentation in this section is taken primarily from Roth and Lempel [301].
In projective geometry, an n-arc in PG(k−1, q) is called complete if it is not a

subset of an (n+1)-arc in PG(k−1, q). One of the problems studied in projective
geometry is characterizing the set of complete n-arcs in PG(k−1, q). When Γq(k) ≤
q+1, every normal rational curve in PG(k−1, q) is complete, and Γq(k) − 1 then
equals the size of the largest complete n-arc in PG(k−1, q), if any, that is not a
normal rational curve.

It was shown by Seroussi and Roth in [329] that when 2 ≤ k ≤ �q/2+2, then—
with the exception of k = 3 when q is even—a normal rational curve in PG(k−1, q)
is a complete (q+1)-arc; furthermore, for n ≤ q+1 and 2 ≤ k ≤ n− �(q−1)/2, any
n-arc that consists of n points of a normal rational curve is contained in a unique
complete (q+1)-arc, which is a normal rational curve. When k = 3 and q is even,
such an n-arc is contained in the (complete) (q+2)-arc in PG(2, q) that consists of
the columns of the parity-check matrix of a [q+2, q−1] triply-extended GRS code
over GF(q). Problem 11.10 is based on the analysis of [329] for the special case
k = 3. See also Storme and Thas [344].

Note, however, that there are values of k and q for which normal rational curves
in PG(k−1, q) are provably complete, yet Γq(k) = q+2 as a result of the existence
of other (q+1)-arcs in PG(k−1, q). One such example, due to Glynn [147], is given

364 11. MDS Codes

in part 3 of Problem 11.9: while it is known that L9(5) = 10, there is a complete
10-arc in PG(4, 9) that is not a normal rational curve and, so, Γ9(5) = 11. Another
example, taken from Casse and Glynn [75] and Lüneburg [243, Section 44], is shown
in part 4 of Problem 11.11; the code C′� therein, which is MDS whenever gcd(�,m) =
1, is an extended GRS code only when � ∈ {1,m−1}.

[Section 11.5]
Proposition 11.25 was originally proved by Segre [325] using geometric arguments.
Proposition 11.27 and Corollary 11.28 are due to Thas [360] (see also Segre [326]).
The results of Thas have since been improved for most values of odd q: Table 11.3
summarizes known upper bounds on the values of Γq(3), as a function of q. By
Proposition 11.24, we obtain that the MDS conjecture is proved for odd q whenever

k ≤ q + 5− Γq(3) or k ≥ Γq(3)− 3 ,

thereby accounting for the last four entries in Table 11.2. See also Hirschfeld [181],
Hirschfeld and Storme [184], [185], Hirschfeld and Thas [186, Chapter 27], and
Thas [361].

Table 11.3. Upper bounds on Γq(3).

q = pm, p an odd prime Γq(3) ≤ Reference

p = 3, even m ≥ 8 q − 1
2

√
q + 4 Hirschfeld and

p ≥ 5 q − 1
2

√
q + 6 Korchmáros [182], [183]

odd m q − 1
4

√
pq + 29

16p + 2 Voloch [376]

m = 1 44
45q + 17

9 Voloch [375]

Turning to even values of q, we obviously have Γq(3) = q+2 since Lq(3) > q+1.
In addition, it follows from the known properties of the code in part 4 of Prob-
lem 11.11 that Γq(4) = q+2 for even q ≥ 128 (and also for q = 32). Nevertheless,
Lq(4) = Lq(q−2) = q+1, as shown by Casse [74] and Gulati and Kounias [164];
furthermore, Storme and Thas have shown in [345] that for even q ≥ 8,

Γq(5) ≤ q − 1
2

√
q + 17

4 .

The first entry in Table 11.2 is obtained by combining these results with Proposi-
tion 11.24.

Chapter 12

Concatenated Codes

In this chapter, we continue the discussion on concatenated codes, which was
initiated in Section 5.4. The main message to be conveyed in this chapter is
that by using concatenation, one can obtain codes with favorable asymptotic
performance—in a sense to be quantified more precisely—while the complex-
ity of constructing these codes and decoding them grows polynomially with
the code length.

We first present a decoding algorithm for concatenated codes, due to
Forney. This algorithm, referred to as a generalized minimum distance (in
short, GMD) decoder, corrects any error pattern whose Hamming weight is
less than half the product of the minimum distances of the inner and outer
codes (we recall that this product is a lower bound on the minimum distance
of the respective concatenated code). A GMD decoder consists of a nearest-
codeword decoder for the inner code, and a combined error–erasure decoder
for the outer code. It then enumerates over a threshold value, marking
the output of the inner decoder as erasure if that decoder returns an inner
codeword whose Hamming distance from the respective received sub-word
equals or exceeds that threshold. We show that under our assumption on
the overall Hamming weight of the error word, there is at least one threshold
for which the outer decoder recovers the correct codeword. If the outer code
is taken as a GRS code, then a GMD decoder has an implementation with
time complexity that is at most quadratic in the length of the concatenated
code.

We then turn to analyzing the asymptotic attainable performance of
concatenated codes, as their length goes to infinity. We do this first by
computing a lower bound on the attainable rate of these codes, as a function
of the relative minimum distance and the field size. Such a bound, which we
call the Zyablov bound, is obtained by assuming that the inner code achieves
the Gilbert–Varshamov bound and the outer code is a GRS code. Since
the length of the inner code is significantly smaller than that of the overall

365

366 12. Concatenated Codes

concatenated code, it will follow that for every fixed rate, a generator matrix
of the resulting concatenated code can be computed in time complexity that
grows polynomially with the code length. The search for an inner code that
attains the Gilbert–Varshamov bound can be avoided by using varying inner
codes taken from a relatively small ensemble which is known to achieve that
bound. This approach leads to the construction of Justesen codes, which
also attain the Zyablov bound for a certain range of values of the relative
minimum distance.

Finally, we turn to a second analysis of the asymptotic performance
of concatenated codes, now in the framework of transmission through the
memoryless q-ary symmetric channel. We show that by using two levels of
concatenation, one can obtain a sequence of codes and respective decoders
with the following properties: the code rates approach the capacity of the
channel, the codes can be constructed and decoded in time complexity that
is at most quadratic in their lengths, and the decoding error probability
decays exponentially with the code length.

12.1 Definition revisited

We start by presenting a definition of concatenated codes, which will include
our earlier definition in Section 5.4 as a special case. The construction of a
concatenated code over a finite alphabet F uses the following ingredients:

• a one-to-one (and onto) mapping

Ein : Φ → Cin ,

where Φ is a finite set and Cin is an (n, |Φ|, d) inner code over F , and

• an (N,M, D) outer code Cout over Φ.

The respective concatenated code Ccont = (Ein, Cout) consists of all words in
FnN of the form

(Ein(z1) | Ein(z2) | . . . | Ein(zN)) ,

where (z1 z2 . . . zN) ranges over all the codewords in Cout. One can readily
verify that Ccont is an (nN,M,≥dD) code over F (Problem 12.1).

The concatenated codes that we presented in Section 5.4 are a special
case of this construction, where

• F is a finite field;

• Φ is an extension field of F ;

• Ein is a linear mapping over F (thereby implying that Cin is a linear
[n, k, d] code over F with k = [Φ : F]); and

12.2. Decoding of concatenated codes 367

• Cout is a linear [N, K, D] code over Φ.

If these four conditions are met, we say that the resulting code Ccont is a
linearly-concatenated code. Such a code is then a linear [nN, kK,≥dD] code
over F . Note, however, that Ccont may turn out to be linear also under
weaker conditions: for example, we can relax the requirement on Cout so
that it is a linear space over F (rather than over Φ).

To maximize D, the code Cout is typically taken to be an MDS code; e.g.,
in the linearly-concatenated case, we may select Cout to be an (extended)
GRS code, which is possible whenever N ≤ |Φ|.

12.2 Decoding of concatenated codes

Let Ccont be an (nN,M,≥dD) concatenated code over F that is constructed
using an (N,M,D) outer code Cout over Φ and a one-to-one mapping Ein :
Φ → Cin onto an (n, |Φ|, d) inner code Cin over F . We present in this section
a decoding algorithm for correcting any error pattern with less than dD/2
errors.

Suppose that a codeword

c = (c1 | c2 | . . . | cN)

of Ccont has been transmitted through an additive channel S = (F, F,Prob).
A word

y = (y1 |y2 | . . . |yN) ∈ FnN

has been received, where each sub-block yj is in Fn. Assume hereafter
that y and c differ—as words in FnN—on less than dD/2 coordinates. We
next show how c can be decoded correctly from y using a nearest-codeword
decoder for Cin and an error–erasure decoder for Cout.

For j = 1, 2, . . . , N , denote by zj the value E−1
in (cj). Since c is a codeword

of Ccont, we have by construction that

z = (z1 z2 . . . zN)

is a codeword of Cout.
For j = 1, 2, . . . , N , let ĉj be a nearest codeword in Cin to yj and let ẑj

be the value E−1
in (ĉj). Denote by Θ(d) the set {1, 2, . . . , �d/2�}. Given an

integer ϑ ∈ Θ(d), define a word

x = x(ϑ) = (x1 x2 . . . xN) ∈ (Φ ∪ {?})N ,

where

xj =
{

ẑj if d(yj , ĉj) < ϑ
? otherwise

. (12.1)

368 12. Concatenated Codes

The value ϑ will serve as a threshold for the number of errors that we attempt
to correct in each sub-block yj : we will decode yj to a nearest codeword ĉj

only if d(yj , ĉj) < ϑ; otherwise, we mark that sub-block as an erasure (“?”).
Note that this decoding process is local in the sense that it does not take
into account the dependence between different sub-blocks that is induced by
the outer code Cout. Such a dependence will be exploited in subsequent steps
of the decoding, by determining the threshold ϑ and by applying a decoder
for Cout to x(ϑ).

Specifically, let ρϑ denote the number of erasures in x(ϑ) and let τϑ be
the number of non-erased coordinates (with entries taking values in Φ) on
which x(ϑ) differs from z. We will show that there exists a threshold value
ϑ ∈ Θ(d) for which

2τϑ + ρϑ < D . (12.2)

Indeed, when this inequality holds then, by Theorem 1.7, the outer code-
word z can be recovered correctly from x(ϑ) using a combined error–erasure
decoder for Cout. The existence of such a threshold ϑ will be established by
proving that—with respect to a certain probability measure—the average of
2τϑ + ρϑ when ϑ ranges over Θ(d), is less than D.

Our proof makes use of the following definitions. For j = 1, 2, . . . , N , let

wj = d(yj , ĉj) ,

and for ϑ ∈ Θ(d) define

χj(ϑ) =

⎧⎨⎩
0 if ĉj = cj and wj < ϑ
1 if ĉj �= cj and wj < ϑ
1
2 if wj ≥ ϑ

.

We may think of χj(ϑ) as a decoding penalty at the jth sub-block of y (or
the jth coordinate of x), given the threshold ϑ: the penalty is 1 if our local
decoding at that sub-block resulted in an incorrect codeword of Cin, and is
1
2 if that sub-block was marked as an erasure. This observation leads to the
following result.

Lemma 12.1 For every ϑ ∈ Θ(d),

τϑ +
ρϑ

2
=

N∑
j=1

χj(ϑ) .

Next, we regard ϑ as a random variable taking values in Θ(d) and intro-
duce the following probability measure over Θ(d):

Pϑ {ϑ = x} =
{

2/d if x ∈ {1, 2, . . . , �d/2}
1/d if d is odd and x = �d/2� .

12.2. Decoding of concatenated codes 369

Note that, indeed,
∑

x∈Θ(d) Pϑ {ϑ = x} = 1. We use hereafter the notation
Eϑ {·} for the expected value with respect to the measure Pϑ.

Lemma 12.2 For every j ∈ {1, 2, . . . , N},

Eϑ {χj(ϑ)} ≤ d(yj , cj)
d

.

Proof. We distinguish between two cases.
Case 1: ĉj = cj or wj ≥ d/2. Here χj(ϑ) takes the value 0 (when

ϑ > wj) or 1
2 (when ϑ ≤ wj), and it never takes the value 1 (in particular,

when wj ≥ d/2, the value of χj(ϑ) is identically 1
2 for every ϑ ∈ Θ(d), even

when ĉj �= cj). Therefore,

Eϑ {χj(ϑ)} = 1
2Pϑ {ϑ ≤ wj} ≤

wj

d
=

d(yj , ĉj)
d

≤ d(yj , cj)
d

,

where the last step follows from ĉj being a nearest codeword in Cin to yj .
Case 2: ĉj �= cj and wj < d/2. In this case, χj(ϑ) takes the value 1

(when ϑ > wj) or 1
2 (when ϑ ≤ wj), and it never takes the value 0. So,

Eϑ {χj(ϑ)} = Pϑ {ϑ > wj}+ 1
2Pϑ {ϑ ≤ wj} = 1− 1

2Pϑ {ϑ ≤ wj}

= 1− wj

d
=

d− d(yj , ĉj)
d

≤ d(yj , cj)
d

,

where the last step follows from the triangle inequality.

We are now ready to show that there exists a threshold for which (12.2)
holds.

Proposition 12.3 If d(y, c) < dD/2 then there exists a threshold ϑ ∈
Θ(d) for which

τϑ +
ρϑ

2
<

D

2
.

Proof. Taking expected values of both sides of the equality in
Lemma 12.1 we obtain

Eϑ

{
τϑ +

ρϑ

2

}
=

N∑
j=1

Eϑ {χj(ϑ)} .

Now, by Lemma 12.2 we have

N∑
j=1

Eϑ {χj(ϑ)} ≤ 1
d

N∑
j=1

d(yj , cj) =
d(y, c)

d
<

D

2
.

370 12. Concatenated Codes

Combining the last two equations we obtain

Eϑ

{
τϑ +

ρϑ

2

}
<

D

2
.

Hence, there must be at least one threshold ϑ ∈ Θ(d) for which τϑ + 1
2ρϑ <

D/2.

Based on Proposition 12.3, we present in Figure 12.1 a decoding algo-
rithm for Ccont. Step 1 decodes locally every sub-block yj to a nearest code-
word ĉj in Cin. Step 2 iterates over all thresholds ϑ ∈ Θ(d) and, for each
threshold, we construct the word x = x(ϑ) by (12.1) (in Step 2a) and apply
an error–erasure decoder for Cout to x (in Step 2b). Proposition 12.3 now
guarantees that we will decode correctly for at least one threshold ϑ ∈ Θ(d).

Input: received word y = (y1 |y2 | . . . |yN) ∈ FnN .
Output: codeword c ∈ Ccont or a decoding-failure indicator “e”.

1. For j = 1, 2, . . . , N do:

(a) apply a nearest-codeword decoder for Cin to yj to produce a codeword
ĉj of Cin;

(b) let ẑj ← E−1
in (ĉj).

2. For ϑ = 1, 2, . . . , �d/2� do:

(a) let x = (x1 x2 . . . xN) be the word over Φ ∪ {?} that is defined by

xj =
{

ẑj if d(yj , ĉj) < ϑ
? otherwise

and let ρϑ ← |{j : xj = ?}|; /∗ ρϑ is the number of erasures in x ∗/
(b) apply an error–erasure decoder for Cout to recover ρϑ erasures and cor-

rect up to τϑ = � 1
2 (D−1−ρϑ) errors in x, producing either a codeword

(z1 z2 . . . zN) ∈ Cout

or a decoding-failure indicator “e”;

(c) if decoding is successful in Step 2b then do:

i. let c← (Ein(z1) | Ein(z2) | . . . | Ein(zN));
ii. if d(y, c) < dD/2 then output c and exit.

3. If no codeword c has been produced in Step 2c then return “e”.

Figure 12.1. Decoding algorithm for concatenated codes (GMD decoding).

12.3. The Zyablov bound 371

Yet, we still need to identify such a threshold among all the elements of
Θ(d): we do this in Step 2c, where we test whether the Hamming distance
between the computed codeword and the received word y is less than dD/2.
Since we assume that the number of errors is less than dD/2 (and, so, less
than half the minimum distance of Ccont), only the transmitted codeword
will pass this test.

The algorithm in Figure 12.1 is known as Forney’s generalized minimum
distance (in short, GMD) decoder. We next analyze the complexity of this
algorithm.

The decoding in Step 1a can be carried out in a brute-force manner by
checking exhaustively all the codewords of Cin. This, in turn, requires n · |Φ|
comparisons of elements of F . Note, however, that when N is proportional to
|Φ|—e.g., when Cout is taken as a primitive GRS code—then the expression
n · |Φ| is proportional to nN ; in such a case, the complexity of Step 1 grows
at most as nN2. (Furthermore, observe that the largest value taken by
the threshold ϑ in Step 2 is �d/2�; hence, it suffices that the decoder in
Step 1a attempts to correct only �d/2� − 1 = �(d−1)/2 errors. This allows
an efficient implementation of Step 1a if we select Cin to be an alternant
code with designed minimum distance d and use, for this code, the decoding
algorithm of Chapter 6.)

Assuming that Ccont is a linearly-concatenated code over a field F with
Cout taken as a GRS code over an extension field Φ, there is an efficient
algorithm for implementing Step 2b using Euclid’s algorithm for polyno-
mials over Φ (see Problem 6.11). As mentioned in Section 6.6, a direct
application of Euclid’s algorithm, along with the computation of the syn-
drome and of the error values, require a number of operations in Φ that
is proportional to D · N . However, there are known methods for accel-
erating the GRS decoding algorithm so that its complexity becomes pro-
portional to N log2 N log log N (see the notes on Section 6.6). Translating
this complexity into operations in F , it becomes proportional to at most
n2N log2 N log log N . Hence, the complexity of Step 2 in Figure 12.1 grows
no faster than n3N log2 N log log N , and the overall complexity of GMD
decoding is therefore proportional to at most nN2, assuming that Cout is
taken as a GRS code (or an extended GRS code: refer again to the notes on
Section 6.6).

12.3 The Zyablov bound

In this section, we analyze the asymptotic attainable rate and relative min-
imum distance of linearly-concatenated codes, as the code length goes to
infinity.

372 12. Concatenated Codes

We recall from Section 4.5 that the q-ary entropy function Hq : [0, 1] →
[0, 1] is defined by

Hq(x) = −x logq x− (1− x) logq(1− x) + x logq(q−1) ,

where Hq(0) = 0 and Hq(1) = logq(q−1). Since this function is increasing in
the interval [0, 1−(1/q)], the inverse mapping

H−1
q : [0, 1]→ [0, 1−(1/q)]

is well-defined, and we can use it to state the asymptotic version of the
Gilbert–Varshamov bound as follows.

Theorem 12.4 Let F = GF(q) and let n and rn be positive integers,
where r ∈ [0, 1]. There exists a linear [n, rn,≥θn] code over F , where

θ = H−1
q (1−r) .

This theorem is proved (see Section 4.3) by constructing an (n(1−r))×n
systematic parity-check matrix over F , column by column, such that each
added column cannot be obtained as a linear combination of any �θn�−2
existing columns. The number of such linear combinations, in turn, can be
as large as Vq(n−1, �θn�−2) = qn(Hq(θ)−o(1)), where Vq(n, t) is the size of a
Hamming sphere with radius t in Fn, and o(1) is an expression that goes
to zero as n goes to infinity. Hence, an exhaustive check of all these linear
combinations will require a number of operations in F that is exponential in
the code length n for every fixed θ.

Suppose, however, that the code which is guaranteed by Theorem 12.4
is used as an [n, k=rn] inner code Cin in an [ncont, kcont, dcont] linearly-
concatenated code Ccont, with the outer code Cout taken as an [N=qrn,K,D]
(singly-)extended primitive GRS code over Φ = GF(qrn), where K = �RN�
and D = N−K+1 (> (1−R)N) for some real R ∈ (0, 1]. The parameters of
Ccont are given by

ncont = nN = n qrn = n qn(1−Hq(θ)) ,

kcont ≥ rR · nN = (1−Hq(θ))R · nN ,

and
dcont > θ(1−R) · nN .

That is, the length of Ccont can be arbitrarily large, the rate Rcont of Ccont

can be bounded from below by

Rcont ≥ rR = (1−Hq(θ))R , (12.3)

12.3. The Zyablov bound 373

and its relative minimum distance δ satisfies

δ > θ(1−R) . (12.4)

Given a designed relative minimum distance δ ∈ (0, 1−(1/q)), we can now
maximize the right-hand side of (12.3) over all θ ∈ (0, 1−(1/q)] and R ∈ (0, 1]
that satisfy the constraint θ(1−R) ≤ δ. This yields the Zyablov bound

Rcont ≥ RZ(δ, q) ,

where
RZ(δ, q) = max

θ∈[δ,1−(1/q)]

(
1− Hq(θ)

)(
1− δ

θ

)
. (12.5)

(To be precise, we should restrict the maximization only to values θ that are
equal to H−1

q (1−(k/n)) for some integer k; however, we are interested here
in the case where n goes to infinity and so, by the continuity of the entropy
function, we can take the maximum over the whole real interval [δ, 1−(1/q)].)
It can be shown (Problem 12.7) that the maximum in the right-hand side
of (12.5) is obtained for θ that satisfies the equation

θ2 ·
logq(q−1) + logq((1−θ)/θ)

1 + logq(1−θ)
= δ . (12.6)

Figure 12.2 shows the Zyablov bound for F = GF(2), along with the
Gilbert–Varshamov bound (the additional straight line that appears in the
figure will be explained in Section 12.4).

While the Zyablov bound is inferior to the Gilbert–Varshamov bound,
we show next that for every fixed δ ∈ (0, 1−(1/q)), the computation of a
generator matrix of Ccont requires a number of operations in F that is only
polynomially large in the code length ncont.

Recall that a search for each column in the parity-check matrix of Cin

requires enumerating over (no more than) Vq(n−1, �θn�−2) linear combina-
tions of previous columns. That number of combinations, in turn, satisfies

Vq(n−1, �θn�−2) ≤ qnHq(θ) = q(1−r)n = N (1/r)−1 < n
(1/r)−1
cont (12.7)

(where we still assume that Cout is an extended primitive GRS code over
GF(qrn), of length N = qrn). Now, for every fixed δ ∈ (0, 1−(1/q)), the max-
imizing θ in the right-hand side of (12.5) is in the open interval (δ, 1−(1/q))
and, so, r = 1−Hq(θ) is strictly positive. It follows that the power, (1/r)−1,
of ncont in (12.7) is some real constant, independent of ncont (note though
that this constant tends to infinity when δ → 1−(1/q)). Having found a
systematic parity-check matrix of Cin, we effectively obtain also a generator
matrix of this code.

374 12. Concatenated Codes

�

�
RZ(δ, 2)

0

1

1/2
δ

Gilbert–Varshamov bound

Zyablov bound

Figure 12.2. Zyablov bound for GF(2).

A generator matrix of the outer code Cout is also easy to compute, even if
we need to search exhaustively for an irreducible polynomial of degree rn to
represent the field Φ = GF(qrn): the number of monic polynomials of degree
≤ rn over GF(q) is still smaller than 2N < 2ncont. Once we have the genera-
tor matrices of Cin and Cout, we can easily obtain a generator matrix of Ccont

(Problem 12.2). We thus conclude that for every fixed δ ∈ (0, 1−(1/q)), the
computation of a generator matrix of Ccont requires a number of operations
in F that is only polynomially large in ncont.

12.4 Justesen codes

Recall that the Zyablov bound is attained by conducting an exhaustive
search for an inner code that attains the Gilbert–Varshamov bound. Such
a search can be circumvented if we allow using different inner codes for dis-
tinct coordinates of the outer code. If “most” of these inner codes attain the
Gilbert–Varshamov bound, then—as we show below—such a generalization
of concatenation will approach the Zyablov bound.

12.4. Justesen codes 375

We have shown before (Theorem 4.5) that most codes in the ensemble
of linear [n, k] codes over F = GF(q) indeed attain the Gilbert–Varshamov
bound. Yet, even when we count only linear [n, k] codes with systematic
generator matrices, there are still at least qk(n−k) such codes over F . Now, if
we use an extended primitive GRS code over GF(qk) as an outer code, then
its length is qk—much smaller than the size of the ensemble. A sample of
qk codes from this ensemble is too small to claim that most of them attain
the Gilbert–Varshamov bound. Hence, our goal is to construct an ensemble
of at most qk linear [n, k] codes over F that meet this bound. We present
next such an ensemble for k < n ≤ 2k (other ensembles are presented in
Problems 12.10 and 12.11).

Let Φ = GF(qk) and fix a basis Ω = (ω1 ω2 . . . ωk) of Φ over F = GF(q).
Given an element α ∈ Φ, denote by L(α) the k × k matrix over F that
represents, according to the basis Ω, the linear mapping ϕα : Φ → Φ over F
that is defined by

ϕα : x�→ αx ;

namely, for every column vector x ∈ F k,

ϕα(Ωx) = ΩL(α)x .

We now let C(α) be the linear [2k, k] code over F whose generator matrix is

G(α) =
(

I (L(α))T
)

.

Equivalently, C(α) consists of all vectors (c1 | c2), where c1, c2 ∈ F k and c2

is related to c1 by
ΩcT

2 = ϕα(ΩcT
1) = α · ΩcT

1 . (12.8)

(The code C(α) can also be viewed as a linearly-concatenated code over F
with the outer code taken as the linear [2, 1] code over Φ that is generated
by

(
1 α

)
, while the inner code is the [k, k, 1] code F k; see Problem 12.2.)

In what follows, we find it convenient to assume some ordering on the
elements of Φ and we denote the jth element in Φ by αj , where 1 ≤ j ≤ qk.
Let n be an integer in the range k < n ≤ 2k and let Gj be the k× n matrix
that consists of the first n columns of G(αj). Define Cj to be the linear
[n, k] code over F whose generator matrix is Gj (equivalently, Cj is obtained
by puncturing C(αj) at the last 2k−n coordinates; see Problem 2.3). The
sequence

C1, C2, . . . , Cqk

is called the ensemble of [n, k] Wozencraft codes over F . We denote this
sequence by WF (n, k).

The following lemma states that a nonzero word in Fn cannot belong to
too many codes in this sequence.

376 12. Concatenated Codes

Lemma 12.5 Every nonzero word c in Fn belongs to at most q2k−n

codes in WF (n, k).

Proof. Assume first that n = 2k, in which case Cj = C(αj). Let c =
(c1 | c2) be a nonzero word in Fn where c1, c2 ∈ F k. From (12.8) it follows
that there is at most one element α ∈ Φ such that c ∈ C(α); indeed, if c1 = 0
(and c2 �= 0) then no α can satisfy (12.8), and if c1 �= 0 then α is given by
(ΩcT

2)/(ΩcT
1).

Next, suppose that k < n < 2k. A word c ∈ Fn belongs to Cj only if
c = uGj for some u ∈ F k, in which case there must be an extension of c
by 2k−n coordinates that produces a codeword x = x(c, αj) in C(αj): that
codeword x is given by uG(αj). Given a nonzero word c ∈ Fn, its q2k−n

possible extensions to words in F 2k may yield at most q2k−n codewords—
each belonging to at most one code in WF (2k, k). Hence, c belongs to at
most q2k−n codes in WF (n, k).

We also mention that the codes in the sequenceWF (n, k) are all distinct.
This fact is not material for the forthcoming discussion and we therefore leave
the proof as an exercise (Problem 12.9).

The next proposition, which is a corollary of Lemma 12.5, provides a
useful property of the distribution of the minimum distances of the codes in
WF (n, k).

Proposition 12.6 The number of codes inWF (n, k) with minimum dis-
tance less than a prescribed integer d is at most q2k−n · (Vq(n, d−1)− 1).

Proof. There are Vq(n, d−1) − 1 nonzero words in Fn with Hamming
weight less than d, and by Lemma 12.5, each such word belongs to at most
q2k−n codes in WF (n, k).

In the construction that we describe next, the elements of WF (n, k) will
play the role of the inner code in a concatenated code. Specifically, let
F = GF(q) and let k and n be positive integers such that k < n ≤ 2k.
For j = 1, 2, . . . , qk, we let Ej be a one-to-one linear mapping over F from
Φ = GF(qk) onto Cj . The outer code is taken as in Section 12.3: we fix R to
be a real in (0, 1] and let Cout be an [N,K, D] extended primitive GRS code
over Φ, where N = qk, K = �RN�, and D = N−K+1 (> (1−R)N).

Having all these ingredients, we define a Justesen code as the code CJus

over F that consists of all words

(E1(z1) | E2(z2) | . . . | EN (zN)) ,

where (z1 z2 . . . zN) ranges over all the codewords of Cout.
Similarly to (proper) linearly-concatenated codes, the code CJus is a linear

[nN, kK] code over F . We can obtain a lower bound on the minimum

12.4. Justesen codes 377

distance d(CJus) by noticing that in every nonzero codeword of CJus there
are at least D nonzero sub-blocks Ej(zj); so,

d(CJus) ≥ min
J

∑
j∈J

d(Cj) ,

where the minimum is taken over all subsets J ⊆ {1, 2, . . . , N} of size D. By
Proposition 12.6 it follows that for every positive integer d,

d(CJus) > d · (D − q2k−nVq(n, d−1)) . (12.9)

To obtain an asymptotic lower bound from (12.9), write r = k/n and let
the real θ be related to r and n by

θ = H−1
q (1−r−ε(n)) ,

where n �→ ε(n) is a function that satisfies both

lim
n→∞ ε(n) = 0 and lim

n→∞n · ε(n) = ∞

(e.g., ε(n) = (log n)/n). By selecting d = �θn� in (12.9) we obtain

d(CJus) > θn ·
(
(1−R)N − q(2r−1)n · qnHq(θ)

)
= θnN

(
1−R− qn(r−1+Hq(θ))

)
= θnN

(
1−R− q−n·ε(n)

)
= θ(1−R− o(1)) · nN ,

where o(1) goes to zero as n →∞. We conclude that the relative minimum
distance δ of CJus is bounded from below by

δ > θ(1−R− o(1)) . (12.10)

As for the rate RJus of CJus, we have

RJus ≥ rR

= (1−Hq(θ)−ε(n))R
= (1−Hq(θ)−o(1))R . (12.11)

Note that the bounds (12.10) and (12.11) are the same as (12.4) and (12.3),
except for the term o(1).

We can now proceed by maximizing over θ similarly to the Zyablov
bound (12.5). Recall, however, that the rates of the codes in a Wozen-
craft ensemble must be in the interval [12 , 1); hence, θ is constrained to be
at most H−1

q (1
2). We thus obtain here the lower bound

RJus ≥ RJ(δ, q)− o(1) ,

378 12. Concatenated Codes

where RJ(δ, q) is given by

RJ(δ, q) = max
θ∈[δ,H−1

q (1
2
)]

(
1− Hq(θ)

)(
1− δ

θ

)
(12.12)

(note that for δ = H−1
q (1

2) we get RJ(δ, q) = 0). The function δ �→ RJ(δ, q)
coincides with δ �→ RZ(δ, q) in (12.5) whenever the maximizing θ in the
latter equation is at most H−1

q (1
2). This occurs for values δ in the interval

[0, δJ(q)], where δJ(q) can be computed by substituting θ = H−1
q (1

2) in the
left-hand side of (12.6). For instance, when q = 2 we get H−1

2 (1
2) ≈ 0.1100,

δJ(2) ≈ 0.0439, and RJ(δJ(2), 2) ≈ 0.3005.
When δ > δJ(q), the maximum in (12.12) is obtained for θ = H−1

q (1
2);

hence, (12.12) becomes

RJ(δ, q) =
1
2
·
(
1− δ

H−1
q (1

2)

)
,

which is a straight line; this line is shown in Figure 12.2.

12.5 Concatenated codes that attain capacity

By using code concatenation, one can approach the capacity of the q-ary
symmetric channel with linear codes that can be encoded and decoded in
time complexity that is polynomially large in the code length. We next show
how this can be done.

Let F = GF(q) and let p be the crossover probability of a q-ary symmetric
channel (F, F,Prob) where p < 1−(1/q). Also, let n and rn be positive
integers such that

r < 1− Hq(p) .

We have shown (Corollary 4.18) that there always exists a linear [n, rn]
code C over F such that the decoding error probability Perr(C) of a nearest-
codeword decoder for C satisfies

Perr(C) < 2q−nEq(p,r)

for some strictly positive constant Eq(p, r). We can assume that C has a
systematic generator matrix, as the value Perr(C) remains unchanged under
any permutation of the code coordinates.

A brute-force search for the code C requires an enumeration over all
qr(1−r)n2

linear [n, rn] codes with systematic generator matrices over F , and
then testing for each possible error word e in Fn whether e is decoded
correctly by a nearest-codeword decoder (yet see Problems 12.12, 12.14,

12.5. Concatenated codes that attain capacity 379

and 12.15: they imply that the search can be restricted to smaller ensem-
bles). The precise computation of Perr(C) requires operations in real num-
bers, since we need to calculate for every word e ∈ Fn the probability,
(p/(q−1))w(e)(1−p)n−w(e), that the error word equals e. However, it will
suffice for our purposes to find a code C whose value Perr(C) is no more than
twice (say) the smallest decoding error probability, i.e.,

Perr(C) < 4q−nEq(p,r) .

This, in turn, allows us to limit the precision of our computations to a
number of decimal places that is linear in n. We can count the number of
bit operations and operations in F that are applied while searching for C
and we let N0(n, r, q) be an upper bound on that number.

We now use the code C as an inner code in a linearly-concatenated code
Ccont, whose outer code, Cout, is by itself a linearly-concatenated code of
length N over the field Φ = GF(qrn), where N is taken to be at least
max {N0(n, r, q), qrn}. We further assume that Cout attains the Zyablov
bound and that the product of the minimum distances of its inner and outer
codes is bounded from below by �δN�, for some real parameter δ ∈ [0, 1].
The relationship between δ and r will be determined in the sequel. Given δ,
the rate R of Cout is bounded from below by

R ≥ RZ(δ, qrn) .

The choice of δ will be such that R is close to 1.
To analyze the encoding and decoding complexity of Ccont, we assume

that this code is defined by the pair (E , Cout) for some one-to-one linear
mapping E : Φ → C. The encoding consists of a multiplication by a generator
matrix of Cout over Φ, followed by N applications of the mapping E . From
the complexity analysis of Section 12.3 it follows that a generator matrix of
(the concatenated code) Cout can be obtained by a number of operations in Φ
that is quadratic in N . Shifting to operations in F , this complexity becomes
quadratic in nN . Hence, the overall encoding complexity of a codeword of
Ccont is quadratic in nN (counting also the computation of the generator
matrix of Cout and the N applications of the mapping E).

Next, we turn to the decoding of Ccont. Let

y = (y1 |y2 | . . . |yN) ∈ FnN

be the received word, where each yj is a sub-block in Fn. Our decoder Dcont

of Ccont consists of two decoding steps, as follows.

1. Apply a nearest-codeword decoder for C to each sub-block yj to pro-
duce a codeword ĉj of C.

380 12. Concatenated Codes

2. Apply an efficient decoder (such as the GMD decoder in Figure 12.1)
for the concatenated code Cout to correct up to �δN/2� − 1 errors in
the word (

E−1(ĉ1) | E−1(ĉ2) | . . . | E−1(ĉN)
)
∈ ΦN

(note that �δN/2� − 1 = �(�δN� − 1)/2, and recall that �δN� is a
lower bound on the minimum distance of Cout).

Step 1 can be implemented using a number of operations in F that is
proportional to nN · qrn. As for Step 2, we have shown in Section 12.2 that
GMD decoding can be carried out in a number of operations in Φ that is
less than quadratic in N . Translating the latter complexity to operations in
F , the two decoding steps can be carried out in time complexity that is (less
than) quadratic in nN .

We turn to bounding the decoding error probability, Perr(Ccont), of the
decoder Dcont. Clearly, decoding will fail only if τ = �δN/2� or more of the
sub-blocks yj have been decoded incorrectly by a nearest-codeword decoder
for C. Now, for every given j, a sub-block yj is incorrectly decoded with
probability P = Perr(C). Furthermore, since the channel is memoryless, such
incorrect decoding occurs independently of all other sub-blocks. Hence,

Perr(Ccont) ≤
N∑

i=τ

(
N

i

)
P i(1−P)N−i

≤
N∑

i=τ

(
N

i

)
P i ≤ P τ

N∑
i=τ

(
N

i

)
≤ 2N · P τ ≤ 2N · PNδ/2

< 4N · q−NnEq(p,r)δ/2 ≤ q−nN(Eq(p,r)δ/2−o(1)) , (12.13)

where we have recalled that P < 4q−nEq(p,r) and have used the notation o(1)
for an expression that goes to zero as n → ∞. It follows from (12.13) that
for every r < 1− Hq(p) and δ > 0 there is a sufficiently large value of n for
which Perr(Ccont) decreases exponentially with the code length nN .

As for the rate, Rcont, of Ccont, one can show (Problem 12.8) that

RZ(δ, qrn) = (1−
√

δ)2 − (o(1)/r)

and, so,
Rcont ≥ rR ≥ r · (1−

√
δ)2 − o(1) . (12.14)

Given a designed rate R < 1 − Hq(p), we select the rate r of the inner
code so that R ≤ r ≤ 1− Hq(p) and set the value δ to

δ = (1−
√
R/r)2 .

Problems 381

It follows from (12.14) that Rcont is bounded from below by R− o(1), while
the error exponent in (12.13) satisfies

−
logq Perr(Ccont)

nN
≥ 1

2Eq(p, r)(1−
√
R/r)2 − o(1) .

By maximizing over r we obtain

−
logq Perr(Ccont)

nN
≥ E∗

q(p,R)− o(1) ,

where
E∗

q(p,R) = max
R≤r≤1−Hq(p)

1
2Eq(p, r)(1−

√
R/r)2 . (12.15)

In particular, E∗
q(p,R) > 0 whenever R < 1− Hq(p).

Our foregoing analysis leads to the following conclusion.

Theorem 12.7 Let F be the field GF(q) and fix a crossover proba-
bility p ∈ [0, 1−(1/q)) of a q-ary symmetric channel. For every R <
1 − Hq(p) there exists an infinite sequence of linearly-concatenated codes
C(1)

cont, C
(2)
cont, · · · , C

(i)
cont, · · · over F such that the following conditions hold:

(i) Each code C(i)
cont is a linear [ni, ki] code over F and the values ni and

ki can be computed from R, q, and i in time complexity that is polyno-
mially large in the length of the bit representations of R, q, i, and ni.

(ii) The code rates ki/ni satisfy

lim inf
i→∞

ki

ni
≥ R .

(iii) There is an encoder for C(i)
cont whose time complexity is quadratic in ni.

(iv) There is a decoder for C(i)
cont whose time complexity is quadratic in ni

and its decoding error probability Perr(C(i)
cont) satisfies

− lim inf
i→∞

1
ni

logq Perr(C(i)
cont) ≥ E∗

q(p,R) > 0 .

Problems

[Section 12.1]
Problem 12.1 Let the concatenated code Ccont be defined over F by an (N, M,D)
outer code Cout over Φ and a one-to-one mapping Ein : Φ → Cin onto an (n, |Φ|, d)
inner code Cin over F . Show that Ccont is an (nN, M,≥dD) code over F .

382 12. Concatenated Codes

Problem 12.2 (Generator and parity-check matrices of linearly-concatenated
codes) Let Cin be a linear [n, k] code over F = GF(q) and let Ω = (ω1 ω2 . . . ωk) be
a basis of Φ = GF(qk) over F . Fix a k × n generator matrix Gin of Cin, and define
the linearly-concatenated code Ccont over F by a linear [N,K] outer code Cout over
Φ and a one-to-one mapping Ein : Φ → Cin, where for every column vector x ∈ F k,

Ein(Ωx) = xT Gin .

For each element α ∈ Φ, let L(α) be the k × k matrix over F that represents,
according to the basis Ω, the mapping ϕα : Φ → Φ defined by ϕα : x�→ αx; that is,
for every α ∈ Φ and column vector x ∈ F k,

ϕα(Ωx) = ΩL(α)x .

Also, let Q be a k× n matrix over F that satisfies GinQT = I, where I is the k× k
identity matrix.

1. Let
Gout = (gi,j) K

i=1
N

j=1

be a K×N generator matrix of Cout over Φ. Show that a kK×nN generator
matrix of Ccont is given by

Gcont =

⎛⎜⎜⎜⎝
(L(g1,1))T Gin (L(g1,2))T Gin . . . (L(g1,N))T Gin

(L(g2,1))T Gin (L(g2,2))T Gin . . . (L(g2,N))T Gin

...
...

...
...

(L(gK,1))T Gin (L(gK,2))T Gin . . . (L(gK,N))T Gin

⎞⎟⎟⎟⎠ .

2. Explain why a matrix Q indeed exists. Is this matrix unique?

3. Let Hin be an (n−k)× n parity-check matrix of Cin over F and

Hout = (hi,j)N−K
i=1

N
j=1

be an (N−K)×N parity-check of Cout over Φ. Show that an (nN−kK)×nN
parity-check matrix of Ccont is given by

Hcont =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H in

0
H in

. . .

0
H in

L(h1,1)Q L(h1,2)Q . . . L(h1,N)Q
L(h2,1)Q L(h2,2)Q . . . L(h2,N)Q

...
...

...
...

L(hN−K,1)Q L(hN−K,2)Q . . . L(hN−K,N)Q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Problems 383

4. Let P (x) = P0 + P1x + . . . + Pk−1x
k−1 + xk be a monic primitive polynomial

of degree k over F and let CP be the k × k companion matrix of P (x); i.e.,

CP =

⎛⎜⎜⎜⎜⎜⎝
0 0 . . . 0 −P0

1 0 . . . 0 −P1

0 1 . . . 0 −P2

...
. 0

...
0 . . . 0 1 −Pk−1

⎞⎟⎟⎟⎟⎟⎠
(see Problem 3.9). Represent the field Φ as F [ξ]/P (ξ) and take Ω as

(1 ξ ξ2 . . . ξk−1) .

Show that L(0) = 0 and

L(ξi) = Ci
P , 0 ≤ i < qk−1 .

5. Let Φ be represented as F [ξ]/P (ξ) where P (x) is a monic primitive polyno-
mial of degree k over F . Construct Ccont with Cin = F k while Cout is taken
as the [qk−1,K] narrow-sense primitive RS code over Φ with code locators
1, ξ, ξ2, . . . , ξqk−2. Using the basis Ω = (1 ξ ξ2 . . . ξk−1) and taking Gin = I,
write generator and parity-check matrices of Ccont in terms of the companion
matrix CP .

Problem 12.3 (Minimum distance of dual codes of linearly-concatenated codes)
Let Cin be a linear [n, k<n] code over F = GF(q) and Cout be a linear [N, K<N]
code over Φ = GF(qk). Fix a generator matrix Gin of Cin and a basis Ω = (ωi)k

i=1

of Φ over F , and define the linearly-concatenated code Ccont over F by the outer
code Cout and the mapping

Ein : (Ωx) �→ xT Gin ,

where x ranges over all the (column) vectors in F k.
Denote by d⊥ and D⊥ the minimum distances of the dual codes of Cin and Cout,

respectively, and let
Gout = (gi,j) K

i=1
N

j=1

be a K × N generator matrix of Cout over Φ. For each element α ∈ Φ, define the
k × k matrix L(α) over F as in Problem 12.2.

1. Let J = {j1, j2, . . . , jτ} be a nonempty subset of {1, 2, . . . , N} of size τ < D⊥

and consider the kτ × kK matrix over F that is given by

AJ =

⎛⎜⎜⎜⎝
L(g1,j1) L(g2,j1) . . . L(gK,j1)
L(g1,j2) L(g2,j2) . . . L(gK,j2)

...
...

...
...

L(g1,jτ) L(g2,jτ) . . . L(gK,jτ)

⎞⎟⎟⎟⎠ .

Show that
rank(AJ) = kτ .

384 12. Concatenated Codes

Hint: Denote by GJ the K×τ sub-matrix of Gout whose columns are indexed
by the elements of J . Show that for every K column vectors x1,x2, . . . ,xK

in F k,

AJ

⎛⎜⎜⎜⎝
x1

x2

...
xK

⎞⎟⎟⎟⎠ = 0 ⇐⇒ GT
J

⎛⎜⎜⎜⎝
Ωx1

Ωx2

...
ΩxK

⎞⎟⎟⎟⎠ = 0 .

Deduce that
rank(AJ) = k · rank(GJ) ,

and then recall that every D⊥ − 1 columns in Gout are linearly independent.

2. Show that the minimum distance of C⊥cont is at least

min{D⊥, d⊥} .

Hint: Let Gcont be the generator matrix of Ccont as in part 1 of Problem 12.2
and suppose that c is a nonzero codeword in C⊥cont, namely,

cGT
cont = 0 .

Write c = (c1 | c2 | . . . | cN) where cj ∈ Fn, and define

J = {j1, j2, . . . , jτ} =
{

j ∈ {1, 2, . . . , N} : cj �= 0
}

and
vj = cjG

T
in , j ∈ J .

Assume to the contrary that the Hamming weight of c is less than
min{D⊥, d⊥}. Argue that vj �= 0 for every j ∈ J , while

(vj1 |vj2 | . . . |vjτ
)AJ = 0 ,

where AJ is as defined in part 1. Finally, apply part 1 to reach a contradiction.

3. Show that the minimum distance of C⊥cont is at most d⊥.

Hint: Consider linear combinations of the rows of the parity-check matrix
Hcont in part 3 of Problem 12.2.

Problem 12.4 Let F = GF(q) and for a positive integer m, let Cm be an
[nm, km, dm] linearly-concatenated code over F obtained by taking a linear [N,K, D]
outer code over GF(qm) and a linear [n,m] inner code C(m)

in over F .

1. Show that
dm ≤ q−1

q
· nD

1− q−m
.

Hint: Consider the code C′ of length nN that consists of all the codewords in
Cm that correspond to the qm scalar multiples (over GF(qm)) of a codeword
z = (z1 z2 . . . zN) of Hamming weight D in the outer code. Shorten the
code C′ to be of length nD by leaving only the sub-blocks of length n (over
F) that are indexed by the nonzero coordinates in z. Next, apply to C′ the
Plotkin bound from part 4 of Problem 4.23.

Problems 385

2. Show that the upper bound in part 1 is attained when C(m)
in is taken as the

shortened first-order Reed–Muller code over F , which is defined as the linear
[qm−1,m, qm−1(q−1)] code over F with an m × (qm−1) generator matrix
whose columns range over all the nonzero vectors in Fm (see Problem 2.17).

Hereafter in this problem, let C(m)
in be as in part 2 and, for a fixed positive integer

K, let the outer code be a [qm+1,K] doubly-extended GRS code over GF(qm) as
defined in Problem 5.2.

3. Verify that nm = q2m − 1.

4. Show that
km = mK = (K/2) logq(nm+1)

and, so, |Cm| = (nm+1)K/2.

5. Show that
dm =

q−1
q
·
(
nm+1− (K−2)

√
nm+1

)
and, so, for every fixed K,

lim
m→∞

dm

nm
=

q−1
q

.

6. In comparison, show by the Plotkin bound that every infinite sequence of
(ni,Mi, di) codes over F = GF(q) with strictly increasing code sizes Mi must
satisfy

lim sup
i→∞

di

ni
≤ q−1

q
.

Problem 12.5 Let α be a primitive element in Φ = GF(2m) and let a and K be
integers such that a ≥ 0 and 1 ≤ K < 2m. Let u(x) be a nonzero polynomial over
Φ of the form

u(x) = u0x
a + u1x

a+1 + . . . + uK−1x
a+K−1 ,

and for j = 0, 1, 2, . . . , 2m−2 define the elements cj by cj = u(αj).

1. Assuming that a = 0, obtain an upper bound, as a function of K (and
independently of u(x)), on the number of indexes j for which cj = 0. Write
a polynomial u(x) that attains the bound.

2. Suppose that a = 0 and let β be a nonzero element in Φ. Obtain an upper
bound, as a function of K but independently of β or u(x), on the number of
indexes j for which cj = β. Find an element β and a polynomial u(x) that
attain the bound.

3. Repeat parts 1 and 2 for a = 1.

Given Φ = GF(2m), α, a, and K as defined above, let Cout be an RS code of
length N = 2m − 1 over Φ with a canonical generator matrix

GRS = (α(a+i)j)K−1
i=0

N−1
j=0 ,

and let Ccont be a linearly-concatenated code over F = GF(2) obtained by using
Cout as an outer code and the set Fm as an inner code.

386 12. Concatenated Codes

4. Find the dimension of Ccont as a function of K and m.

5. Assuming that a = 0 and K = 1, find the minimum distance of Ccont.

6. Let t be a positive integer such that

K · V2(m, t) ≤ 2m ,

where V2(m, t) =
∑t

i=0

(
m
i

)
. Show that when a = 1, the minimum distance

of Ccont is at least

K ·
t∑

i=0

i

(
m

i

)
= K ·m · V2(m−1, t−1) .

Hint: Use part 3.

7. Using part 6, write a lower bound on the minimum distance of Ccont when
a = K = 1.

8. Let a = 1, K = 2, and let m be odd. Using part 6, show that the minimum
distance of Ccont is at least

m ·
(

2m−1 −
(

m− 1
(m−1)/2

))
.

[Section 12.2]

Problem 12.6 Show by example that the check in Step 2(c)ii in Figure 12.1 is
necessary; that is, exhibit a case where the decoding of Step 2b is successful, yet
the computed codeword c in Step 2(c)i does not satisfy d(y, c) < dD/2.

[Section 12.3]

Problem 12.7 The purpose of this problem is to obtain several properties of the
function δ �→ RZ(δ, q), which is defined in (12.5).

1. Let θ be a fixed real in the interval (0, 1−(1/q)] and consider the straight line
δ �→ Tθ(δ) that is defined over the domain (0, 1−(1/q)) by

Tθ(δ) =
(
1− Hq(θ)

)(
1− δ

θ

)
.

Show that the function δ �→ Tθ(δ) lies on or below (but never above) the
curve δ �→ RZ(δ, q).

(As a side note, notice that the straight line δ �→ Tθ(δ) passes through the
points (0, 1−Hq(θ)) and (θ, 0); these are the projections on the axes of the
point (θ, 1−Hq(θ)), which lies on the Gilbert–Varshamov bound.)

2. Let θ be a maximizing value of the right-hand side of (12.5) for some
δ0 ∈ (0, 1−(1/q)). Verify that the line δ �→ Tθ(δ) passes through the point
(δ0, RZ(δ0, q)).

Problems 387

3. Show that the maximum in the right-hand side of (12.5) is attained neither
at δ nor at 1−(1/q).

Hint: Compute the values Tδ(δ) and T1−(1/q)(δ).

4. Show by differentiation that the maximum in the right-hand side of (12.5) is
obtained for θ that satisfies (12.6).

5. Let δ1 and δ2 be two reals such that 0 < δ1 < δ2 < 1−(1/q) and let θ1 and
θ2 be values of θ that maximize the right-hand side of (12.5) for δ = δ1 and
δ = δ2, respectively. Show that θ1 < θ2.

Hint: First verify from part 4 that θ1 �= θ2. Next, denote by λ the slope of the
straight line that passes through the points (δ1, RZ(δ1, q)) and (δ2, RZ(δ2, q)),
and show that λ is bounded from below by the slope of δ �→ Tθ1(δ) and from
above by the slope of δ �→ Tθ2(δ); namely,

−1− Hq(θ1)
θ1

≤ λ ≤ −1− Hq(θ2)
θ2

.

Conclude from this that θ1 < θ2.

6. Show that for every δ ∈ (0, 1−(1/q)) there is at most one value θ ∈ [δ, 1−(1/q)]
that satisfies (12.6).

Hint: Show that the left-hand side of (12.6) is not constant on every nonempty
open interval in [δ, 1−(1/q)]. Then apply part 5.

7. Deduce from parts 5 and 6 that (12.6) defines a monotonically increasing
differentiable function δ �→ θ(δ) from (0, 1−(1/q)) onto (0, 1−(1/q)).

8. Show that the function δ �→ RZ(δ, q) is differentiable over (0, 1−(1/q)).

9. Given δ0 ∈ (0, 1−(1/q)), let θ0 be the value of θ that satisfies (12.6) for δ = δ0.
Show that the line δ �→ Tθ0(δ) is tangent to the curve δ �→ RZ(δ, q) at the
point (δ0, RZ(δ0, q)).

10. Show that

lim
δ→0

RZ(δ, q) = 1 and lim
δ→1−(1/q)

RZ(δ, q) = 0 .

11. Show that the function δ �→ RZ(δ, q) is monotonically decreasing and ∪-
convex over (0, 1−(1/q)).

Problem 12.8 Show that

(1−
√

δ)2 − 1
log2 q

≤ RZ(δ, q) ≤ (1−
√

δ)2

and, therefore, in the limit,

lim
q→∞

RZ(δ, q) = (1−
√

δ)2 .

Hint: The Gilbert–Varshamov bound cannot exceed the Singleton bound and, so,
1− Hq(θ) ≤ 1− θ.

388 12. Concatenated Codes

[Section 12.4]

Problem 12.9 Let F = GF(q) and let n and k be positive integers such that
k < n ≤ 2k. Show that the codes in the Wozencraft ensembleWF (n, k) are distinct.

Hint: Using the notation of Section 12.4, consider two distinct elements αi and αj

in Φ = GF(qk). Argue that

L(αi)− L(αj) = L(αi−αj)

and, therefore, L(αi) − L(αj) is a nonsingular matrix over F . Deduce that there
exists u ∈ F k such that the vectors u(L(αi))T and u(L(αj))T differ on their first
coordinate. Conclude that the codeword uGi of Ci does not belong to Cj .

Problem 12.10 The purpose of this problem is to exhibit an ensemble of linear
codes that attain the Gilbert–Varshamov bound. The size of the ensemble allows
it to be used instead of Wozencraft codes in the construction of Justesen codes.

Let F = GF(q) and let m and n be positive integers such that m < n. Given a
monic irreducible polynomial f(x) = f0 + f1x + . . . + fmxm of degree m over F , let
Csc(f) be the linear code of length n over F with a generator matrix⎛⎜⎜⎜⎜⎝

f0 f1 . . . fm

f0 f1 . . . fm 0
0 · · · . . .

f0 f1 . . . fm

⎞⎟⎟⎟⎟⎠ .

Denote by X = XF (n,m) the set of all codes Csc(f) over F where f(x) ranges over
all monic irreducible polynomials of degree m over F .

1. Show that the rate R of each code in X is 1− (m/n).

2. Let c(x) be a polynomial in Fn[x]. Show that c(x) is a codeword in Csc(f) if
and only if f(x) divides c(x). Conclude that when f(x) �= x, the code Csc(f)
can be obtained by shortening of a cyclic code over F (hence the subscript
“sc”; see Problem 2.14).

3. Show that two codes Csc(f) and Csc(g) are equal if and only if f(x) = g(x).

4. Show that
(qm/m)− qm/2 < |X| ≤ qm/m ≤ qn(1−R) .

Hint: Recall from Section 7.2 the formula for the number of monic irreducible
polynomials of degree m over F .

5. Show that every nonzero word in Fn belongs to at most �(n−1)/m codes in
X. Are there words in Fn for which this bound is attained?

Hint: Use part 2.

6. Show that if d is a positive integer such that

qm − qm/2m ≥ (n−1) · (Vq(n, d−1)− 1) ,

Problems 389

then there is a code in X with minimum distance at least d. Relate this result
to the Gilbert–Varshamov bound.

Hint: Use part 5 to bound from above the number of codes in X whose
minimum distance is less than d.

Problem 12.11 (Goppa codes) Let F and Φ be the fields GF(q) and GF(qm),
respectively, and fix α1, α2, . . . , αn to be some nonzero distinct elements in Φ. Let D
be a positive integer such that m(D−1) < n, and suppose that f(x) is a polynomial
of degree D−1 over Φ such that f(αj) �= 0 for all 1 ≤ j ≤ n. Denote by CGRS(f)
the [N=n,K, D] GRS code over Φ with code locators α1, α2, . . . , αn and column
multipliers v1, v2, . . . , vn, where

vj =
1

f(αj)
, 1 ≤ j ≤ n .

The respective alternant code

Calt(f) = CGRS(f) ∩ Fn

is called a Goppa code. Assume hereafter in this problem that D > 1 and denote by
Γ = ΓF (n,m,D) the multi-set of all Goppa codes Calt(f), where f(x) ranges over
all monic irreducible polynomials of degree D−1 over Φ.

1. Show that the rate of each code in Γ is at least

R = 1− m(D−1)
n

.

2. Are the codes Calt(f) and Calt(g) necessarily distinct for distinct monic irre-
ducible polynomials f and g?

Hint: Consider the case where D = 2, q > n > m > 1, the elements
α1, α2, . . . , αn are all in F , and, for some β ∈ Φ \ F ,

f(x) = x + β and g(x) = x + βq .

3. Show that the size of Γ (counting multiplicity) satisfies

|Γ| ≤ qm(D−1)

D−1
≤ qn(1−R) ,

where R is the value in part 1.

4. Let c be a nonzero word in Fn. Show that c belongs to at most
�(n−1)/(D−1) codes in Γ.

Hint: Recall from part 6 of Problem 5.11 that a word (c1 c2 . . . cn) ∈ Φn is
a codeword of CGRS(f) if and only if f(x) divides the polynomial

n∑
j=1

cj

∏
1≤s≤n:

s �=j

(x− αs) .

390 12. Concatenated Codes

5. Show that if d is a positive integer such that

qm(D−1) − qm(D−1)/2(D−1) ≥ (n−1) · (Vq(n, d−1)− 1) ,

then there is a code in Γ with minimum distance at least d. Relate this result
to the Gilbert–Varshamov bound.

Hint: See part 6 of Problem 12.10.

[Section 12.5]

Problem 12.12 The purpose of this problem is to show that the Shannon Cod-
ing Theorem for the memoryless q-ary symmetric channel can be attained by the
ensemble X = XF (n,m) in Problem 12.10.

The notation in Problem 12.10 is also used here. Denote by Sq(n, t) the set of
all words in Fn whose Hamming weight is at most t.

1. For a code C in X and a word e ∈ Fn, let Perr(C|e) be the decoding error
probability of a nearest-codeword decoder D : Fn → C, conditioned on the
error word being e; that is,

Perr(C|e) =
{

1 if there is c ∈ C such that D(c + e) �= c
0 otherwise

(compare with the definitions in Section 4.7). Show that for every e ∈ Sq(n, t),∑
C∈X

Perr(C|e) ≤ �(n−1)/m · Vq(n, t) .

Hint: Bound from above the number of codes in X for which e is not a coset
leader.

2. For a code C in X, let Perr(C|Sq(n, t)) be the decoding error probabil-
ity of a nearest-codeword decoder with respect to a given additive channel
(F, F, Prob), conditioned on the error word e being in Sq(n, t). Show that

1
|X| ·

∑
C∈X

Perr(C|Sq(n, t)) ≤ �(n−1)/m · Vq(n, t)
|X|

(compare with Lemma 4.16).

3. For a code C in X, denote by Perr(C) the decoding error probability of a
nearest-codeword decoder with respect to the q-ary symmetric channel with
crossover probability p ∈ (0, 1−(1/q)). Suppose that the rate R of the codes
in X is less than 1− Hq(p). Show that

1
|X| ·

∑
C∈X

Perr(C) ≤ q−n(Eq(p,R)−o(1)) ,

where
Eq(p,R) = 1− Hq(θ)−R

Problems 391

and

θ =
logq(1−p) + 1−R

logq(1−p)− logq(p/(q−1))
.

Here o(1) stands for an expression that goes to zero as n goes to infinity (this
expression may depend on q, p, or R).

Hint: Use part 2 similarly to the way Lemma 4.16 is used to prove Theo-
rem 4.17.

Problem 12.13 The purpose of this problem is to show that the Shannon Coding
Theorem for the memoryless q-ary erasure channel can be attained by the ensemble
X = XF (n,m) in Problem 12.10. The notation therein is also used here, and the
erasure channel is characterized by its input alphabet F = GF(q), output alphabet
Φ = F ∪ {?}, and erasure probability p (see also Problem 4.33).

For a code C in X, let the decoder D : Φn → C ∪ {“e”} be defined by

D(y) =
{

c if y agrees with a unique c ∈ C on the non-erased locations
“e” otherwise .

For a set J ⊆ {1, 2, . . . , n}, let Perr(C|J) be the decoding error probability of D with
respect to the erasure channel, conditioned on the erasures being indexed by J .

1. Show that Perr(C|J) = 0 if none of the supports of the nonzero codewords in
C is contained in J .

2. Show that ∑
C∈X

Perr(C|J) ≤
⌊

n−1
m

⌋
· q|J| − 1

q − 1
.

3. For a code C in X, let Perr(C) be the decoding error probability of the decoder
D with respect to the erasure channel. Suppose that the rate R of the codes
in X is less than 1−p. Show that

1
|X| ·

∑
C∈X

Perr(C) ≤ q−n(Dq(θ‖p)−o(1)) ,

where

Dq(θ‖p) = θ logq

(
θ

p

)
+ (1−θ) logq

(
1−θ

1−p

)
(which is the information divergence defined in Section 4.6) and θ is taken as
the solution to

θ + Dq(θ‖p) = 1−R

in the open interval (p, 1−R) (compare with part 3 of Problem 4.33).

Problem 12.14 Show that part 3 of Problem 12.12 and part 3 of Problem 12.13
hold when X is taken as the set of [n, k] Wozencraft codes over F = GF(q).

Problem 12.15 Show that part 3 of Problem 12.12 and part 3 of Problem 12.13
hold when X is taken as the multi-set ΓF (n, k) in Problem 12.11.

392 12. Concatenated Codes

Notes

[Section 12.1]

Concatenated codes were introduced by Forney in [129]. A comprehensive survey
on concatenated codes is provided by Dumer in [109].

[Section 12.2]

The generalized minimum distance (GMD) decoding algorithm is due to For-
ney [129], [130]; see also Zyablov [405]. The decoder in Figure 12.1 is, in fact,
a special case of Forney’s setting where the decoder for the inner code is a nearest-
codeword decoder for the Hamming metric (see also Reddy and Robinson [287] and
Weldon [382]). In the more general framework of GMD decoding, the inner decoder
provides for each decoded sub-block yj a reliability score βj ∈ [0, 1] of the computed
codeword ĉj ∈ Cin (higher values of βj mean that the coordinate is more reliable).
Given a codeword c = (c1 | c2 | . . . | cN) ∈ Ccont, let

ηj = ηj(c) =
{

0 if ĉj = cj

1 if ĉj �= cj
.

It is shown by Forney that there can be at most one codeword c ∈ Cout for which

N∑
j=1

(−1)ηj βj > N−D ;

furthermore, if such a codeword c exists, then it will be found by iteratively changing
sub-blocks ĉj into erasures, starting with the least reliable, and then applying an
error–erasure decoder for the outer code [129, Theorems 3.1 and 3.2]. The reliability
score that corresponds to the decoder in Figure 12.1 is βj = 1−min{2d(yj , ĉj)/d, 1}.

[Section 12.3]

The Zyablov bound was obtained in [404]. In Section 13.8, we present a construction
of codes that approach the Zyablov bound, with decoding complexity that grows
linearly with the code length (the multiplying constant of the linear term will depend
on how far we are from the Zyablov bound); see Examples 13.8 and 13.9.

[Section 12.4]

Justesen codes were presented in [199]. Improvements over Justesen codes for the
low-rate range were obtained by Alon et al. [10], Shen [333], Sugiyama et al. [347],
and Weldon [383], [384].

The Wozencraft ensemble is mentioned by Massey in [253, Section 2.5]. There
are other known constructions of ensembles of codes—such as the ensembles of short-
ened cyclic codes and of Goppa codes in Problems 12.10 and 12.11, respectively—
that can be used in lieu of Wozencraft codes in Justesen codes. Problem 12.10 is
taken from Kasami [206] and Problem 12.11 is from MacWilliams and Sloane [249,

Notes 393

p. 350]. For more on Goppa codes, see Goppa [156]–[158] and MacWilliams and
Sloane [249, Chapter 12].

With minor changes, the GMD decoder in Figure 12.1 is applicable also to the
decoding of Justesen codes [199]. Step 1a is applied to each sub-block yj using a
nearest-codeword decoder for the respective code Cj ∈ WF (n, k). The value d is
taken as the typical minimum distance of the codes in WF (n, k) and is computed
from the Gilbert–Varshamov bound.

In addition to Justesen codes, various generalizations of concatenated codes
were suggested and studied by Blokh and Zyablov [57], [58], Hirasawa et al. [178],
[179], Kasahara et al. [205], Sugiyama et al. [349], [350], Zinov’ev [397], [398], and
Zinov’ev and Zyablov [400]–[402]. Some of these generalizations yield polynomial-
time constructions that exceed the Zyablov bound. In particular, the generalization
due to Blokh and Zyablov [58] gets arbitrarily close (yet with increasing complexity)
to the Blokh–Zyablov bound , which is given by

RBZ(δ, q) = 1− Hq(δ)− δ

∫ 1−Hq(δ)

0

dx

H−1
q (1−x)

.

Blokh and Zyablov also showed in [56] that there exists a family of binary
linearly-concatenated codes with varying inner codes that attains the Gilbert–
Varshamov bound. The same authors [58] and Thommesen [362], [363] then showed
that the Gilbert–Varshamov bound can be attained also when the outer code is
taken as a prescribed (not randomly chosen) MDS code. The case where the inner
code is fixed while the outer code is randomly chosen was studied by Barg et al. [28].

[Section 12.5]
The exposition in this section follows Dumer’s survey [109]. In his monograph on
concatenated codes [129], Forney showed that linearly-concatenated codes approach
the capacity of the q-ary symmetric channel and that GMD decoding yields a de-
coding error probability that decreases exponentially with the code length. As an
outer code, Forney used an MDS code, which was much shorter than the outer code
used herein. Thus, the search for the best inner code in Forney’s analysis made the
overall complexity super-polynomial in the code length. On the other hand, MDS
outer codes yield a better exponential decay of the decoding error probability: the
error exponent in (12.15) now becomes

E∗
q(p,R) = max

R≤r≤1−Hq(p)

1
2Eq(p, r)(1− (R/r)) .

In addition, by using MDS codes we get a denser range of code lengths for which
the concatenated code construction can be realized.

While the construction herein uses an error-only decoder for the outer code,
we could use an error–erasure decoder instead, where the erasures are flagged in
locations where the decoder of the inner code detects a number of errors that exceeds
a certain threshold (see Problem 4.31). Forney’s analysis shows that such a GMD
decoder yields a better error exponent. See also Blokh and Zyablov [56], [58] and
Thommesen [363].

Instead of searching for the best inner code among all linear codes, one can try
to identify much smaller ensembles with average decoding error probability that

394 12. Concatenated Codes

behaves like the ensemble of all linear codes. This approach was investigated by
Delsarte and Piret in [99]. Indeed, the Wozencraft ensemble WF (n, k), as well as
the ensembles in Problems 12.10 and 12.11, approach the capacity of the q-ary
symmetric channel with decoding error probability that decays exponentially with
the code length; see Problems 12.12, 12.14, and 12.15 (our definition of the ensemble
WF (n, k) restricts the rate k/n to be at least 1/2, but, as shown by Weldon in [383],
it is rather easy to generalize the definition also to lower rates). When using the
best code in such ensembles as an inner code, we can use an MDS code as an outer
code, while still keeping the encoding complexity only polynomially large in the code
length. As was the case in Section 12.3, the resulting encoding complexity is some
power c of the code length, where c goes to infinity when the rate goes to zero. Such
a complexity increase is circumvented by Delsarte and Piret in [99] at the expense
of a poorer error exponent. In fact, if the error exponent can be compromised,
then the time complexity in Theorem 12.7 can be improved by inserting another
level of concatenation: the construction of Theorem 12.7 is used as a linear [ni, ki]
inner code over F = GF(q), with an [Ni,Ki] outer GRS code over GF(qki). The
complexity of encoding and decoding will then be dictated by the GRS code and
will amount to O(Ni log2 Ni log log Ni) field operations in GF(qki), with each such
operation being implemented using O(ni log ni log log ni) field operations in F (see
the notes on Sections 3.3 and 6.6).

In Example 13.10 in Section 13.8, we present an improvement on Theorem 12.7,
whereby the expression for the decoding complexity grows only linearly with the
code length (the multiplying constant in that expression grows as the rate ap-
proaches the capacity of the q-ary symmetric channel).

We point out that Theorem 12.7 is known to hold with a better lower bound
on the error exponent in part (iv) of that theorem (see [99]).

A counterpart of Theorem 12.7 (with respective capacity and error exponent
values) can be stated also for the memoryless q-ary erasure channel. An attaining
construction for this channel can be obtained by using an [N,K] GRS code as
an outer MDS code and the best code in WF (n, k) (say) as an inner code (see
Problems 12.13–12.15). In the first decoding step, the inner decoder attempts to
recover the erasures in each sub-block of length n through solving linear equations.
Sub-blocks in which the solution is not unique are then flagged as erasures to the
outer decoder, which, in turn, can recover them using Euclid’s algorithm.

For constructions of concatenated codes for arbitrary discrete memoryless chan-
nels, see Uyematsu and Okamoto [369].

Chapter 13

Graph Codes

Concatenated codes are examples of compound constructions, as they are
obtained by combining two codes—an inner code and an outer code—with
a certain relationship between their parameters. This chapter presents an-
other compound construction, now combining an (inner) code C over some
alphabet F with an undirected graph G = (V, E). In the resulting construc-
tion, which we refer to as a graph code and denote by (G, C), the degrees
of all the vertices in G need to be equal to the length of C, and the code
(G, C) consists of all the words of length |E| over F in which certain sub-
words, whose locations are defined by G, belong to C. The main result to be
obtained in this chapter is that there exist explicit constructions of graph
codes that can be decoded in linear-time complexity, such that the code rate
is bounded away from zero, and so is the fraction of symbols that are allowed
to be in error.

We start this chapter by reviewing several concepts from graph theory.
We then focus on regular graphs, i.e., graphs in which all vertices have
the same degree. We will be interested in the expansion properties of such
graphs; namely, how the number of outgoing edges from a given set of vertices
depends on the size of this set. We present a lower bound on this number in
terms of the second largest eigenvalue of the adjacency matrix of the graph:
a small value of this eigenvalue implies a large expansion.

Two families of regular graphs with good expansion properties will be
described. The first construction is based on binary linear codes whose
minimum distance is close to half the code length; while the analysis of
the resulting graphs is fairly elementary, the number of vertices in these
graphs for fixed degree cannot grow arbitrarily. A second construction to be
shown—due to Lubotzky, Phillips, Sarnak (LPS), and Margulis—is essen-
tially optimal in that it attains an asymptotic lower bound on the second
largest eigenvalue; furthermore, for a given degree, this construction yields
infinitely many graphs. A complete analysis of the LPS construction is be-

395

396 13. Graph Codes

yond our scope herein; still, we will make use of these graphs to construct
good families of graph codes.

We then turn to analyzing the parameters of graph codes (G, C), mak-
ing use of the tools that we will have developed for bounding the expansion
of regular graphs. The same tools will be used also in analyzing the per-
formance of an iterative decoding algorithm which we present for a special
class of graph codes. In particular, we show that the algorithm is capable
of correcting any error pattern whose Hamming weight does not exceed ap-
proximately one quarter of the lower bound on the minimum distance of
(G, C). A complexity analysis of this algorithm reveals that its running time
is proportional to the number of vertices in G, under the assumption that
the code C is fixed. We end this chapter by viewing graph codes through
the lens of concatenated codes. Following this approach, we show how in-
corporating GMD decoding into the iterative decoder enhances the latter so
that it can correct twice as many errors. Furthermore, we show that the
Singleton bound can be approached by the outer code of concatenated codes
that are derived from certain generalizations of graph codes.

13.1 Basic concepts from graph theory

This section and Sections 13.2 and 13.3 provide some background material
that will be used throughout the chapter.

An (undirected simple finite) graph is a pair (V, E), where V is a
nonempty finite set of vertices and E is a (possibly empty) set of edges,
where by an edge we mean a subset of V of size (exactly) 2. (The adjective
“simple” indicates that the graph has neither parallel edges nor self-loops;
that is, E is a proper set—rather than a multi-set—and none of its elements
has size 1.)

Let u be a vertex in a graph G = (V, E). A vertex v ∈ V is said to be
adjacent to u if {u, v} ∈ E. The set of all vertices in V that are adjacent to
u is called the neighborhood of u in G and is denoted by N (u). The degree
of u in G, denoted by degG(u), is defined as the size of N (u). We extend the
term neighborhood also to any subset S ⊆ V by

N (S) =
⋃
u∈S

N (u) .

Example 13.1 Figure 13.1 depicts a graph G = (V, E) where

V = {00, 01, 10, 11} (13.1)

and
E =

{
{00, 01}, {00, 10}, {01, 10}, {01, 11}, {10, 11}

}
. (13.2)

13.1. Basic concepts from graph theory 397

Two vertices—namely, 01 and 10—have degree 3, while 00 and 11 have
degree 2.

00

01

10

11

Figure 13.1. Graph with four vertices.

Given a graph G = (V, E), an edge e ∈ E is incident with a vertex u ∈ V
if e = {u, v} for some v ∈ V . The set of edges that are incident with u will
be denoted by E(u), and we have |E(u)| = |N (u)| = degG(u). If an edge e
is incident with a vertex u then u is called an endpoint of e. For two subsets
S, T ⊆ V (not necessarily disjoint), we denote by ES,T the set of all edges
that have an endpoint in S and an endpoint in T , that is,

ES,T =
{

e ∈ E : |e ∩ S| > 0 and |e ∩ T | > 0
}

.

The edge cut associated with a subset S ⊆ V , denoted by ∂(S), is defined as

∂(S) = ES,(V \S) .

A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E′) where V ′ ⊆ V
and E′ ⊆ E. Given a nonempty subset S of V , the induced subgraph of G
on S is the subgraph GS = (S, ES,S) of G.

Let u and v be vertices in a graph G = (V, E). A path of length � > 0
from u to v in G is a finite sequence of edges

{u, u1}{u1, u2}{u2, u3} . . . {u�−2, u�−1}{u�−1, v} , (13.3)

where u1, u2, . . . , u�−1 ∈ V (a path of length 1 from u to v is just an edge
{u, v}, and a path of length 0 is defined formally for the case u = v as
consisting of one vertex—u—with no edges). A path (13.3) is called a cycle
if u = v. A graph G is connected if for every two distinct vertices u and v in
G there is a path from u to v in G. The distance between two vertices u and
v in G is the smallest length of any path from u to v in G. We denote the
distance by dG(u, v) and define it to be zero if u = v and infinity if G contains
no path from u to v. The diameter of G = (V, E), denoted by diam(G), is
defined as

diam(G) = max
u,v∈V

dG(u, v) .

Clearly, G is connected if and only if diam(G) < ∞.

398 13. Graph Codes

A graph G = (V, E) is bipartite if V can be partitioned into two subsets,
V ′ and V ′′, such that every edge e ∈ E has one endpoint in V ′ and one
endpoint in V ′′. We will denote a bipartite graph by (V ′ : V ′′, E).

Lemma 13.1 A graph G is bipartite if and only if it contains no cycles
of odd length.

The proof is left as an exercise (Problem 13.5).

Example 13.2 The graph in Figure 13.2 is bipartite, with

V ′ = {000, 011, 101, 110} and V ′′ = {001, 010, 100, 111} (13.4)

(the set V ′ consists of the even-weight binary triples, and these vertices are
marked in the figure distinctively from the elements of V ′′). On the other
hand, the graph in Figure 13.1 is non-bipartite.

000

010

100

110

001

011

101

111

Figure 13.2. Bipartite graph.

The adjacency matrix of a graph G = (V,E), denoted by AG , is a |V |×|V |
integer matrix over {0, 1} whose rows and columns are indexed by the set
V , and for every u, v ∈ V , the entry in AG that is indexed by (u, v) is given
by

(AG)u,v =
{

1 if {u, v} ∈ E
0 otherwise

.

(Notice that our definition of AG does not assume any specific ordering on
V , even though we may sometimes prefer certain orderings for the sake
of convenience. All of the properties that we will be interested in will be
independent of the choice of such an ordering—as long as the same order is
applied to both the rows and the columns of AG .)

We remark that AG is a symmetric matrix; as such, its eigenvalues are
real and its set of eigenvectors spans R|V |. Furthermore, eigenvectors that
are associated with distinct eigenvalues are orthogonal, which means that
we can find an orthonormal basis of R|V | that consists of eigenvectors of AG .
We will make use of these facts in the sequel.

13.1. Basic concepts from graph theory 399

When G is a bipartite graph (V ′ : V ′′, E), the adjacency matrix takes the
form

AG =

(
0 XG

XT
G 0

)
, (13.5)

where XG is a |V ′| × |V ′′| transfer matrix , whose rows and columns are
indexed by V ′ and V ′′, respectively, and (XG)u,v = 1 if and only if {u, v} ∈ E
(when writing (13.5), we are assuming an ordering on V ′ ∪ V ′′ where the
vertices in V ′ precede those in V ′′).

The incidence matrix of G = (V, E), denoted by CG , is defined as the
|E| × |V | integer matrix over {0, 1} whose rows and columns are indexed by
E and V , respectively, and for every e ∈ E and v ∈ V ,

(CG)e,v =
{

1 if v ∈ e
0 otherwise

.

We also define the matrices L+
G and L−

G by

L±
G = DG ±AG ,

where DG is a |V | × |V | diagonal matrix whose entries along the diagonal
are

(DG)u,u = degG(u) for every u ∈ V .

The matrix L−
G is known as the Laplace matrix of G, and we will sometimes

use the notation LG (with the superscript “−” omitted) when referring to
this matrix.

Example 13.3 Let G = (V, E) be the graph in Example 13.1. The
adjacency matrix and incidence matrix of G are given by

AG =

⎛⎜⎜⎝
0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

⎞⎟⎟⎠ and CG =

⎛⎜⎜⎜⎜⎝
1 1 0 0
1 0 1 0
0 1 1 0
0 1 0 1
0 0 1 1

⎞⎟⎟⎟⎟⎠ ,

respectively, where we have arranged the rows and columns in each matrix
according to the order in which the vertices and edges are written in (13.1)
and (13.2).

Example 13.4 The adjacency matrix of the bipartite graph G = (V ′ :
V ′′, E) in Example 13.2 is given by (13.5), where

XG =

⎛⎜⎜⎝
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

⎞⎟⎟⎠ ,

assuming the ordering in (13.4).

400 13. Graph Codes

Let G = (V,E) be a graph. An orientation on G is an ordering on the
two endpoints of each edge e ∈ E, thus making the graph effectively directed
(this ordering can be set independently of the ordering on V mentioned
earlier in connection with the indexing of the rows and columns of AG). A
graph G with a particular orientation will be denoted by �G.

The incidence matrix of a directed (i.e., oriented) graph �G, denoted by
C�G , is the |E|× |V | integer matrix over {0, 1,−1} whose entries are given by

(C�G)e,v =

⎧⎨⎩
1 if v is the smallest endpoint of e

−1 if v is the largest endpoint of e
0 if v �∈ e

.

The following lemma can be easily verified (Problem 13.8).

Lemma 13.2 For every graph G = (V, E) and every orientation on G,

L−
G = CT

�G C�G and L+
G = CT

G CG .

(Lemma 13.2 holds also for the degenerate case |E| = 0, if we define the
product of two “matrices” of respective orders |V | × 0 and 0× |V | to be the
|V | × |V | all-zero matrix.)

For real column vectors x,y ∈ Rm, we will use the notation 〈x,y〉 for
the scalar product xTy; the norm

√
〈x,x〉 will be denoted by ‖x‖. In many

cases, the entries of a vector x will be indexed by the set of vertices V of a
graph; we will then write x = (xu)u∈V if we want to specify these entries.

Corollary 13.3 For every graph G = (V, E) and every real vector x =
(xu)u∈V ,

〈x, L±
G x〉 =

∑
{u,v}∈E

(xu ± xv)2 ≥ 0 .

Proof. Fix some orientation on G. By Lemma 13.2 we have,

〈x, L−
G x〉 = xT CT

�G C�Gx = ‖C�Gx‖
2 =

∑
{u,v}∈E

(xu − xv)2 .

Similarly,

〈x, L+
G x〉 = xT CT

G CGx = ‖CGx‖2 =
∑

{u,v}∈E

(xu + xv)2 .

13.2. Regular graphs 401

13.2 Regular graphs

A graph is called n-regular if all of its vertices have the same degree n > 0.
The next proposition presents properties of the eigenvalues of the adja-

cency matrix of a (connected) n-regular graph.

Proposition 13.4 Let G = (V,E) be an n-regular graph and let λ1 ≥
λ2 ≥ . . . ≥ λ|V | be the eigenvalues of AG. Then the following conditions
hold:

(i) λ1 = n and the all-one vector 1 is an eigenvector associated with λ1.

(ii) If G is connected and bipartite then λ|V | = −n and |λi| < n for 1 <
i < |V |.

(iii) If G is connected and non-bipartite then |λi| < n for 1 < i ≤ |V |.

Proof. The sum of entries along each row in AG is n; hence, AG1 = n ·1,
i.e., 1 is an eigenvector of AG associated with the eigenvalue n.

For an n-regular graph G we have

LG = L−
G = n · I −AG ,

where I is the |V |×|V | identity matrix; therefore, the eigenvalues μ1 ≤ μ2 ≤
. . . ≤ μ|V | of LG are related to those of AG by

μi = n− λi , 1 ≤ i ≤ |V | .

Thus, part (i) will be proved once we show that μ ≥ 0 for every eigenvalue
μ of LG .

Let x = (xu)u∈V be a real eigenvector of LG associated with an eigenvalue
μ (x is also an eigenvector of AG associated with the eigenvalue n−μ). By
Corollary 13.3 we have,

μ‖x‖2 = 〈x, μx〉 = 〈x, LGx〉 =
∑

{u,v}∈E

(xu − xv)2 ≥ 0 , (13.6)

thereby proving part (i).
In the remaining part of the proof we assume that G is connected. This,

in turn, implies that the inequality holds in (13.6) with equality if and only
if all the entries of x are equal.

As our next step, we show that λi ≥ −n for every 1 ≤ i ≤ |V |, with
equality holding if and only if G is bipartite and i = |V |. To this end, we
proceed similarly to what we have done in the proof of part (i), except that
now we replace the matrix LG by

L+
G = n · I + AG ,

402 13. Graph Codes

whose eigenvalues are given by μi = n + λi, 1 ≤ i ≤ |V |. Letting x =
(xu)u∈V be a real eigenvector of L+

G associated with an eigenvalue μ of L+
G ,

by Corollary 13.3 we have

μ‖x‖2 = 〈x, μx〉 = 〈x, L+
G x〉 =

∑
{u,v}∈E

(xu + xv)2 ≥ 0 , (13.7)

with equality holding if and only if xu + xv = 0 for every edge {u, v} ∈ E.
We now distinguish between two cases.

Case 1: G is bipartite. Here the set V can be partitioned into V ′ and
V ′′, and equality in (13.7) is attained if and only if x = (xu)u∈V is such that
xu is equal to some nonzero constant c for every u ∈ V ′ and is equal to −c
for every u ∈ V ′′: it can be easily verified that such a vector is, indeed, an
eigenvector of AG associated with the eigenvalue −n. This proves part (ii).

Case 2: G is non-bipartite. By Lemma 13.1, G contains a cycle of odd
length �, say,

{u, u1}{u1, u2}{u2, u3} . . . {u�−2, u�−1}{u�−1, u�} ,

where u� = u; furthermore, by connectivity we can assume that the cy-
cle passes through each vertex of G at least once. Now, equality in (13.7)
can hold only if xui = (−1)ixu for all 1 ≤ i ≤ �. But then xu = xu�

=
(−1)�xu = −xu, thereby implying that x = 0. Hence, no eigenvector of AG
can satisfy (13.7) with equality. This completes the proof of part (iii).

Corollary 13.5 Let G = (V,E) be an n-regular graph (not necessarily
connected). Then

max
λ
|λ| = n ,

where λ ranges over all eigenvalues of AG.

The proof is left as an exercise (Problem 13.14).
The second largest eigenvalue of the adjacency matrix of an n-regular

graph will turn out to be rather useful in our analysis in the sequel. We will
denote hereafter the ratio between this eigenvalue and n by γG ; namely, if
λ1 ≥ λ2 ≥ . . . ≥ λ|V | are the eigenvalues of AG , then

γG =
λ2

n
.

13.3 Graph expansion

Theorem 13.7 below will show that an n-regular graph G = (V, E) for which
γG is small has a large expansion; namely, every nonempty subset S of V
has a “large” edge cut associated with it. The proof of the theorem makes
use of the following lemma.

13.3. Graph expansion 403

Lemma 13.6 Let A be an m × m real symmetric matrix (where m ≥
2) with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λm and let x1 be a real eigenvector
associated with λ1. Suppose that y ∈ Rm is such that 〈y,x1〉 = 0. Then

〈y, Ay〉 ≤ λ2‖y‖2 .

Proof. Without loss of generality we can assume that ‖x1‖ = 1. For
i = 2, 3, . . . ,m, let xi be a real eigenvector of A associated with λi such that
the set {x1,x2, . . . ,xm} forms an orthonormal basis of Rm. Write

y =
m∑

i=1

βixi ,

where
βi = 〈y,xi〉 , 1 ≤ i ≤ m .

In particular,
β1 = 〈y,x1〉 = 0 .

Hence,

y =
m∑

i=2

βixi

and

Ay =
m∑

i=2

βiAxi =
m∑

i=2

λiβixi ,

from which we obtain

〈y, Ay〉 =
〈 m∑

i=2

βixi,
m∑

i=2

λiβixi

〉
=

m∑
i=2

λiβ
2
i ≤ λ2

m∑
i=2

β2
i = λ2‖y‖2 ,

as claimed.

Theorem 13.7 Let G = (V, E) be an n-regular graph and S be a subset
of V . Then,

|∂(S)| ≥ (1−γG)n · |S|
(

1− |S|
|V |

)
.

Proof. Write σ = |S|/|V | and define the vector y = (yu)u∈V by

yu =
{

1−σ if u ∈ S
−σ otherwise

, u ∈ V .

404 13. Graph Codes

It is easy to see that 〈y,1〉 = 0 and that ‖y‖2 = σ(1−σ)|V |. Hence, by
Lemma 13.6 we have

〈y, AGy〉 ≤ γGn‖y‖2 = γGσ(1−σ)n|V | .

Recalling that LG = L−
G = n · I −AG we obtain

〈y, LGy〉 = n‖y‖2 − 〈y, AGy〉 ≥ (1−γG)σ(1−σ)n|V | .

On the other hand, by Corollary 13.3 we also have

〈y, LGy〉 =
∑

{u,v}∈∂(S)

(yu − yv︸ ︷︷ ︸
±1

)2 +
∑

{u,v}∈E\∂(S)

(yu − yv︸ ︷︷ ︸
0

)2 = |∂(S)| .

The result follows.

As a counterpart of Theorem 13.7 we have the simple upper bound

|∂(S)| ≤ n · |S| .

Therefore, when γG is close to zero and |S| is much smaller than |V |, then
Theorem 13.7 is essentially tight.

Let G = (V,E) be a graph and ξ be a nonnegative real. We say that G
is an (n, ξ)-expander if it is n-regular and for every S ⊆ V ,

|∂(S)| ≥ ξ · n · |S|
(

1− |S|
|V |

)
. (13.8)

The next corollary follows from this definition and Theorem 13.7.

Corollary 13.8 Every n-regular graph G is an (n, ξ)-expander for every
ξ ∈ [0, 1−γG].

The following lemma provides an upper bound on the average degree
within the induced subgraph of an (n, ξ)-expander on a given nonempty
subset of vertices.

Lemma 13.9 Let G = (V, E) be an (n, ξ)-expander and S be a nonempty
subset of V of size σ|V |. The average degree of the vertices within the induced
subgraph GS satisfies

1
|S|

∑
u∈S

degGS
(u) =

2|ES,S |
|S| ≤ (ξ · σ + 1− ξ)n .

13.3. Graph expansion 405

Proof. The (first) equality follows from Problem 13.2. To show the
inequality, consider the sum,

∑
u∈S degG(u), of the degrees of the vertices

of S in G. On the one hand, this sum equals n · |S|; on the other hand, it
equals 2|ES,S |+ |∂(S)|. Now combine the equality

2|ES,S |+ |∂(S)| = n · |S|

with (13.8).

The last two results yield the next corollary.

Corollary 13.10 Let G = (V, E) be an n-regular graph and S be a
nonempty subset of V of size σ|V |. The average degree of the vertices within
the induced subgraph GS is at most

((1−γG)σ + γG)n .

While small values of γG imply a greater expansion, γG cannot be too
small, as seen from the following lower bound.

Proposition 13.11 Let G = (V,E) be an n-regular graph such that
diam(G) ≥ 4. Then

γG ≥
1√
n

.

Proof. Let s+ and s− be two vertices in G at distance at least 4 apart.
Define the vector y = (yu)u∈V by

yu =

⎧⎨⎩
±1 if u = s±

±1/
√

n if u ∈ N (s±)
0 otherwise

, u ∈ V .

Since dG(s+, s−) ≥ 4, the sets {s+} ∪N (s+) and {s−} ∪N (s−) are disjoint;
so, y is well-defined and, in addition, 〈y,1〉 = 0. Therefore, by Lemma 13.6
we obtain

〈y, LGy〉 = n‖y‖2 − 〈y, AGy〉 ≥ (1−γG)n‖y‖2 = 4(1−γG)n .

On the other hand, by Corollary 13.3 we also have

〈y, LGy〉 =
∑

{u,v}∈E

(yu − yv)2

=
∑

s∈{s+,s−}

∑
u∈N (s)

(
(yu − ys)2 +

∑
v∈N (u)\{s}

(yu − yv)2
)

≤
∑

s∈{s+,s−}

∑
u∈N (s)

(
(yu − ys)2︸ ︷︷ ︸
(1−(1/

√
n))2

+ (n−1)y2
u︸ ︷︷ ︸

1−(1/n)

)

= 4n
(
1− (1/

√
n)
)

,

406 13. Graph Codes

where the second equality and the inequality follow from observing that
when u ∈ N (s±), the sets N (u) and N (s∓)∪{s∓} are disjoint. We conclude
that

4(1−γG)n ≤ 〈y, LGy〉 ≤ 4n
(
1− (1/

√
n)
)

,

thus completing the proof.

The proof of Proposition 13.11 can be extended to also prove the lower
bound

γG ≥
2
√

n−1
n

(
1− 1

κ

)
+

1
κn

, (13.9)

whenever there exist two edges e+ and e− in G such that the distance between
each endpoint of e+ and each endpoint of e− is at least twice the integer κ.
In particular, κ can be taken as �(diam(G))/2 − 1. Now, the diameter of
G can be bounded from below by an expression that tends to infinity as |V |
grows (see Problem 13.4). The next result follows.

Theorem 13.12 For every fixed positive integer n,

lim inf
G

γG ≥
2
√

n−1
n

,

where the limit is taken over any infinite sequence of distinct n-regular
graphs G.

13.4 Expanders from codes

Let Q be a finite group and B be a subset of Q \ {1} that is closed under
inversion, namely, α ∈ B =⇒ α−1 ∈ B. The Cayley graph G(Q,B) is defined
as the graph (Q,E) where

E =
{
{α, β} : αβ−1 ∈ B

}
.

It is easily seen that G(Q,B) is a |B|-regular (undirected) graph.
Let F = GF(2) and let k be a positive integer. Regarding F k as a group

whose operation is the addition of vectors, we will consider in this section
Cayley graphs G(F k, B) where B ⊆ F k \ {0}. In these graphs, the edges are
the subsets {u,u′} ⊆ F k (of size 2) such that u + u′ ∈ B.

The next proposition characterizes the eigenvalues of the adjacency ma-
trix of the Cayley graph G(F k, B). For two column vectors u and v of the
same length over a finite field of prime size, denote by 〈u,v〉 the smallest
nonnegative integer such that uTv = 〈u,v〉 · 1, where 1 is the field unity.
Recall from Problem 2.23 that the 2k × 2k Sylvester-type Hadamard matrix ,

13.4. Expanders from codes 407

denoted by Hk, is the real matrix whose rows and columns are indexed by
the elements of F k, and

(Hk)u,v = (−1)〈u,v〉 , u,v ∈ F k .

It is known that
HkHT

k = 2k · I ;

equivalently, the rows of Hk are orthogonal, and so are the columns.

Proposition 13.13 Let F = GF(2) and let B be a subset of F k \ {0}.
The eigenvalues of the adjacency matrix of the Cayley graph G(F k, B) are
given by

λv =
∑
u∈B

(−1)〈u,v〉 , v ∈ F k .

Proof. Denote by A the adjacency matrix of G(F k, B) and consider the
matrix product AHk. For every u,v ∈ F k we have

(AHk)u,v =
∑

u′∈F k:
u+u′∈B

(Hk)u′,v =
∑
u′∈B

(Hk)u+u′,v

= (Hk)u,v

∑
u′∈B

(Hk)u′,v = (Hk)u,vλv .

It follows that for every v ∈ F k, the column of Hk that is indexed by v is
an eigenvector of A associated with the eigenvalue λv.

Corollary 13.14 Let C be a linear [n, k, d] code over F = GF(2) whose
dual code, C⊥, has minimum distance d⊥ ≥ 3. Let B be the set of columns
of a given generator matrix of C. The Cayley graph G(F k, B) is a connected
n-regular graph, and the eigenvalues of the adjacency matrix of G(F k, B) are
given by

n− 2 w(c) , c ∈ C .

In particular,

γG(F k,B) = 1− 2d

n
.

Proof. Let B be the set of columns of a given generator matrix
G = (g1 g2 . . . gn) of C. From rank(G) = k we get that G(F k, B) is
connected; furthermore, since d⊥ ≥ 3, all the columns of G are distinct and,
so, |B| = n and G(F k, B) is n-regular. Fix some column vector v ∈ F k and

408 13. Graph Codes

let c = (c1 c2 . . . cn) be the codeword vT G in C. By Proposition 13.13, the
eigenvalue λv of AG(F k,B) is given by

λv =
∑
u∈B

(−1)〈u,v〉 =
n∑

j=1

(−1)〈v,gj〉

=
n∑

j=1

(−1)cj =
(∑

j : cj=0

1
)
−
(∑

j : cj=1

1
)

= n− 2 w(c)

(where we have regarded the elements of F also as the integers 0 and 1).
As v ranges over the elements of F k, the vector c = vT G ranges over all
codewords of C.

Example 13.5 The graph in Example 13.2, with the vertex names
transposed, is the Cayley graph G(F 3, B), where B consists of the columns
of the 3× 3 identity matrix over F = GF(2). Clearly, this matrix is a gener-
ator matrix of the [3, 3, 1] code C = F 3. Therefore, by Corollary 13.14, the
eigenvalues of AG(F 3,B) are given by

3, 1, 1, 1,−1,−1,−1,−3

(the requirement on d⊥ holds vacuously in this case, since C⊥ consists of one
codeword only; see also Problem 13.28).

Example 13.6 Recall from Problem 2.17 that the first-order Reed–
Muller code over F = GF(2) is a linear [2m,m+1] code C0 over F with
an (m+1) × 2m generator matrix whose columns range over all the vectors
in Fm+1 with a first entry equaling 1. The code C0 contains the all-one word
(in F 2m

) as a codeword, and its minimum distance equals 2m−1.
Consider the [n, k, d] linearly-concatenated code Ccont over F with C0

taken as the inner code, while the outer code is a [2m+1, t, 2m+1−t+1] singly-
extended normalized GRS code CGRS over Φ = GF(2m+1). As shown in
Problem 5.1, the dual code of CGRS is also a singly-extended normalized
GRS code and, so, the all-one word (in Φ2m+1

), being a row in a canonical
parity-check matrix of C⊥GRS, is a codeword of CGRS.

The parameters of Ccont are given by n = 22m+1, k = t(m+1), and

d ≥ (2m+1−t+1) · 2m−1 =
1
2

(
n− (t−1)

√
n/2

)
.

In addition, it can be verified by Problem 12.3 that when t > 1, the min-
imum distance of C⊥cont is at least 3. Letting B be the set of columns of a

13.5. Ramanujan graphs 409

generator matrix of Ccont, we obtain from Corollary 13.14 that the Cayley
graph G(F k, B) is an n-regular graph with 2k = 2t(m+1) = (2n)t/2 vertices,
and

γG(F k,B) = 1− 2d

n
≤ (t−1)

√
n/2

n
=

t−1√
2n

.

Hence, γG(F k,B) approaches zero at a rate of 1/
√

n for every fixed t, while
the number of vertices grows polynomially with n.

Observe that since the word (β β . . . β) is a codeword of CGRS for
every β ∈ Φ, the word (u |u | . . . |u) is a codeword of Ccont for every u ∈
C0. In particular, the all-one word is a codeword of Ccont. Therefore, by
Corollary 13.14 we get that −n is an eigenvalue of the adjacency matrix
of G(F k, B), and from Proposition 13.4 we can conclude that this graph is
bipartite.

13.5 Ramanujan graphs

A graph G = (V, E) is called a Ramanujan graph if it is a connected n-regular
graph such that every eigenvalue λ �∈ {n,−n} of AG satisfies

|λ| ≤ 2
√

n−1 .

In particular,

γG ≤
2
√

n−1
n

.

In view of Theorem 13.12, a Ramanujan graph G has essentially the smallest
possible value for γG .

We next describe a construction of Ramanujan graphs due to Lubotzky,
Phillips, and Sarnak (in short, LPS), and Margulis: for every integer n such
that n−1 is a prime congruent to 1 modulo 4, their construction yields an
infinite sequence of n-regular Ramanujan graphs.

Given F = GF(q) and an integer k, consider the set of all k× k matrices
over F whose determinant equals 1. This set forms a subgroup of all k × k
nonsingular matrices over F under matrix multiplication and is called the
special linear group SLk(q). The subset of the k × k diagonal matrices

Tk(q) = {a · I : a ∈ F ∗, ak = 1}

forms a normal subgroup of SLk(q) and the factor group of SLk(q) by Tk(q)
is called the projective special linear group PSLk(q) (see Problem A.15). For
the case k = 2 (which we will be interested in) we have

PSL2(q) = SL2(q)/{I,−I} ;

410 13. Graph Codes

namely, the elements of PSL2(q) are all the 2 × 2 matrices over F whose
determinant is 1, where the matrices A and −A are regarded as the same
element ±A. The unity element of PSL2(q) is ±I, and one can easily show
(see Problem 13.31) that |SL2(q)| = q(q2−1) and

|PSL2(q)| =
{

q(q2−1)/2 if q is odd
q(q2−1) if q is even

.

Fix q to be a prime congruent to 1 modulo 4 and let F = GF(q). Given
an integer a (which may be negative), we will use the notation a to stand
for the element in F such that a = a · 1, where 1 is the multiplicative unity
in F . An integer a is said to be a quadratic residue modulo q if there is a
nonzero element η ∈ F such that η2 = a in F . Since q ≡ 1 (mod 4), the
integer −1 is a quadratic residue modulo q (see Problem 3.23).

Let p be a prime other than q such that p ≡ 1 (mod 4) and p is a quadratic
residue modulo q. The graphs we describe are Cayley graphs G(PSL2(q), B)
for sets B which we define next.

Denote by Υ(p) the set of all integer quadruples z = (z0 z1 z2 z3), where
z0 is an odd positive integer, z1, z2, and z3 are even integers (which may be
negative), and z2

0 + z2
1 + z2

2 + z2
3 = p. Given z ∈ Υ(p), consider the following

2× 2 matrix over F ,

Mz = ±1
η

(
z0 + ız1 z2 + ız3

−z2 + ız3 z0 − ız1

)
,

where ı and η are elements of F that satisfy

ı2 = −1 and η2 = p

(all operations in F). It can be verified (Problem 13.32) that det(Mz) = 1
and that M−1

z = Mz∗ , where z∗ = (z0 −z1 −z2 −z3). Next, define the subset
B of PSL2(q) \ {±I} by

B = {±Mz : z ∈ Υ(p)} .

This set is closed under inversion, and we denote the resulting |Υ(p)|-regular
Cayley graph G(PSL2(q), B) by GLPS(p, q).

The size of Υ(p) is determined by the following theorem in number theory,
which is quoted here without proof.

Theorem 13.15 (Jacobi’s Four Square Theorem) Let m be a positive
integer. The number of ordered integer quadruples (z0 z1 z2 z3) such that
z2
0 + z2

1 + z2
2 + z2

3 = m is equal to

8 ·
∑
d |m :

d>0, 4� | d

d .

In particular, if m is a prime then this number equals 8(m+1).

13.6. Codes from expanders 411

Corollary 13.16 For every prime p ≡ 1 (mod 4),

|Υ(p)| = p+1 .

Proof. By Theorem 13.15, the number of ordered integer quadruples
(z0 z1 z2 z3) such that z2

0 + z2
1 + z2

2 + z2
3 = p is equal to 8(p+1). Since

p ≡ 1 (mod 4), there is precisely one odd integer in every such quadruple.
Restricting this integer to be the first entry in the quadruple reduces the
number of quadruples by a factor of 4, while requiring that this odd integer
be also positive yields a further reduction by a factor of 2. Hence, |Υ(p)| =
p+1.

The next theorem was proved by Lubotzky, Phillips, and Sarnak, and
independently by Margulis, and is quoted here without proof.

Theorem 13.17 Let p and q be two distinct primes such that p ≡ q ≡
1 (mod 4) and p is a quadratic residue modulo q. Then GLPS(p, q) is a
non-bipartite (p+1)-regular Ramanujan graph.

Given a prime p ≡ 1 (mod 4), it follows from the Law of Quadratic
Reciprocity that an odd prime q �= p is a quadratic residue modulo p if and
only if p is a quadratic residue modulo q (see the notes on this section at the
end of the chapter). We thus obtain from Theorem 13.17 that for any given
prime p ≡ 1 (mod 4), the graph GLPS(p, q) is a (p+1)-regular Ramanujan
graph for all primes q �= p such that q ≡ 1 (mod 4) and q is a quadratic
residue modulo p. We can therefore take q to be any prime that satisfies the
congruence

q ≡ (1− p)s + p (mod 4p) , (13.10)

where s is any quadratic residue modulo p (indeed, such values of q yield
the right remainders when divided by 4 and by p). From the extension of
the Prime Number Theorem to arithmetic progressions we get that primes
q which satisfy (13.10) are frequent among the prime numbers.

The graph GLPS(p, q) can be easily transformed into a bipartite (p+1)-
regular Ramanujan graph with q(q2−1) vertices through the construction in
Problem 13.13.

13.6 Codes from expanders

We next describe a construction of codes based on graphs. The construction
uses the following ingredients:

• An n-regular graph G = (V, E).

• A code of length n over an alphabet F .

412 13. Graph Codes

For every vertex u ∈ V , we assume an ordering on the set, E(u), of the
edges that are incident with u. The size of E will be denoted by N , and we
have |V | = 2N/n (see Problem 13.2).

For a word x = (xe)e∈E (whose entries are indexed by E) in FN , denote
by (x)E(u) the sub-word of x that is indexed by E(u), that is, (x)E(u) =
(xe)e∈E(u).

The graph code C = (G, C) is defined by

C =
{
c ∈ FN : (c)E(u) ∈ C for every u ∈ V

}
.

The next two propositions provide lower bounds on the rate and the
relative minimum distance of the code C, for the case where C is linear.

Proposition 13.18 Let G = (V, E) be an n-regular graph with |E| = N
edges and let C be a linear [n, k=rn] code over a field F . Then C = (G, C) is
a linear [N,K=RN] code over F , where

R ≥ 2r − 1 .

Proof. Let H be a ((1−r)n)× n parity-check matrix of C over F . Then
C can be characterized through a set of |V |(1−r)n linear constraints over F ,
namely,

C =
{
c ∈ FN : H ((c)E(u))

T = 0 for every u ∈ V
}

.

Hence, C is linear and

N −K ≤ n|V |(1−r) = 2N(1−r)

or
K

N
≥ 2r − 1 ,

as claimed.

Proposition 13.19 Let G = (V, E) be an (n, ξ>0)-expander with |E| =
N edges and let C be a linear [n, k, d=θn] code over F . The minimum dis-
tance D = δN of C = (G, C) satisfies

δ ≥ θ(θ + ξ − 1)
ξ

(whenever the rate of C is positive). In particular,

δ ≥ θ(θ − γG)
1− γG

.

13.6. Codes from expanders 413

Proof. We assume that ξ > 1 − θ (≥ 0), or else the result trivially
holds. Let c = (ce)e∈E be a nonzero codeword of C and denote by Y ⊆ E
the support of c, namely,

Y =
{

e ∈ E : ce �= 0
}

.

Let S be the set of all vertices in G that are endpoints of edges in Y and
consider the subgraph G(Y) = (S, Y) of G. Since the minimum distance of
C is d, the degree of each vertex in G(Y) must be at least d. Therefore, the
average degree in G(Y) satisfies

2 w(c)
|S| =

2|Y |
|S| ≥ d . (13.11)

On the other hand, by Lemma 13.9 we have

2|Y |
|S| ≤

2|ES,S |
|S| ≤ (ξ · σ + 1− ξ)n ,

where σ = |S|/|V |. Combining with (13.11) yields

(ξ · σ + 1− ξ)n ≥ d

or
σ ≥ θ + ξ − 1

ξ
.

Using (13.11) again, we obtain

w(c) ≥ d

2
· |S| = d

2
· σ · |V | ≥ θn

2
· θ + ξ − 1

ξ
· 2N

n
=

θ(θ + ξ − 1)N
ξ

,

and the result follows by letting c be a codeword of Hamming weight δN .

Fix C to be a linear [n, k=rn, d=θn] code over F = GF(q) that attains the
Gilbert–Varshamov bound in Theorem 4.10, and let the graph G = (V,E) be
taken from an infinite sequence of n-regular Ramanujan graphs. It follows
from Propositions 13.18 and 13.19 that C = (G, C) is a linear [N, RN, δN]
code over F , where R ≥ 2r − 1 ≥ 1 − 2Hq(θ) and δ ≥ θ2 − o(1), with o(1)
standing for an expression that goes to zero as n →∞; thus,

R ≥ 1− 2 Hq(
√

δ)− o(1) . (13.12)

Note that since the sequence of graphs is infinite, the code length, N = |E|,
can take arbitrarily large values.

The bound (13.12) is inferior to the Gilbert–Varshamov bound or even
to the Zyablov bound (see Section 12.3): for q = 2, the lower bound 1 −

414 13. Graph Codes

2 H2(
√

δ) vanishes already for δ = (H−1
2 (1

2))2 ≈ 0.012. Yet, the advantage of
the codes (G, C) lies in their decoding complexity. For the case where G is
bipartite, we show in Section 13.7 a decoder for (G, C) that can correct up to
(approximately) (1/4)·δN errors in time complexity that grows linearly with
the code length N . Furthermore, in Section 13.8, we present a generalization
of the construction (G, C) that attains the Zyablov bound, with a linear-time
decoding algorithm that corrects any number of errors up to (approximately)
half the (designed) minimum distance of the code.

13.7 Iterative decoding of graph codes

Let C = (G, C) be a linear graph code of length N over F = GF(q), where
G = (V ′ : V ′′, E) is a bipartite n-regular graph with |E| = n|V ′| = n|V ′′| =
N and C is a linear [n, k, d=θn] code over F . In this section, we analyze the
iterative algorithm in Figure 13.3 as a decoder for the code C. The algorithm
assumes a decoder D : Fn → C that recovers correctly any pattern of less
than d/2 errors (e.g., a nearest-codeword decoder). The number of iterations,
ν, in Figure 13.3 is proportional to log |V ′|; a concrete value for ν will be
given later on.

Input: received word y ∈ FN .
Output: word z ∈ FN or a decoding-failure indicator “e”.

1. z← y.

2. For i = 1, 2, . . . , ν do:

(a) If i is odd then U ≡ V ′, else U ≡ V ′′.

(b) For every u ∈ U do: (z)E(u) ← D ((z)E(u)).

3. Return z if z ∈ C (and “e” otherwise).

Figure 13.3. Iterative decoder for a graph code C = (G, C).

Let y = (ye)e∈E denote the received word over F . The algorithm assigns
to each edge e ∈ E a label ze ∈ F , which is initially set to ye. The labels
are represented in Figure 13.3 as a word z = (ze)e∈E . The algorithm then
performs ν iterations, where at iteration i, the decoder D of C is applied to
each word (z)E(u) = (ze)e∈E(u), with u ranging over the set V ′ (if i is odd) or
V ′′ (if i is even).

As part of our analysis, we show (in Proposition 13.23 below) that the
algorithm in Figure 13.3 can correct any error word whose Hamming weight

13.7. Iterative decoding of graph codes 415

does not exceed
Nθ

2
· σ ,

where σ is any prescribed positive real such that

σ <
(θ/2)− γG

1− γG

(the particular choice of σ will affect the value of ν). Assuming that γG is
much smaller than θ, the guaranteed number of correctable errors, (Nθ/2)·σ,
can reach approximately half the number of errors that we expect to be able
to correct based on Proposition 13.19. As pointed out earlier, the advantage
of the proposed algorithm is manifested through its complexity: we show that
the algorithm can be implemented using O(N) operations in F , assuming
that the code C is fixed (in particular, this assumption implies that D can be
implemented in constant time). In Section 13.8, we present another linear-
time decoding algorithm, which can correct twice as many errors (yet the
multiplicative constant in the linear expression for the decoding complexity
is larger).

Our analysis of the algorithm in Figure 13.3 makes use of several lemmas.
The following lemma is an improvement on Corollary 13.10 for the case of
bipartite graphs.

Lemma 13.20 Let G = (V ′ : V ′′, E) be a bipartite n-regular graph and
let S ⊆ V ′ and T ⊆ V ′′ be subsets of sizes |S| = σ|V ′| and |T | = τ |V ′′|,
respectively, where σ + τ > 0. The average degree of the vertices within the
induced subgraph GS∪T satisfies

1
|S ∪ T |

∑
u∈S∪T

degGS∪T
(u) =

2|ES,T |
|S|+ |T |

≤ 2
σ+τ

(
στ + γG

√
σ(1−σ)τ(1−τ)

)
n

≤
(

(1−γG)
2στ

σ+τ
+ γG ·

2
√

στ

σ+τ

)
n

≤
(

(1−γG)
2στ

σ+τ
+ γG

)
n . (13.13)

The proof of Lemma 13.20 is left as a guided exercise (Problem 13.20).
Note that the expression (13.13) looks like the upper bound of Corol-
lary 13.10, except that σ therein is replaced by the harmonic mean of σ
and τ .

Lemma 13.21 Let G = (V ′ : V ′′, E) be a bipartite n-regular graph with
γG > 0 and let θ be a positive real. Suppose that there exist nonempty subsets

416 13. Graph Codes

S ⊆ V ′ and T ⊆ V ′′ of sizes |S| = σ|V ′| and |T | = τ |V ′′|, respectively, such
that

u ∈ T =⇒ |N (u) ∩ S| ≥ θn

2
.

Then √
σ

τ
≥ (θ/2)− (1−γG)σ

γG
.

Proof. By the condition of the lemma we can bound |ES,T | from below
by

|ES,T | =
∑
u∈T

|N (u) ∩ S| ≥ θn

2
· |T | = θn

2
· τ |V ′| .

On the other hand, by Lemma 13.20 we have the upper bound

|ES,T | ≤
(
(1−γG)στ + γG

√
στ
)
n|V ′| .

Combining these two bounds on |ES,T | we obtain

θτ

2
· n|V ′| ≤ |ES,T | ≤

(
(1−γG)στ + γG

√
στ
)
n|V ′| ,

and dividing by γGτn|V ′| yields the desired result.

Let C = (G, C) be a graph code over F , where G = (V ′ : V ′′, E) is a
bipartite n-regular graph and C is a linear [n, k, d] code over F . Suppose that
c = (ce)e∈E is the transmitted codeword and let y = (ye)e∈E be the received
word to which the algorithm in Figure 13.3 is applied. For i = 1, 2, . . . , ν,
denote by zi = (zi,e)e∈E and Ui the values of the word z and the set U ,
respectively, at the end of iteration i in Figure 13.3; that is,

Ui =
{

V ′ if i is odd
V ′′ if i is even

.

Also define the sets of edges

Yi =
{

e ∈ E : zi,e �= ce

}
, i = 1, 2, . . . , ν ,

and the sets of vertices

Si =
{

u ∈ Ui : |E(u) ∩ Yi| > 0
}

, i = 1, 2, . . . , ν ; (13.14)

that is, an edge e belongs to Yi if it corresponds to an erroneous coordinate
in zi, and a vertex u ∈ Ui belongs to Si if it is an endpoint of at least one
edge in Yi. We denote the ratio |Si|/|V ′| by σi.

The next lemma provides a useful property of the evolution of the val-
ues σi.

13.7. Iterative decoding of graph codes 417

Lemma 13.22 Let G = (V ′ : V ′′, E) be a bipartite n-regular graph with
|E| = N edges and let C be a linear [n, k, d=θn] code over F such that
θ > 2γG > 0. Denote by β the value

β = β(θ, γG) =
(θ/2)− γG

1− γG
,

and let σ be a prescribed real in the range 0 < σ < β. Suppose that a
codeword c = (ce)e∈E of C = (G, C) is transmitted and a word y = (ye)e∈E

over F is received, where

d(y, c) ≤ Nθ

2
· σ .

Then, for i = 1, 2, . . . , ν,

|Si| = σi|V ′| ≤
((

1− σ

β

)(θ

2γG

)i−1
+

σ

β

)−2

· σ|V ′|

≤ σ|V ′|
(1− (σ/β))2

·
(2γG

θ

)2i−2
,

namely, σi decreases exponentially with i.

Proof. Denote by Y0 the set of erroneous coordinates in y, that is,

Y0 =
{

e ∈ E : ye �= ce

}
.

Since the decoder D : FN → C errs only when it attempts to correct �d/2�
or more errors, we have,

u ∈ Si =⇒ |E(u) ∩ Yi−1| ≥
d

2
, i = 1, 2, . . . , ν . (13.15)

In particular, for i = 1 we get

d(y, c) = |Y0| ≥
∑
u∈S1

|E(u) ∩ Y0| ≥
d

2
· |S1| ;

therefore,

σ1|V ′| = |S1| ≤
2
d
· d(y, c) ≤ 2

θn
· Nθ

2
· σ = σ|V ′| ,

thereby proving the claim for i = 1.
Let � be the smallest positive integer (possibly∞) for which σ� = 0. It is

clear from the algorithm in Figure 13.3 that σi = 0 for every i ≥ �; hence, we
focus hereafter in the proof on the range 1 < i < �. The proof for this range

418 13. Graph Codes

is carried out by applying Lemma 13.21 to the graph (Ui−1 : Ui, E), with S
and T in that lemma being taken as Si−1 and Si, respectively. From (13.14)
and (13.15) we obtain that

u ∈ Si =⇒ |N (u) ∩ Si−1| ≥
θn

2
,

and by Lemma 13.21 we conclude that for every 1 < i < �,√
σi−1

σi
≥ θ

2γG
− 1−γG

γG
σi−1 . (13.16)

Since σ1 ≤ σ < β, we get that the right-hand side of (13.16) is greater than
1 for i = 2; therefore, σ1/σ2 > 1 and, so, σ2 < σ1 < β. Continuing by
induction on i, it follows that σi−1/σi > 1 for all 1 < i < �, thus implying
that σi ≤ σ for all i > 0. This, in turn, allows us to replace σi−1 by √σi−1σ
in the right-hand side of (13.16). When we do so and divide by √σi−1, we
obtain

1√
σi
≥ θ/(2γG)
√

σi−1
− (1−γG)

√
σ

γG
.

Finally, by changing the inequality into an equality (thereby we may only
overestimate σi), we get a first-order non-homogeneous linear recurrence in
1/
√

σi, the solution of which yields

1√
σi

=
((

1− σ

β

)
·
(θ

2γG

)i−1
+

σ

β

)
1√
σ

.

The result follows.

Based on the previous lemma, we can now prove the next proposition,
which states that by properly selecting the number of iterations ν, the algo-
rithm in Figure 13.3 is indeed a graph code decoder.

Proposition 13.23 Let G = (V ′ : V ′′, E) be a bipartite n-regular graph
with |E| = N edges and let C be a linear [n, k, d=θn] code over F such that
θ > 2γG > 0. Fix σ to be a positive real such that

σ < β =
(θ/2)− γG

1− γG
,

and suppose that a codeword c of C = (G, C) is transmitted and a word
y ∈ FN is received, where

d(y, c) ≤ Nθ

2
· σ .

13.7. Iterative decoding of graph codes 419

If the algorithm in Figure 13.3 is applied to y with

ν =

⌊
logθ/(2γG)

(
β
√

σ|V ′| − σ

β − σ

)⌋
+ 2

(taking ν = 1 when |V ′| ≤ σ/β2), then the value of z upon termination of
the algorithm equals c.

Proof. By Lemma 13.22 we get that |Sν | = σν |V ′| < 1; namely, Sν

is empty (this applies also to the case where |V ′| ≤ σ/β2: here we have
|S1| ≤ σ|V ′| ≤ (σ/β)2 < 1).

Observe that the dependence of ν on |V ′| is logarithmic, with an additive
term that grows (arbitrarily) as σ gets closer to β. While Proposition 13.23
provides a number of iterations ν that guarantees successful decoding, the
word z in Figure 13.3 will already contain the correct codeword once it
remains unchanged during a full execution of Step 2b. This condition, in
turn, can serve as an early stopping rule for the algorithm.

Next, we turn to a complexity analysis of the algorithm. We assume here
that the code C is fixed and, so, the decoder D : Fn → C can be implemented
in constant time. It is rather easy to see that the decoder D is applied in
Figure 13.3 at most |V ′|ν = O(|V ′| log |V ′|) times (where we absorb into
the “O” notation additive and multiplicative terms which depend on θ, γG ,
and σ). However, a finer analysis reveals that this bound can be reduced to
O(|V ′|). We demonstrate this next.

First, observe that during each iteration i ≥ 3, we need to apply the
decoder D to (z)E(u) in Step 2b for a given vertex u ∈ Ui, only if at least one
entry in (z)E(u)—say, the entry indexed by the edge {u, v} ∈ E(u)—has been
altered during iteration i−1. Yet, such an alteration occurs only if v is a
vertex in Ui−1 such that |E(v)∩Yi−2| > 0; the latter inequality, in turn, holds
only if v ∈ N (Si−2) (see Figure 13.4, where the dotted line represents an
edge in Yi−2 and u′ is its endpoint in Si−2). We thus conclude that D needs
to be applied to (z)E(u) in iteration i only if u ∈ N (N (Si−2)). Summing

u′

u

Ui/Ui−2

v

Ui−1

Figure 13.4. The dotted edge belongs to Yi−2 and u′ is its endpoint in Si−2.

420 13. Graph Codes

over all iterations (including the first two), we obtain that the number of
applications of the decoder D can be bounded from above by

2|V ′|+
ν∑

i=3

|N (N (Si−2))| ≤ 2|V ′|+ n2
ν∑

i=3

|Si−2|

< 2|V ′|+ σn2|V ′|
(1− (σ/β))2

·
∞∑
i=3

(2γG
θ

)2(i−3)

=
(

2 +
σn2

(1−(σ/β))2
· 1
1−(2γG/θ)2

)
|V ′|

= O(|V ′|) ,

where the second inequality follows from Lemma 13.22.
(When assessing the overall decoding complexity, we also need to take

into account the complexity of finding the neighbors of any vertex in G; yet,
we can assume that the neighborhoods of each vertex are pre-computed and
stored, say, as a table in memory or hard-wired into the decoding hardware.)

While the decoding complexity of C is linear in |V ′| (or N), the encod-
ing (which can be carried out by multiplying the information word with a
generator matrix of C) may still have time complexity that is quadratic in N .

13.8 Graph codes in concatenated schemes

The bipartite graph codes (G, C), which we considered in Section 13.7, can
be generalized in several ways. For instance, we can insert the flexibility of
associating different codes C to the two partition elements of the vertex set
of G. We do this next.

Let G = (V ′ : V ′′, E) be a bipartite n-regular graph with |E| = n|V ′| =
n|V ′′| = N and let C′ be a linear [n, k=rn, θn] code over F = GF(q). Also,
let C′′ be a (second) linear [n,Rn, δn] code over F . We define the code
C = (G, C′ : C′′) over F by

C =
{
c ∈ FN :

(c)E(u) ∈ C′ for every u ∈ V ′ and
(c)E(u) ∈ C′′ for every u ∈ V ′′

}
. (13.17)

The construction (G, C′ : C′′) will be referred to hereafter as a generalized
graph code.

The construction C = (G, C′ : C′′) can be further generalized if we regard
C as a concatenated code over F in the following manner. Let Φ denote the
alphabet F k. Fix some one-to-one (and onto) mapping E : Φ → C′ that is
linear over F , and define the one-to-one mapping ψE : C→ Φ|V ′| by

ψE(c) =
(
E−1((c)E(u))

)
u∈V ′ , c ∈ C ;

13.8. Graph codes in concatenated schemes 421

i.e., the entry of ψE(c) that is indexed by a vertex u ∈ V ′ equals the unique
element in Φ that is mapped by E to the sub-word (c)E(u) (by the definition
of (G, C′, C′′), this sub-word is indeed a codeword of C′ and, thus, an image
of E). Next, define the code CΦ over Φ by

CΦ = {ψE(c) : c ∈ C} . (13.18)

Through this code construction, we can represent the generalized graph
code C as a concatenated code (E , CΦ), with an inner code C′ over F and an
outer code CΦ over Φ. While such a characterization of C as a concatenated
code may seem to be somewhat artificial, it does introduce the possibility of
using CΦ as an outer code with inner codes other than C′. We explore this
potential further by first stating several properties of the code CΦ.

Proposition 13.24 Let C = (G, C′ : C′′) be a generalized graph code over
F = GF(q), where G = (V ′ : V ′′, E) is a bipartite n-regular graph, C′ is a
linear [n, k=rn, θn] code over F , and C′′ is a linear [n, Rn, δn] code over F .
Let Φ denote the alphabet F k, and define the code CΦ over Φ by (13.18).
Then the following conditions hold:

(i) The code CΦ is a linear space over F .

(ii) The rate of CΦ is bounded from below by

1− 1
r

+
R

r
.

(iii) The relative minimum distance of CΦ is bounded from below by

δ − γG
√

δ/θ

1− γG
.

The proof of Proposition 13.24 is given as a guided exercise (Prob-
lem 13.36). It follows from part (ii) of the proposition that the rate of
CΦ approaches R when r → 1, while from part (iii) we get that its relative
minimum distance approaches δ when γG/

√
θ → 0.

Example 13.7 Consider the case where C′ and C′′ are taken as GRS
codes over F = GF(q) (which is possible if n < q). We show that the
respective code CΦ can get arbitrarily close to the asymptotic version of
the Singleton bound (as stated in Section 4.5), provided that n (and q) are
sufficiently large. Specifically, we fix θ = ε for some small ε ∈ (0, 1] (in which
case r > 1−ε), and then select q and n so that q > n ≥ 4/ε3. Assuming that
G is a bipartite n-regular Ramanujan graph, we have γG ≤ (2

√
n−1)/n <

422 13. Graph Codes

ε3/2, or γG/
√

θ < ε. By Proposition 13.24, the rate and relative minimum
distance of the resulting code CΦ are bounded from below by

1− 1
r

+
R

r
> 1− 1

1−ε
+

R

1−ε
> R− ε

and
δ − γG

√
δ/θ

1− γG
>

δ − ε
√

δ

1− ε3/2
> δ − ε > 1−R− ε ,

respectively. In addition, if q and n are selected to be (no larger than)
O(1/ε3), then the alphabet size of CΦ is

|Φ| = qrn = 2O((log(1/ε))/ε3) ; (13.19)

namely, it does not grow with the length, |V ′|, of CΦ.

Example 13.8 Suppose that F (= GF(q)) is an extension field of a
field K with extension degree [F : K] = m, and let the parameters of CΦ be
selected as in Example 13.7. Construct a concatenated code Ccont = (Ein,CΦ)
over K, where Ein is a one-to-one linear mapping over K from Φ onto a linear
[�, rin�, δin�] code Cin over K that attains the Gilbert–Varshamov bound, with
� = (r/rin)mn. The concatenated code Ccont is thus a linear code of length
�|V ′| over K, whose rate and relative minimum distance are bounded from
below by

rin(R− ε) ≥
(
1− H|K|(δin)

)
(R− ε)

and
δin(δ − ε) > δin(1−R− ε) ,

respectively. By comparing these lower bounds with Equations (12.3)
and (12.4) in Section 12.3, we conclude that the code Ccont can get arbi-
trarily close to the Zyablov bound when ε → 0.

When using CΦ as an outer code in a concatenated code, one would also
prefer having an efficient decoder for CΦ that can recover both errors and era-
sures; this, in turn, would imply an efficient generalized minimum distance
(in short, GMD) decoder for the entire concatenated code (see Section 12.2).

A combined error–erasure decoder for CΦ is presented in Figure 13.5.
This decoder is similar to the decoder for C, which was presented in Fig-
ure 13.3. The received word y is now over the alphabet Φ ∪ {?} and its
entries, yu, are indexed by u ∈ V ′. Step 1 transforms the received word
into a word z ∈ F |E| by encoding each non-erased entry of y to a codeword
of C′ and mapping each erased entry to an erased sub-block of length n.
The inverse mapping is then applied in Step 3. The main loop in Step 2 is

13.8. Graph codes in concatenated schemes 423

Input: received word y = (yu)u∈V ′ in (Φ ∪ {?})|V ′|.
Output: word in Φ|V ′| or a decoding-failure indicator “e”.

1. For u ∈ V ′ do: (z)E(u) ←
{
E (yu) if yu ∈ Φ
?? . . . ? if yu = ? .

2. For i = 2, 3, . . . , ν do:

(a) If i is odd then U ≡ V ′ and D ≡ D′, else U ≡ V ′′ and D ≡ D′′.

(b) For every u ∈ U do: (z)E(u) ← D ((z)E(u)).

3. Return ψE(z) if z ∈ C (and “e” otherwise).

Figure 13.5. Iterative decoder for CΦ.

essentially the same as its counterpart in Figure 13.3, except that now we
have two decoders, D′ : Fn → C′ and D′′ : (F ∪ {?})n → C′′: the former
recovers correctly any pattern with less than θn/2 errors over F and the
latter recovers correctly any pattern of a errors and b erasures, provided
that 2a + b < δn. Observe that iteration i = 1 was skipped in Step 2 in
Figure 13.5 (since the non-erased sub-blocks of z are already initialized to
be codewords of C′) and that erasure decoding may occur only when i = 2.

The next proposition states that the algorithm in Figure 13.5 is indeed
a decoder for CΦ.

Proposition 13.25 Let C = (G, C′ : C′′) be a generalized graph code over
F = GF(q), where G = (V ′ : V ′′, E) is a bipartite n-regular graph, C′ is a
linear [n, k=rn, θn] code over F , and C′′ is a linear [n,Rn, δn] code over F
such that

√
θδ > 2γG > 0. Let Φ denote the alphabet F k, and define the code

CΦ over Φ by (13.18). Fix σ to be a positive real such that

σ < β =
(δ/2)− γG

√
δ/θ

1− γG
,

and suppose that a transmission of a codeword c ∈ CΦ results in a word
y ∈ (Φ ∪ {?})|V ′| with t errors and ρ erasures, where

t +
ρ

2
≤ σ|V ′| .

Apply the algorithm in Figure 13.5 to y with

ν = 2

⌊
log

(
β
√

σ|V ′| − σ

β − σ

)⌋
+ 3 , (13.20)

424 13. Graph Codes

where the base of the logarithm equals θδ/(4γ2
G) (take ν = 1 when |V ′| ≤

σ/β2). Then the value of ψE(z) upon termination of the algorithm equals c.

The proof of Proposition 13.25 is given as an exercise (Problems 13.37–
13.39). As was the case with the decoder of Figure 13.3, the decoder herein
needs to apply the decoders D′ and D′′ only O(|V ′|) times.

The following examples present several applications of the algorithm in
Figure 13.5.

Example 13.9 We analyze the performance of a GMD decoder for the
concatenated code Ccont in Example 13.8, while using the algorithm in Fig-
ure 13.5 to decode the outer code CΦ. We assume that K, m, and n are fixed
and, so, a nearest-codeword decoder for Cin can be implemented in constant
time. Thus, a GMD decoder for Ccont has time complexity that is linear in
|V ′| and is capable of correcting any error pattern in which the ratio between
the number of errors and the code length �|V ′| is less than

δin ·
(δ/2)− γG

√
δ/θ

1− γG
> δin ·

(δ/2)− ε
√

δ

1− ε3/2
≥ 1

2δin(δ − 2ε)

(refer to the analysis of GMD decoding in Section 12.2 and combine it with
Proposition 13.25). The construction of Ccont (e.g., computing one of its
generator matrices) has time complexity that is polynomially large in the
code length.

Example 13.10 Let F and K be as in Example 13.8, and consider
a |K|-ary symmetric channel (K,K, Prob) with crossover probability p <
1−(1/|K|). We have shown in Section 12.5 that one can approach the ca-
pacity of this channel with concatenated codes (over K) that can be en-
coded and decoded in time complexity that is polynomially large in the code
length. We next verify that this can be achieved with the code Ccont of
Example 13.8, where we now select Cin so that it has a nearest-codeword
decoder whose decoding error probability, P = Perr(Cin), decreases exponen-
tially with � (= (r/rin)mn), whenever rin < 1− H|K|(p); i.e.,

P < 4 · |K|−E·�

for some constant E = E|K|(p, rin) > 0 (the multiplier 4 is inserted here to
make the notation consistent with that in Section 12.5).

The code Ccont can be decoded by first applying a nearest-codeword de-
coder for Cin to each sub-block of length � within the received word, followed
by an application of the decoder of Figure 13.5 (without attempting to cor-
rect erasures). As was the case in Example 13.9, this decoding process has
time complexity that is linear in the code length.

13.8. Graph codes in concatenated schemes 425

Recalling that the rate of the outer code CΦ is greater than R − ε, we
can repeat the analysis of Section 12.5 and replace (12.14) therein by the
following lower bound on the overall rate Rcont of Ccont,

Rcont > rin(R− ε) ≥ rin · (1− δ − o(1)) ,

where o(1) stands for an expression that goes to zero as n goes to infinity
(note that when K is fixed, then, by the construction in Example 13.7, if n
goes to infinity, then so must |F | and, consequently, m and �). Thus, given
a designed rate R < 1− H|K|(p), we select the rate rin of the inner code so
that R ≤ rin < 1−H|K|(p) and take δ = 1− (R/rin). By Proposition 13.25,
the decoder in Figure 13.5 can recover a codeword of CΦ provided that the
erroneous fraction is smaller than

(δ/2)− γG
√

δ/θ

1− γG
>

(δ/2)− ε
√

δ

1− ε3/2
≥ 1

2δ − ε .

With our choice of parameters we therefore have

Rcont ≥ R− o(1) ,

and the attainable decoding error probability, Perr(Ccont), is bounded from
above—similarly to (12.13)—by

Perr(Ccont) ≤
(
2P (δ/2)−ε

)|V ′|
= |K|−�|V ′|(E·δ/2−o(1)) .

We readily reach the following lower bound on the error exponent:

−
log|K| Perr(Ccont)

�|V ′| ≥ 1
2E · δ − o(1)

= 1
2E|K|(p, rin) (1− (R/rin))− o(1) . (13.21)

Finally, we maximize the expression (13.21) over rin within the range R ≤
rin ≤ 1− H|K|(p). (Since

(1−
√
R/rin)2 < 1− (R/rin)

for rin > R > 0, this maximization results in a lower bound which, in fact,
is better than (12.15).)

Example 13.11 Let C = (G, C) be a graph code over F where G = (V ′ :
V ′′, E) is a bipartite n-regular graph with |E| = N edges and C is a linear
[n, k, d=θn] code over F . Denoting Φ = F k, we regard C as a concatenated
code over F , with the outer code being CΦ and the inner code being C.
It follows from Proposition 13.25 that by applying GMD decoding to this

426 13. Graph Codes

concatenated code (whose length is n|V ′| = N), we can correct any pattern
with up to

θn · σ|V ′| = Nθ · σ

errors (over F), where σ is any positive real such that

σ <
(θ/2)− γG

1− γG
.

This is an improvement by a factor of 2 compared to Proposition 13.23.
Note, however, that the GMD decoder requires �d/2� applications of the
algorithm in Figure 13.5. Since d is fixed, the resulting complexity is still
linear in the code length, yet the multiplicative constant is bigger compared
to the algorithm in Figure 13.3.

Problems

[Section 13.1]

Problem 13.1 Let G = (V, E) be a connected graph. Show that |E| ≥ |V | − 1.

Problem 13.2 Show that in every graph G = (V, E),∑
u∈V

degG(u) = 2|E| .

Problem 13.3 Let G = (V, E) be a graph. Show that dG : V ×V → R is a metric.

Problem 13.4 Let G = (V, E) be a graph and let n be the maximum degree of
any vertex in V . Show that when n > 1,

diam(G) ≥

⎧⎪⎪⎨⎪⎪⎩
1
2 (|V |−1) if n = 2

logn−1

(
(n−2)|V |+ 2

n

)
if n > 2

.

Hint: Show that when n > 2, the number of vertices at distance � or less from a
given vertex in G is bounded from above by

1 + n
�−1∑
i=0

(n−1)i =
n(n−1)� − 2

n− 2
.

Then claim that this bound must be at least |V | for � = diam(G).

Problem 13.5 Show that a graph G is bipartite if and only if it contains no cycles
of odd length.

Problems 427

Problem 13.6 Let G = (V, E) be a connected bipartite graph. Show that V can
be uniquely partitioned into subsets V ′ and V ′′ such that G = (V ′ : V ′′, E).

Problem 13.7 Let F be an alphabet of size q. The k-dimensional Hamming graph
over F is the graph Gk,q = (V, E), where V = F k and

E =
{
{u,u′} : d(u,u′) = 1

}
(with d(·, ·) standing for Hamming distance). Figure 13.2 depicts the three-
dimensional Hamming graph over F = {0, 1}.

1. Show that for every two vertices u,u′ ∈ F k,

dGk,q
(u,u′) = d(u,u′) .

2. Show that
diam(Gk,q) = k .

3. Show that for every vertex u ∈ F k,

degGk,q
(u) = k(q−1) .

4. Show that
|E| = 1

2kqk(q−1) .

5. Show that Gk,q is bipartite if and only if q = 2.

Problem 13.8 Show that for every graph G = (V, E) and every orientation on G,

L−
G = CT

�G C�G

and
L+
G = CT

G CG .

Problem 13.9 Let G = (V, E) be a connected graph. Show that the rank of the
incidence matrix CG of G is given by

rank(CG) =
{
|V | − 1 if G is bipartite
|V | otherwise .

Hint: A vector x = (xu)u∈V belongs to the right kernel of CG if and only if xu = −xv

for every {u, v} ∈ E. What is the dimension of this kernel?

Problem 13.10 Let G = (V ′ : V ′′, E) be a bipartite graph. Show that λ is an
eigenvalue of AG if and only if so is −λ and that both λ and −λ have the same
(algebraic and geometric) multiplicity. (The algebraic multiplicity of an eigenvalue
is its multiplicity as a root of the characteristic polynomial of the matrix, and the
geometric multiplicity is the dimension of the linear space that is formed by the
associated eigenvectors. In the case of a symmetric matrix, these two multiplicities
are equal.)

Hint: Let x be an eigenvector of AG associated with the eigenvalue λ. Consider the
vector x′ obtained by negating the entries in x that are indexed by V ′.

428 13. Graph Codes

Problem 13.11 Let A and B be matrices over a field F with orders m × n and
n×m, respectively.

1. Show that the sets of nonzero eigenvalues of AB and BA (in any extension
field of F) are the same, and every nonzero eigenvalue has the same geometric
multiplicity in both matrices.

Hint: Suppose that
ABx = λx

for λ �= 0 and x �= 0. By left-multiplying both sides of the equation by B,
deduce that Bx is an eigenvector of BA associated with the eigenvalue λ
(note that this requires also showing that Bx �= 0). Then verify that if x1

and x2 are two linearly independent eigenvectors of AB associated with the
same eigenvalue λ �= 0, then Bx1 and Bx2 are linearly independent as well.

2. Show that when B = AT , then part 1 holds also with respect to the algebraic
multiplicity.

Hint: AAT and AT A are symmetric.

(By using Jordan canonical forms, it can be shown that part 1 holds also with
respect to the algebraic multiplicity, even when B �= AT .)

Problem 13.12 Let A = (Ai,j) m
i=1

n
j=1 and B = (Bi,j) r

i=1
s

j=1 be matrices of orders
m × n and r × s, respectively, over a field F . Recall from Problem 2.21 that the
Kronecker product (or direct product) of A and B is defined as the mr×ns matrix
A⊗B whose entries are given by

(A⊗B)r(i−1)+i′,s(j−1)+j′ = Ai,jBi′,j′ , 1≤i≤m, 1≤j≤n, 1≤i′≤r, 1≤j′≤s .

1. Let A, B, C, and D be matrices over F such that the number of columns in
A (respectively, B) equals the number of rows in C (respectively, D). Show
that

(A⊗B)(C ⊗D) = (AC)⊗ (BD) .

2. Show that if A and B are nonsingular square matrices over F then so is A⊗B,
and

(A⊗B)−1 = A−1 ⊗B−1 .

3. Let A and B be square matrices over F that can be decomposed into the
diagonal forms

A = PΛP−1 and B = QMQ−1 ,

where Λ (respectively, M) is a diagonal matrix whose diagonal consists of the
eigenvalues of A (respectively, B), and P and Q are nonsingular matrices.
Show that

A⊗B = (P ⊗Q)(Λ⊗M)(P ⊗Q)−1 .

4. Show that the eigenvalues of the matrix A ⊗ B in part 3 are given by λμ,
where λ (respectively, μ) ranges over the eigenvalues of A (respectively, B).

(By using Jordan canonical forms, one can show that the characterization of the
eigenvalues of A⊗B in part 4 holds for any two square matrices A and B.)

Problems 429

Problem 13.13 Let G = (V, E) be a graph. Define the bipartite graph G′ = (U ′ :
U ′′, E′) by

U ′ = {u′ : u ∈ V } , U ′′ = {u′′ : u ∈ V } ,

and
E′ =

{
{u′, v′′} : {u, v} ∈ E

}
.

1. Show that

AG′ =
(

0 AG
AG 0

)
.

2. Show that the eigenvalues of AG′ are given by ±λ, where λ ranges over all
the eigenvalues of AG .

Hint: Apply part 4 of Problem 13.12 to the matrix(
0 1
1 0

)
⊗AG .

3. Under what conditions on G is the graph G′ connected?

[Section 13.2]

Problem 13.14 Let G be an n-regular graph (not necessarily connected) and let
λ1 ≥ λ2 ≥ · · · be the eigenvalues of AG .

1. Show that if G is not connected then λ1 = λ2 = n.

Hint: If G is not connected, then it consists of two isolated n-regular sub-
graphs, G′ and G′′. After re-ordering of vertices, the adjacency matrix of G
can be written in the block-diagonal form

AG =
(

AG′ 0
0 AG′′

)
.

2. Show that |λi| ≤ n for every eigenvalue λi of AG (whether G is connected or
not).

Problem 13.15 Let G = (V, E) be a graph with |E| > 0. The edge graph of G is
the graph Ĝ = (E, Ê), where

Ê =
{
{e, e′} : e, e′ ∈ E and |e ∩ e′| = 1

}
.

1. Show that
AĜ = CGCT

G − 2 · I ,

where CG is the |E|× |V | incidence matrix of G and I is the |E|× |E| identity
matrix.

2. Show that if G is n-regular then Ĝ is 2(n−1)-regular.

430 13. Graph Codes

3. Suppose that G is n-regular. Show that the eigenvalues of AĜ , other than −2,
are given by n + λ − 2, where λ ranges over all the eigenvalues of AG other
than −n. Furthermore, show that for every eigenvalue λ �= −n of AG , the
(algebraic and geometric) multiplicity of the eigenvalue n+λ−2 in AĜ is the
same as that of λ in AG .

Hint: Use Lemma 13.2 and Problem 13.11.

4. Let m be the multiplicity of the eigenvalue −n in AG , where m is defined to
be zero if −n is not an eigenvalue. Show that −2 is an eigenvalue of AĜ if and
only if |E| > |V | −m; furthermore, show that whenever −2 is an eigenvalue
of AĜ , its multiplicity is |E| − |V |+ m.

Problem 13.16 Let G = (V, E) be a connected graph with |V | > 1. Consider the
bipartite graph G̃ = (E : V, Ẽ), where

Ẽ =
{
{e, v} : e ∈ E and v ∈ e

}
.

1. Show that G̃ is connected.

2. Show that

AG̃ =

(
0 CG

CT
G 0

)
,

where CG is the |E| × |V | incidence matrix of G.

3. Show that

A2
G̃ =

(
CGCT

G 0
0 CT

G CG

)
.

4. Show that the (algebraic and geometric) multiplicity of the zero eigenvalue
in AG̃ equals {

|E| − |V |+ 2 if G is bipartite
|E| − |V | otherwise .

Hint: Use Problem 13.9.

5. Suppose that G is n-regular (as well as connected). Show that the nonzero
eigenvalues of AG̃ are given by ±

√
n + λ, where λ ranges over all the eigen-

values of AG other than −n. Furthermore, show that the multiplicity of each
nonzero eigenvalue ±

√
n + λ in AG̃ is the same as that of λ in AG .

Hint: Use Lemma 13.2 and Problems 13.10 and 13.11.

6. Let G be the graph in Figure 13.2. Verify that G̃ is given by the graph in
Figure 13.6. What is the rule for the naming of the vertices of E in that
figure?

Problem 13.17 Let G = (V ′ : V ′′, E) be a bipartite n-regular graph and let XG
be the |V ′| × |V ′′| transfer matrix of G (where |V ′| = |V ′′|).

Problems 431

111

110

101

100

011

010

001

000

V

11∗
1∗1
1∗0
10∗
∗11

∗10

∗01

∗00

01∗
0∗1
0∗0
00∗

E

Figure 13.6. Graph G̃ for Problem 13.16.

1. Show that

A2
G =

(
XGXT

G 0
0 XT

G XG

)
.

2. Show that the sum of entries along every row in each of the (symmetric) ma-
trices XGXT

G and XT
G XG equals n2. Deduce that n2 is the largest eigenvalue

of each of these matrices.

3. Show that γ2
Gn2 is the second largest eigenvalue of XGXT

G and of XT
G XG ,

whenever |V ′| > 1.

Hint: Use Problems 13.10 and 13.11.

[Section 13.3]
Problem 13.18 Let G = (V, E) be an n-regular graph and let χ : V → R be
a function on the vertices of G. Define the function ω : E → R for every edge
e = {u, v} in G by

ω(e) = χ(u)χ(v) .

Denote by EG{ω} the average of the values of the function ω over the edges of G,
namely,

EG{ω} =
2

n|V |
∑
e∈E

ω(e) .

(The notation EG{·} is interpreted here also as an expected value of a random vari-
able over the set of edges or the set of vertices of G. To this end, assume a uniform
distribution over the edges of G; this, in turn, induces a uniform distribution over
the vertices of G, if the selection of a vertex is carried out by first randomly selecting
an edge e with probability 2/(n|V |), and then choosing each of the endpoints of e
with probability 1

2 .)

432 13. Graph Codes

1. Show that

EG{ω} ≤ (1−γG) (EG{χ})2 + γGEG{χ2}
= (EG{χ})2 + γGVarG{χ} ,

where
EG{χ} =

1
|V |

∑
u∈V

χ(u) , EG{χ2} =
1
|V |

∑
u∈V

(χ(u))2 ,

and VarG{χ} is the variance of χ, namely,

VarG{χ} = EG{χ2} − (EG{χ})2 .

Hint: Define the column vector y = (yu)u∈V by

yu = χ(u)− EG{χ} , u ∈ V .

First verify that

〈y,1〉 = 0 and ‖y‖2 = VarG{χ} · |V | .

Then consider the column vector x = (χ(u))u∈V and observe that

EG{ω} =
〈x, AGx〉

n|V | .

Using the relationship x = y + EG{χ} · 1 and Lemma 13.6, show that

〈x, AGx〉 = 〈y, AGy〉+ (EG{χ})2 · n|V | ≤
(
γGVarG{χ}+ (EG{χ})2

)
· n|V | .

2. Derive Corollary 13.10 from part 1 by selecting, for a given subset S ⊆ V ,
the function χ to be

χ(u) =
{

1 if u ∈ S
0 otherwise .

Problem 13.19 Let G = (V ′ : V ′′, E) be a bipartite n-regular graph with |V ′| > 1
and let s = (su)u∈V ′ and t = (tu)u∈V ′′ be two column vectors in R|V ′|. Denote by
σ and τ the averages

σ =
1
|V ′|

∑
u∈V ′

su and τ =
1
|V ′|

∑
u∈V ′′

tu ,

and let the column vectors y and z in R|V ′| be defined by

y = s− σ · 1 and z = t− τ · 1 .

1. Show that
〈y, XGz〉 = 〈s, XGt〉 − στn|V ′| ,

where XG is the transfer matrix of G.

Hint: XG1 = XT
G 1 = n · 1.

Problems 433

2. Show that
‖XGz‖2 = 〈z, XT

G XGz〉 ≤ γ2
Gn2‖z‖2 .

Hint: Apply Lemma 13.6 to the matrix XT
G XG while making use of Prob-

lem 13.17.

3. Show that∣∣∣〈s, XGt〉 − στn|V ′|
∣∣∣ = |〈y, XGz〉| ≤ ‖y‖ · ‖XGz‖ ≤ γGn‖y‖·‖z‖ .

Hint: Use the Cauchy–Schwartz inequality.

4. Let the vector x ∈ R2|V ′| be defined by

x =
(

s
t

)
.

Show that
〈x, AGx〉 = 2〈s, XGt〉

and deduce that ∣∣∣〈x, AGx〉 − 2στn|V ′|
∣∣∣ ≤ 2γGn‖y‖·‖z‖ .

Problem 13.20 The purpose of this problem is to improve on Corollary 13.10 for
the case of bipartite regular graphs.

Let G = (V ′ : V ′′, E) be a bipartite n-regular graph with |V ′| > 1 and let
χ : (V ′∪V ′′) → R be a function on the vertices of G. Define the function ω : E → R

and the average EG{ω} as in Problem 13.18, namely,

ω(e) = χ(u)χ(v) for every edge e = {u, v} in G

and
EG{ω} =

1
n|V ′|

∑
e∈E

ω(e) .

1. Show that ∣∣EG{ω} − E′
G{χ}·E′′

G{χ}
∣∣ ≤ γG

√
Var′G{χ}·Var′′G{χ} ,

where

E′
G{χi} =

1
|V ′|

∑
u∈V ′

(χ(u))i , E′′
G{χi} =

1
|V ′′|

∑
u∈V ′′

(χ(u))i ,

Var′G{χ} = E′
G{χ2} −

(
E′
G{χ}

)2
, and Var′′G{χ} = E′′

G{χ2} −
(
E′′
G{χ}

)2
.

Hint: As in Problem 13.18, define the column vector x = (χ(u))u∈V ′∪V ′′ and
notice that

EG{ω} =
〈x, AGx〉
2n|V ′| .

Sub-divide x into the sub-vectors s = (χ(u))u∈V ′ and t = (χ(u))u∈V ′′ , and
apply part 4 of Problem 13.19.

434 13. Graph Codes

2. Let S ⊆ V ′ and T ⊆ V ′′ be subsets of sizes |S| = σ|V ′| and |T | = τ |V ′′|,
respectively. Show that∣∣∣∣ |ES,T |

n|V ′| − στ

∣∣∣∣ ≤ γG
√

σ(1−σ)τ(1−τ) ,

and obtain the following upper bound on the sum of degrees of the vertices
within the induced subgraph GS∪T :∑

u∈S∪T

degGS∪T
(u) = 2|ES,T | ≤ 2

(
στ + γG

√
σ(1−σ)τ(1−τ)

)
n|V ′| .

Hint: Select the function χ in part 1 to be

χ(u) =
{

1 if u ∈ S ∪ T
0 otherwise .

3. Deduce from part 2 the following upper bound on the average degree in GS∪T ,
whenever σ + τ > 0:

1
|S ∪ T |

∑
u∈S∪T

degGS∪T
(u) ≤

(
(1−γG)

2στ

σ+τ
+ γG ·

2
√

στ

σ+τ

)
n

≤
(

(1−γG)
2στ

σ+τ
+ γG

)
n .

Hint: √
στ +

√
(1−σ)(1−τ) ≤ 1 .

(It follows from part 2 that for every two subsets S ⊆ V ′ and T ⊆ V ′′, the fraction
of edges of G that belong to GS∪T is concentrated around στ : the smaller γG is, the
sharper the bound is on this concentration.)

Problem 13.21 Let G = (V ′ : V ′′, E) be a bipartite n-regular graph and let S be
a nonempty subset of V ′′ of size σ|V ′′|. The purpose of this problem is to obtain
the lower bound

|N (S)| ≥ |S|
(1−γ2

G)σ + γ2
G

.

Denote by s = (su)u∈V ′′ the vector

su =
{

1 if u ∈ S
0 if u ∈ V ′′ \ S

, u ∈ V ′′ .

1. Show that

|N (S)| ≥ n2|S|2
‖XGs‖2 ,

where XG is the |V ′| × |V ′′| transfer matrix of G.

Hint: Observing that N (S) is the support of the vector XGs, use the ∪-
convexity of the function z �→ z2 to argue that

‖XGs‖2
|N (S)| =

∑
u∈V ′(XGs)2u
|N (S)| ≥

(∑
u∈V ′(XGs)u

|N (S)|

)2

=
n2|S|2
|N (S)|2

(see Jensen’s inequality in the notes on Section 1.4).

Problems 435

2. Let y denote the vector s− σ · 1. Justify the following chain of equalities:

〈XGy, XG1〉 = 〈y, XT
G XG1〉 = n2〈y,1〉 = 0 .

3. Justify the following steps:

‖XGs‖2 = ‖XG(y + σ · 1)‖2

= ‖XGy‖2 + 2σ〈XGy, XG1〉+ σ2‖XG1‖2

= ‖XGy‖2 + σ2n2|V ′|
≤ γ2

Gσ(1−σ)n2|V ′|+ σ2n2|V ′|
=

(
(1−γ2

G)σ + γ2
G
)
n2|S| .

Hint: See part 2 of Problem 13.19.

4. Deduce from parts 1 and 3 that

|N (S)| ≥ |S|
(1−γ2

G)σ + γ2
G

.

(The latter inequality can alternatively be obtained by applying part 2 of Prob-
lem 13.20 to the set T = N (S), in which case |ES,T | = n|S|. A lower bound on
|N (S)| can be obtained also when S is a subset of V ′ ∪ V ′′ that is not wholly con-
tained in V ′′ (or V ′). To this end, partition S into the disjoint sets S ∩ V ′ and
S ∩ V ′′. The neighborhoods N (S ∩ V ′) and N (S ∩ V ′′) are also disjoint and, so,

|N (S)| = |N (S ∩ V ′)|+ |N (S ∩ V ′′)| .

Now apply part 4 to obtain lower bounds on |N (S ∩ V ′)| and |N (S ∩ V ′′)|.)

Problem 13.22 Let G = (V ′ : V ′′, E) be a bipartite n-regular graph and S be a
subset of V ′′. Denote σ = |S|/|V ′′| and JS(u) = |N (u) ∩ S|. The purpose of this
problem is to show that

1
|V ′|

∑
u∈V ′

(JS(u)− σn)2 ≤ γ2
Gn2σ(1−σ) .

1. Using the notation in Problem 13.21, justify the following chain of equalities:

(XGy)u = (XGs)u − σ · (XG1)u = |N (u) ∩ S| − σn = JS(u)− σn , u ∈ V .

2. Conclude from part 2 of Problem 13.19 that

1
|V ′|

∑
u∈V ′

(JS(u)− σn)2 =
‖XGy‖2
|V ′| ≤ γ2

Gn2σ(1−σ) .

(Note that for every subset S ⊆ V ′′ of size σ|V ′′|,
1
|V ′|

∑
u∈V ′

JS(u) = σn .

It follows from this problem that γ2
Gn2σ(1−σ) is an upper bound on the variance

of JS(u), when the latter is regarded as a random variable with u being uniformly
distributed over V ′.)

436 13. Graph Codes

Problem 13.23 Let G = (V, E) be a non-bipartite n-regular graph. Denote by
λ1 ≥ λ2 ≥ · · · the eigenvalues of AG and define

� =
1
n

max
2≤i≤|V |

|λi| .

Let S be a subset of V of size σ|V |. Show that

|N (S)| ≥ |S|
(1−�2)σ + �2

.

Hint: Apply the bound in part 4 of Problem 13.21 to the graph G′ obtained by the
construction in Problem 13.13.

Problem 13.24 Let G = (V, E) be a non-bipartite n-regular graph and S be a
subset of V . Denote σ = |S|/|V | and JS(u) = |N (u) ∩ S|. Show that

1
|V |

∑
u∈V

(JS(u)− σn)2 ≤ �2n2σ(1−σ) ,

where � is as in Problem 13.23.

Hint: See Problem 13.22.

[Section 13.4]
Problem 13.25 Let Hk be the 2k × 2k Sylvester-type Hadamard matrix. Show
that for every k ≥ 0,

Hk+1 =
(

1 1
1 −1

)
⊗Hk ,

where ⊗ stands for the Kronecker product of matrices (see Problem 13.12).

Problem 13.26 (Generalization of Proposition 13.13) Let F = GF(p) where p is
a prime and let B be a subset of F k \ {0} that is closed under negation, that is
u ∈ B =⇒ −u ∈ B. Denote by ω a root of order p of unity in the complex field C.
Show that the eigenvalues of the adjacency matrix of the Cayley graph G(F k, B)
are given by

λv =
∑
u∈B

ω〈u,v〉 =
∑
u∈B

cos
(

2π

p
〈u,v〉

)
, v ∈ F k ,

where π = 3.14159 · · · .
Hint: Consider the pk×pk matrix Hk,p whose rows and columns are indexed by F k

and
(Hk,p)u,v = ω〈u,v〉 , u,v ∈ F k .

Show that the column of Hk,p that is indexed by v is an eigenvector of AG(F k,B)

associated with the eigenvalue λv. Also, verify that the columns of Hk,p are lin-
early independent over C by computing the product of Hk,p with its conjugate
transpose H∗

k,p.

Problems 437

Problem 13.27 Let G be the graph in Figure 13.7.

1. Show that G is bipartite and compute its adjacency matrix AG .

2. Compute the eigenvalues of AG .

Hint: The eigenvalues can be found by direct inspection of the matrix AG .
Alternatively, verify that G is the Cayley graph G(F 3, B), where F = GF(2)
and B is the set of columns of the matrix

G =

⎛⎝ 1 0 0 1
0 1 0 1
0 0 1 1

⎞⎠ .

Then use Corollary 13.14.

000

010

100

110

001

011

101

111

Figure 13.7. Graph G for Problem 13.27.

Problem 13.28 Let Gk,2 be the Hamming graph over F = GF(2) as defined in
Problem 13.7. Compute the eigenvalues of AGk,2 .

Hint: Verify that Gk,2 can be represented as a Cayley graph G(F k, B), where B is
the set of columns of the k × k identity matrix over F . Then use Corollary 13.14.

Problem 13.29 (Generalization of Corollary 13.14) Let p be a prime and let C be
a linear [n, k, d] code over F = GF(p) whose dual code, C⊥, has minimum distance
d⊥ ≥ 3. Let B be the set of all the nonzero scalar multiples of the columns of a
given generator matrix of C.

1. Show that the Cayley graph G(F k, B) is a connected (p−1)n-regular graph.

2. Show that the eigenvalues of the adjacency matrix of G(F k, B) are given by

(p−1)n− p · w(c) , c ∈ C .

Hint: See Problem 13.26.

3. Show that

γG(F k,B) = 1− pd

(p−1)n
.

438 13. Graph Codes

Problem 13.30 Let F = GF(2) and let x�→ H2(x) be the binary entropy function.

1. Let δ be a real in the interval [0, 1
2) and R be a positive real smaller than

1 − H2(δ). Show that for sufficiently large integer n, there exists a linear
[n, k, d] code C over F such that k ≥ nR, d ≥ δn, the all-one word is a
codeword of C, and the minimum distance of C⊥ is at least 3.

Hint: Assume a uniform distribution over all k × n matrices over F whose
first row is all-one. Show that the probability that such a matrix has two
identical columns is at most

(
n
2

)
21−k, and proceed along the lines of the proof

of Theorem 4.5, while making use of Lemma 4.7.

2. Show that for ε ∈ (0, 1],

1− H2

(
1
2 (1−ε)

)
> 1

2 (log2 e) · ε2 ,

where e = 2.71828 · · · is the base of natural logarithms.

3. Fix ε to be a real in the interval (0, 1]. Show that for every sufficiently large
integer n there exists a bipartite n-regular Cayley graph G(F k, B) = (V,E)
such that |V | = 2k ≥ eε2n/2 and

γG(F k,B) ≤ ε .

4. Recall from Section 12.3 that the Zyablov bound for the binary field takes
the form

RZ(δ, 2) = max
θ∈[δ,

1
2]

(
1− H2(θ)

)(
1− δ

θ

)
, δ ∈ (0, 1

2) .

Show that for every ε ∈ (0, 1),

RZ

(
1
2 (1−ε), 2

)
> 2

27 (log2 e) · ε3 .

Hint: Substitute δ = 1
2 (1−ε) and θ = 1

2 −
1
3ε in (1− H2(θ))(1− (δ/θ)).

5. Show that by relaxing the lower bound on |V | in part 3 to e2ε3n/27, the set
B therein can be found in time complexity O(nc), where c depends on ε.

[Section 13.5]
Problem 13.31 Let q be a power of a prime and k be a positive integer.

1. Show that

|SLk(q)| = qk−1
k−2∏
i=0

(qk − qi) .

Hint: The number of k × k nonsingular matrices over GF(q) is equal to∏k−1
i=0 (qk − qi).

2. Show that

|PSLk(q)| = |SLk(q)|
gcd(k, q−1)

.

Problems 439

Problem 13.32 Let F = GF(q) such that q ≡ 1 (mod 4) and let ı be a root
of x2 + 1 = 0 in F . Fix α0, α1, α2, α3, and η to be elements in F such that
α2

0 + α2
1 + α2

2 + α2
3 = η2, and consider the 2× 2 matrix

M =
1
η

(
α0 + ıα1 α2 + ıα3

−α2 + ıα3 α0 − ıα1

)
over F .

1. Show that det(M) = 1.

2. Show that

M−1 =
1
η

(
α0 − ıα1 −α2 − ıα3

α2 − ıα3 α0 + ıα1

)
.

[Section 13.6]
Problem 13.33 Let G = (V,E) be a connected n-regular graph and C be the
[n, n−1, 2] parity code over F = GF(q).

1. Show that the |V | × |E| matrix CT
G , when viewed as a matrix over F , is a

parity-check matrix of the graph code (G, C).
2. Show that the dimension of (G, C) is given by{

|E| − |V |+ 1 if q is even or G is bipartite
|E| − |V | otherwise .

Hint: Characterize the left kernel of CT
G (i.e., the right kernel of CG) over F

(see also Problem 13.9).

Problem 13.34 Let F = GF(q) and let G = (V, E) be a non-bipartite n-regular
Ramanujan graph. For every vertex u ∈ V , assume an ordering on the set, N (u),
of neighbors of u. Write N = |V |, and for a word x = (xu)u∈V , let (x)N(u) be the
sub-word of x that is indexed by the n elements of N (u).

Denote by Φ the alphabet Fn and define the mapping ϕG : FN → ΦN by

ϕG(x) = ((x)N(u))u∈V , x ∈ FN ;

namely, the entry of ϕG(x) that is indexed by a vertex u equals the sub-word (x)N(u)

(in Φ).
Let C be a linear [N, K=rN, D=θN] code over F and define the code ϕG(C)

over Φ by
ϕG(C) = {ϕG(c) : c ∈ C} .

1. Show that ϕG(C) is a linear space over F .

2. Let the real δn be defined by

δn =
θn

θn + 4(1−θ)
.

Show that the relative minimum distance of ϕG(C) is greater than δn.

440 13. Graph Codes

Hint: First verify that the minimum distance of the code ϕG(C) equals the
minimum Hamming weight (over Φ) of any nonzero codeword of this code (a
codeword is nonzero if at least one of its coordinates is not the zero vector of
Φ). Then apply Problem 13.23 to the graph G, with S taken as the support
of a nonzero codeword c ∈ C.

3. Show that the rate Rn of ϕG(C) is related to δn by

Rn =
r

n
= κ ·

(
1
δn
− 1

)
,

where
κ =

rθ

4(1−θ)

(note that κ is a constant that depends on r and θ but not on n).

4. Recall from Problem 12.8 that the Zyablov bound satisfies

RZ(δ, qn) ≤ (1−
√

δ)2 .

Show that

Rn > (1−
√

δn)2 ≥ RZ(δn, qn) whenever δn >

(
1−κ

1+κ

)2

.

(It follows from this problem that the Zyablov bound can be exceeded by the
codes ϕG(C) for a certain range of alphabet sizes and relative minimum distances.
The code length N can be made arbitrarily large, by taking G as the LPS construc-
tion and C as the Justesen construction of Section 12.4.)

[Section 13.7]
Problem 13.35 Let C = (G, C) be a linear [N, K, D] graph code over F = GF(q),
where G = (V, E) is an (n, ξ>0)-expander with |E| = n|V |/2 = N and C is a
linear [n, k=rn, d=θn>1] code over F . A codeword c ∈ C is transmitted through
an additive channel (F, F, Prob) and a word y ∈ FN is received, where hereafter
the entries of words in FN are indexed by the elements of E. The purpose of this
problem is to bound from below the fraction, ζ = ζC(y, c), of vertices u ∈ V for
which (y)E(u) �∈ C, by an expression that is a function of d(y, c) and the parameters
of C.

(As an application of such a lower bound, consider an error-detection algorithm
that performs t statistically independent trials, where each trial consists of selecting
a vertex u ∈ V uniformly at random and testing whether (y)E(u) ∈ C. The com-
plexity of each such test depends on the parameters of C, yet not on N , and the
probability of misdetecting an error event after t statistically independent trials is
(1− ζ)t.)

Denote by Y ⊆ E the support of the error word y − c, let S be the set of all
vertices in G that are endpoints of edges in Y , and let T be the following subset
of S:

T = {u ∈ S : (y)E(u) ∈ C} .

Problems 441

Define the quantities w, σ, and τ by

w =
d(y, c)

N
, σ =

|S|
|V | , and τ =

|T |
|V | ,

respectively. Note that ζ = σ − τ .

1. Show that
w ≤ σ · (ξ · σ + 1− ξ) .

Hint: Justify the following chain of equalities and inequalities:

wn

σ
=

2 d(y, c)
σ|V | =

2|Y |
|S| ≤

2|ES,S |
|S| ≤ (ξ · σ + 1− ξ)n .

2. Show that
w ≥ θ · τ +

1
n

(σ − τ) .

Hint: Argue that the degree of each vertex of T in the subgraph (S, Y) of
G is at least d = θn, while the degree of each of the other vertices in that
subgraph is at least 1; so,

2|Y | ≥ d|T |+ |S|−|T | .

3. Deduce from parts 1 and 2 that ζ can be bounded from below by

ζ = σ − τ ≥ 1
1− (1/d)

(
Δ +

√
ξ−1w + Δ2 − θ−1w

)
,

where Δ = 1
2 (1−ξ−1). (Note that when (θn =) d →∞ and ξ → 1, this lower

bound becomes
√

w − (w/θ).)

4. Show that the lower bound in part 3 takes its maximum value when

w =
θ2 − (1− ξ)2

4ξ
,

and that it is strictly positive whenever

0 < w <
θ(θ + ξ − 1)

ξ

(compare with Proposition 13.19).

[Section 13.8]
Problem 13.36 Let F = GF(q) and define the code C = (G, C′ : C′′) by (13.17),
where G = (V ′ : V ′′, E) is a bipartite n-regular graph, C′ is a linear [n, k=rn, θn]
code over F , and C′′ is a (second) linear [n,Rn, δn] code over F . Let Φ denote the
alphabet F k, and define the code CΦ over Φ by (13.18).

1. Show that CΦ is a linear space over F .

442 13. Graph Codes

2. Show that the rate of CΦ is bounded from below by

1− 1
r

+
R

r

and, so, that rate approaches R when r → 1.

3. Show that the relative minimum distance of CΦ is bounded from below by

δ − γG
√

δ/θ

1− γG

and, so, it approaches δ when γG/
√

θ → 0.

Hint: Verify first that the minimum distance of CΦ equals the minimum
Hamming weight (over Φ) of any nonzero codeword of CΦ. Then follow the
steps of the proof of Proposition 13.19, with the set S therein taken as the
union S ∪ T , where S ⊆ V ′ and T ⊆ V ′′. Letting σ = |S|/|V ′| and τ =
|T |/|V ′′|, replace (13.11) by the inequality

|Y | ≥ max {θ · σ, δ · τ} · n|V ′|

and, using Lemma 13.20, bound |Y | from above by

|Y | ≤
(
(1−γG)στ + γG

√
στ
)
n|V ′| .

Finally, combine these two bounds on |Y | by distinguishing between the fol-
lowing two cases: (i) σ/τ ≤ δ/θ and (ii) σ/τ ≥ δ/θ.

Problem 13.37 Let CΦ be the code in Problem 13.36, where
√

θδ > 2γG > 0, and
fix σ to be a positive real such that

σ < β =
(δ/2)− γG

√
δ/θ

1− γG
.

The purpose of this problem is to show that the decoder in Figure 13.5 recovers
correctly any error word in Φ|V ′| with at most σ|V ′| errors (and no erasures).

Let ψE(c) be the transmitted codeword where c = (ce)e∈E is in C, and let
y = (yu)u∈V ′ be the received word (over Φ) to which the algorithm in Figure 13.5
is applied. For i = 2, 3, . . . , ν, denote by zi = (zi,e)e∈E and Ui the values of the
word z and the set U , respectively, at the end of iteration i in Step 2 in Figure 13.5;
extend this notation also to i = 1 by letting U1 be V ′ and z1 be the value of z at
the end of Step 1. Define the sets S1, S2, . . . , Sν by (13.14); namely, Si consists of
all vertices u ∈ Ui such that (zi)E(u) �= (c)E(u); in particular, S1 stands for the set of
error locations. Denote by σi the ratio |Si|/|V ′| and assume that σ1 ≤ σ. Let � be
the smallest positive integer (possibly ∞) such that σ� = 0.

1. Show that

√
σi−1

σi
≥

⎧⎪⎪⎨⎪⎪⎩
δ

2γG
− 1−γG

γG
σi−1 for even 0 < i < �

θ

2γG
− 1−γG

γG
σi−1 for odd 1 < i < �

.

Hint: See how Equation (13.16) is derived.

Problems 443

2. Show by induction on i that

σi−1

σi
≥

⎧⎨⎩ δ/θ for even 0 < i < �

θ/δ for odd 1 < i < �
.

3. Show that

1√
σi
≥

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1√
σ

for i = 1

δ/(2γG)
√

σi−1
− (1−γG)

√
σ

γG
for even 0 < i < �

θ/(2γG)
√

σi−1
− (1−γG)

√
σ2

γG
for odd 1 < i < �

.

4. Show that for even 0 < i < �,

2γG/θ
√

σi+1
+

2(1−γG)
√

σ2

θ
≥ 1√

σi
≥ δ/(2γG)
√

σi−1
− (1−γG)

√
σ

γG
.

5. Verify that for even 0 < i < �,

1
√

σi+1
≥

θδ/(4γ2
G)

√
σi−1

− 1−γG
γG

(
θ
√

σ

2γG
+
√

σ2

)
≥

θδ/(4γ2
G)

√
σi−1

− 1−γG
γG

(
θ

2γG
+

√
θ

δ

)
√

σ

=
θδ

4γ2
G

(
1

√
σi−1

−
√

σ

β

)
+
√

σ

β
.

6. By solving the linear recurrence in 1/√σi+1, conclude that for even 0 ≤ i <
�−1,

1
√

σi+1
≥
((

1− σ

β

)
·
(θδ

4γ2
G

)i/2

+
σ

β

)
1√
σ

.

7. Show that when the number ν in Figure 13.5 equals (13.20), then the return
value of the decoder in Figure 13.5 is the correct codeword ψE(c).

Problem 13.38 Let G = (V ′ : V ′′, E) be a bipartite n-regular graph and let
χ : (V ′ ∪ V ′′) → [0, 1] be a function on the vertices of G. Write

σ =
1
|V ′|

∑
u∈V ′

χ(u) and τ =
1
|V ′′|

∑
u∈V ′′

χ(u) .

1. Show that

1
n|V ′|

∑
χ(u)χ(v) ≤ στ + γG

√
σ(1−σ)τ(1−τ)

≤ (1−γG)στ + γG
√

στ ,

444 13. Graph Codes

where the summation is taken over all ordered pairs (u, v) ∈ V ′ × V ′′ such
that {u, v} ∈ E.

Hint: Using the notation of Problem 13.20, show that when the images of χ
are in [0, 1], then

Var′G{χ} ≤ σ(1−σ) and Var′′G{χ} ≤ τ(1−τ) .

2. Suppose that the restriction of χ to V ′′ is not identically zero and that γG > 0,
and let δ be a real number for which the following condition is satisfied for
every u ∈ V ′′:

χ(u) > 0 =⇒
∑

v∈N (u)

χ(v) ≥ δn

2
.

Show that √
σ

τ
≥ (δ/2)− (1−γG)σ

γG
.

Hint: Follow the proof of Lemma 13.21.

Problem 13.39 Let CΦ be the code in Problem 13.36, where
√

θδ > 2γG > 0, and
fix σ to be a positive real such that

σ < β =
(δ/2)− γG

√
δ/θ

1− γG
.

Show that the decoder in Figure 13.5 recovers correctly any pattern that consists
of t errors (over Φ) and ρ erasures, provided that

t +
ρ

2
≤ σ|V ′| .

Hint: For i ≥ 2, let Ui be the value of the set U at the end of iteration i in
Figure 13.5, and let Si be the set of all vertices u ∈ Ui such that (z)E(u) is in error
at the end of that iteration. Let χ1 : (V ′ ∪ V ′′) → {0, 1

2 , 1} be the function

χ1(u) =

⎧⎨⎩
1 if u ∈ V ′ and yu is in error
1
2 if u ∈ V ′ and yu is an erasure
0 otherwise

and, for i ≥ 2, define the function χi : (V ′ ∪ V ′′) → {0, 1
2 , 1} recursively by

χi(u) =

⎧⎨⎩
1 if u ∈ Si

0 if u ∈ Ui \ Si

χi−1(u) if u ∈ Ui−1

,

where U1 = V ′. Denoting σi = (1/|V ′|)
∑

u∈Ui
χi(u), first show that

σ1|V ′| = t +
ρ

2
.

Then, using part 2 of Problem 13.38, derive the inequalities in part 1 of Prob-
lem 13.37.

Notes 445

Notes

[Section 13.1]

There are quite a few textbooks on graph theory and related topics; see, for example,
Bollobás [60], Brualdi and Ryser [67], Diestel [104], and West [385].

The following generalization of the notion of graphs will be used below.
A hyper-graph is a pair (V, E), where V is a nonempty finite set of vertices and E

is a (possibly empty) set of hyper-edges, where by a hyper-edge we mean a nonempty
subset of V of size at least 2 (see Berge [33]). A hyper-graph is t-uniform if each
hyper-edge contains t vertices. Thus, an ordinary graph is a 2-uniform hyper-graph.
A hyper-graph is called n-regular if each vertex is contained in n hyper-edges.

[Section 13.2]

Proposition 13.4 is, in effect, a special case of the Perron–Frobenius Theorem, which
we quote next.

A real matrix is called nonnegative if all of its entries are nonnegative. A
nonnegative real square matrix A is called irreducible if for every row index u and
column index v there exists a nonnegative integer �u,v such that (A�u,v)u,v > 0 (note
that we do not assume symmetry). The 1× 1 matrix A = (0) is referred to as the
trivial irreducible matrix.

Thus, for every graph G, the adjacency matrix AG is irreducible if and only if
G is connected.

Given a nontrivial irreducible matrix A, its period is defined by

p(A) = gcd
{
� ∈ Z+ : (A�)u,u > 0 for at least one index u

}
.

If the period equals 1 then the matrix is said to be aperiodic or primitive.
In particular, if G is a connected graph with more than one vertex, then the diag-

onal entries of A�
G are nonzero for every even �; so, p(AG) | 2. Thus, by Lemma 13.1,

p(AG) =
{

2 if G is bipartite
1 otherwise .

Theorem 13.26 (Perron–Frobenius Theorem for irreducible matrices) Let A
be a nontrivial irreducible matrix. There exists an eigenvalue λ of A such that the
following conditions hold:

1. λ is real and λ > 0.

2. There are right and left eigenvectors associated with λ that are strictly posi-
tive; that is, each of their components is strictly positive.

3. λ ≥ |μ| for any other eigenvalue μ of A.

4. The algebraic (and geometric) multiplicity of λ is 1.

5. There are exactly p(A) eigenvalues μ of A for which |μ| = λ: those eigenvalues
have the form λωi, where ω is a complex root of order p(A) of unity, and each
of those eigenvalues has algebraic multiplicity 1.

446 13. Graph Codes

The proof of Theorem 13.26 can be found in Gantmacher [141, Chapter 13],
Minc [263, Chapter 1], Seneta [328, Chapter 1], or Varga [371, Chapter 2].

The eigenvalue λ in Theorem 13.26 is sometimes called the Perron eigenvalue of
the irreducible matrix A, and is denoted here by λ(A) (if A is the trivial irreducible
matrix define λ(A) = 0).

One consequence of Theorem 13.26 is the following result.

Proposition 13.27 Let A = (au,v)u,v be an irreducible matrix. Then,

min
u

∑
v

au,v ≤ λ(A) ≤ max
u

∑
v

au,v ,

where equality in one side implies equality in the other.

Proof. Let (yv)v be a strictly positive left eigenvector associated with λ(A).
Then

∑
u yuau,v = λ(A)yv for every index v. Summing over v, we obtain,∑

u

yu

∑
v

au,v = λ(A)
∑

v

yv

or

λ(A) =
∑

u yu

∑
v au,v∑

v yv
.

That is, λ(A) is a weighted average (over u) of the values
∑

v au,v.

As a special case of the last proposition we get that if A is the adjacency matrix
of a connected n-regular graph, then λ(A) = n.

When a nonnegative square matrix A is not irreducible (i.e., when A is re-
ducible), then, by applying a permutation matrix P to its rows and to its columns,
one can reach a block-triangular form

P−1AP =

⎛⎜⎜⎜⎜⎜⎜⎝

A1 B1,2 B1,3 · · · B1,k

A2 B2,3 · · · B2,k

A3
. . .

...

0 . . . Bk−1,k

Ak

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where A1, A2, . . . , Ak are irreducible. Theorem 13.26 applies to each nontrivial
block Ai, and the set of eigenvalues of A is the union of the sets of eigenvalues of
the blocks Ai. Thus, λ(A) = maxi λ(Ai) is an eigenvalue of A, and |μ| ≤ λ(A) for
every eigenvalue μ of A.

[Section 13.3]
The relationship between graph expansion and the second largest eigenvalue was
found independently by Alon and Milman [13], [14] and by Tanner [357]; see also
Alon [8], [9], Alon and Spencer [16, Section 9.2], and West [385, Section 8.6].

Theorem 13.7 and Corollary 13.10 are from Alon and Milman [13] and Alon and
Chung [11], respectively. Theorem 13.12 is reported by Alon in [8], and a proof of

Notes 447

Equation (13.9) can be found in [271]. A simplified version of that proof was given
here to yield Proposition 13.11.

Problem 13.20 is a modification of Corollary 9.2.5 in Alon and Spencer [16].
Problem 13.21 is from Tanner [357], and Problems 13.22 and 13.24 are from Alon
et al. [10] and Alon and Spencer [16, Theorem 9.2.4].

[Section 13.4]
The columns of a Sylvester-type Hadamard matrix Hk—and, more generally, the
columns of the matrix Hk,p in Problem 13.26—contain the values of an (additive)
character of (GF(p))k (or, rather, of GF(pk)); see Problem 3.36. As pointed out in
the notes on Section 3.6, the notion of characters can be generalized to every finite
Abelian group Q: a nonzero mapping χ : Q→ C is a character of Q if

χ(α + β) = χ(α)χ(β) for every α, β ∈ Q .

Accordingly, Proposition 13.13 and Problem 13.26 can be generalized to Cayley
graphs G(Q,B) for every finite Abelian group Q; namely, the eigenvalues of AG(Q,B)

are given by
λχ =

∑
α∈B

χ(α) ,

where χ ranges over all characters of Q (see Babai [26] and Lovász [239]).
Corollary 13.14 is taken from Alon and Roichman [15].
The analysis in Problem 13.30 yields for fixed (small) ε ∈ (0, 1] a polynomial-

time construction of a sequence of linear [n, k, d] codes C over F = GF(2) with the
following properties: the code dimension k is proportional to εmn for some positive
constant m, the all-one word is a codeword of C, and d ≥ 1

2 (1−ε)n (the columns of
the generator matrix of C then form the set B in part 5 of Problem 13.30). It follows
from the properties of C that this code has a linear [n, k−1] sub-code in which every
nonzero codeword has Hamming weight within the range 1

2 (1±ε)n. In addition to
obtaining expanders, codes with these properties have other applications as well;
see Naor and Naor [267].

[Section 13.5]
The construction of Ramanujan graphs due to Lubotzky et al. and Margulis is
from [240] and [252], where a proof of Theorem 13.17 can be found.

For a proof of Theorem 13.15, see Hardy and Wright [171, Sections 20.11
and 20.12].

We summarize next several properties of quadratic residues (some of these prop-
erties were already covered in Problems 3.23 and 3.26).

Let q be an odd prime and a be an integer. Recall from Problem 3.26 that the
Legendre symbol of a modulo q is defined by

(
a
q

)
=

⎧⎨⎩
1 if a is a quadratic residue modulo q
0 if q | a

−1 otherwise
.

The proof of the following two lemmas is given as an exercise (parts 1 and 2 of
Problem 3.26).

448 13. Graph Codes

Lemma 13.28 Let q be an odd prime and let a and b be integers. Then(
ab
q

)
=
(
a
q

)
·
(
b
q

)
.

Lemma 13.29 (Euler’s criterion) Let q be an odd prime and a be an integer
not divisible by q. Then, (

a
q

)
≡ a(q−1)/2 (mod q) .

Corollary 13.30 For every odd prime q,(−1
q

)
= (−1)(q−1)/2 =

{
1 q ≡ 1 (mod 4)

−1 otherwise .

(See also part 4 of Problem 3.23.)
Let F = GF(q) where q is an odd prime, and recall the following definitions

from Chapter 10. An element α ∈ F is called “negative” if α belongs to the set{
1
2 (q+1), 1

2 (q+3), . . . , q−1
}
. For an element α ∈ F , denote by 〈α〉 the smallest

nonnegative integer such that α = 〈α〉 · 1. The Lee weight of an element α ∈ F ,
denoted as |α|, takes nonnegative integer values and is defined by

|α| =
{
〈α〉 if α is nonnegative
q − 〈α〉 otherwise .

Also recall that for an integer a, the notation a stands for the element in GF(q)
such that a = a · 1.

Lemma 13.31 (Gauss’ criterion) Let q be an odd prime and a be an integer
not divisible by q. Denote by μ the number of negative elements within the following
subset {

m · a : m = 1, 2, . . . , 1
2 (q−1)

}
of GF(q). Then (

a
q

)
= (−1)μ .

Proof. Let F = GF(q) and for m = 1, 2, . . . , 1
2 (q−1), denote by αm the element

m · a. It is easy to see that αm �= ±αm′ for any two distinct integers m and m′

in the range 1 ≤ m,m′ ≤ 1
2 (q−1) and, hence, |αm| �= |αm′ |. This means that for

m = 1, 2, . . . , 1
2 (q−1), the value |αm| ranges over the whole set

{
1, 2, . . . , 1

2 (q−1)
}
.

Letting F− denote the negative elements of F , we obtain(
1
2 (q−1)

)
! · (a)(q−1)/2

=
(q−1)/2∏

m=1

αm =
(∏

m:
αm∈F−

(−|αm|)
)(∏

m:
αm �∈F−

|αm|
)

= (−1)μ

(q−1)/2∏
m=1

|αm|︸ ︷︷ ︸
(1

2 (q−1))!

.

The result now follows from Lemma 13.29.

Notes 449

Corollary 13.32 For every odd prime q,(2
q

)
= (−1)(q

2−1)/8 =
{

1 q ≡ ±1 (mod 8)
−1 otherwise .

Proof. For 1 ≤ m ≤ 1
2 (q−1), the element 2m is negative if and only if 1

4 (q−1) <
m ≤ 1

2 (q−1). Using the notation of Lemma 13.31, we have μ = 1
2 (q−1)−� 1

4 (q−1),
and a simple check reveals that μ is even if and only if q ≡ ±1 (mod 8).

Theorem 13.33 (Law of Quadratic Reciprocity) For any distinct odd primes
p and q, (

p
q

)
·
(
q
p

)
= (−1)(p−1)(q−1)/4 .

The proof, which makes use of Lemma 13.31, can be found in Hardy and
Wright [171, Sections 6.11–6.13]. See also Ireland and Rosen [195, Chapter 5].

We mentioned in Section 13.5 the Prime Number Theorem for arithmetic pro-
gressions. We next quote this theorem; for a proof, see Davenport [90] or Hux-
ley [190, Chapter 17].

Theorem 13.34 Let a and b be integers such that a > 0 and gcd(a, b) = 1 and
denote by πa,b(x) the size of the set

{p ≤ x : p prime, p ≡ b (mod a)} .

Then,

lim
x→∞

πa,b(x)
Li(x)

=
1

φ(a)
,

where

Li(x) =
∫ x

2

dt

ln t

and φ(·) is the Euler function.

[Section 13.6]

Graph codes were first introduced by Tanner [356]. In Tanner’s description of a
graph code (G, C), the n-regular graph G = (V,E) is represented by the respective
bipartite form G̃ defined in Problem 13.16 and seen in the example in Figure 13.6.
Thus, in the graph G̃, the vertices to the left (the set E) stand for the coordinates in
a codeword and are commonly referred to as message nodes or variable nodes; the
vertices to the right (the set V) represent the code constraints and are commonly
called check nodes.

The construction proposed by Tanner was more general, allowing G to be a
uniform regular hyper-graph rather than an (ordinary) regular graph (see the notes
on Section 13.1). Specifically, Tanner’s construction is defined through a t-uniform
n-regular hyper-graph G = (V, E) and a code C of length n over an alphabet F .
As was the case with ordinary graphs, we denote by E(u) the set of hyper-edges

450 13. Graph Codes

incident with u ∈ V and assume some ordering on E(u). The hyper-graph code
C = (G, C) is defined by

C =
{
c ∈ FN : (c)E(u) ∈ C for every u ∈ V

}
,

where N = |E| = n|V |/t. When shifting to a bipartite representation akin to that
in Problem 13.16, each of the N variable nodes has degree n while each of the |V |
check nodes now has degree t. It can be easily seen that if C is taken as a linear
[n, rn, d] code over F = GF(q), then the rate R of C satisfies

R ≥ 1− (1− r)t

(Proposition 13.18 is a special case of this bound for t = 2).
As noted by Tanner, one possible generalization of hyper-graph codes is allow-

ing them to have a different code Cu (instead of the same code C) for each vertex
u ∈ V , and we in fact consider an instance of such a generalization in Section 13.8.
When G = (V, E) is a t-uniform n-regular hyper-graph and the codes Cu are taken
to be linear [n, n−1, 2] codes over F = GF(q) (e.g., the parity code), the result-
ing construction is called a (t, n)-doubly-regular low-density parity-check (in short,
LDPC) code (see Problem 13.33). Such a code has a parity-check matrix in which
each column has Hamming weight t and each row has Hamming weight n; the code
rate is then bounded from below by 1 − (|V |/|E|) = 1 − (t/n). When only the
columns (respectively, rows) of the parity-check matrix are constrained to have a
given Hamming weight w, the LDPC code is said to be left (respectively, right)
w-regular.

The notion of LDPC codes was introduced by Gallager [138], [139]. In partic-
ular, he showed that doubly-regular LDPC codes over GF(q) attain the Gilbert–
Varshamov bound: given positive reals δ < 1 − (1/q) and R < 1 − Hq(δ), for
every sufficiently large n there exists an infinite family of (t=�n(1−R)�, n)-doubly-
regular LDPC codes over GF(q) with relative minimum distance at least δ. Litsyn
and Shevelev [235] analyzed the asymptotic average weight distribution of (left,
right, and doubly) regular LDPC codes over GF(2). When their results are incor-
porated into Gallager’s analysis in [139], one gets that doubly-regular LDPC codes
attain the capacity of the binary symmetric channel: given a crossover probability
p ∈ [0, 1

2), for every fixed positive R < 1−H2(p) and sufficiently large n there exists
an infinite family of (t=�n(1−R)�, n)-doubly-regular LDPC codes over GF(2) such
that the decoding error probability of a nearest-codeword decoder goes to zero as
the code length increases (similar results, for related families of codes, were ob-
tained by MacKay [245] and Miller and Burshtein [261]). On the other hand, it
was demonstrated by Gallager that if we fix the right degree n, the rate of any
right n-regular LDPC code over GF(2) must be (below and) bounded away from
1−H2(p) in order to guarantee a decoding error probability that vanishes with the
code length; see also Burshtein et al. [69] and Sason and Urbanke [318].

Proposition 13.19 is a slight improvement on a result originally obtained by
Sipser and Spielman in [340].

Problem 13.34, which presents another way of constructing codes based on
expanders, is due to Alon et al. [10]. More references to work on expander-based
constructions of codes are mentioned in the notes on Section 13.8 below.

Notes 451

[Section 13.7]
The iterative decoder of Figure 13.3 was first analyzed by Sipser and Spielman
in [340]. Their analysis applied also to non-bipartite graphs, but their guaranteed
number of correctable errors was approximately 12 times smaller than what one
gets from Proposition 13.23. The presentation here follows along the lines of Zémor
in [394].

[Section 13.8]
The results in this section are based mostly on the work of Barg and Zémor [29],
[30] and Skachek and Roth [308], [342].

Expanders and graph codes were used as building blocks by Spielman in [343]
to obtain the first known construction of codes which can be decoded and en-
coded in linear time, where both the code rate and the fraction of allowable erro-
neous entries are bounded away from zero. Guruswami and Indyk then constructed
in [165]–[167] linear-time encodable and decodable codes that approach the Single-
ton bound. Their codes are based on a combination of Spielman codes with two
generalized graph codes, (G1, C′1, C′′1) at rate 1−ε (for small ε > 0) and (G2, C′2, C′′2) at
the designed rate R. The codes C′′1 and C′′2 are selected to be the whole space, thus
allowing linear-time encoding of the two graph codes. The resulting construction
has relative minimum distance at least 1−R−ε and alphabet size 2O((log(1/ε))/(ε4R)).
Roth and Skachek have suggested in [308] an improved linear-time encodable and
decodable construction, where the alphabet size is reduced to the expression (13.19)
in Example 13.7. See also Alon and Luby [12].

Starting with the work of Gallager [138], [139], the iterative decoding methods
that have been mostly studied in relation to LDPC codes go under the collective
name message-passing algorithm (in short, MPA). We will not discuss this algorithm
here, except for citing several references. Richardson and Urbanke [294] analyzed
the performance of the MPA on the ensemble of doubly-regular LDPC codes over
the binary symmetric channel with crossover probability p. They showed that there
exists a threshold (called the “LDPC MPA capacity”), which depends on p and
is smaller than the channel capacity 1 − H2(p), such that for a random LDPC
code of length N over GF(2) at rate smaller than that threshold, the MPA reduces
the number of errors below εN for any prescribed ε > 0 (the error reduction has
a probability of failure that decreases exponentially with N , and the number of
iterations of the algorithm depends on p and ε). Luby et al. [241] and Richardson
et al. [293] then showed that higher rates can be attained if the LDPC codes are
not regular. Further analysis on the performance of the MPA, for both regular and
non-regular LDPC codes, was done by Burshtein and Miller [71].

Luby et al. [241] used graph codes as auxiliary codes in an LDPC construction
to take care of the final “clean-up” of residual errors left by the iterative decoder for
the LDPC code (Burshtein and Miller showed in [70] that, in fact, it is unnecessary
to insert an auxiliary graph code, since the primary LDPC code turns out to induce
sufficient graph expansion for handling the residual errors).

Chapter 14

Trellis and Convolutional Codes

In Chapter 1, we introduced the concept of a block code with a certain
application in mind: the codewords in the code serve as the set of images of
the channel encoder. The encoder maps a message into a codeword which,
in turn, is transmitted through the channel, and the receiver then decodes
that message (possibly incorrectly) from the word that is read at the output
of the channel. In this model, the encoding of a message is independent of
any previous or future transmissions—and so is the decoding.

In this chapter, we consider a more general coding model, where the en-
coding and the decoding are context-dependent. The encoder may now be
in one of finitely many states, which contain information about the history
of the transmission. Such a finite-state encoder still maps messages to code-
words, yet the mapping depends on the state which the encoder is currently
in, and that state is updated during each message transmission. Finite-state
encoders will be specified through directed graphs, where the vertices stand
for the states and the edges define the allowed transitions between states.
The mapping from messages to codewords will be determined by the edge
names and by labels that we assign to the edges.

The chapter is organized as follows. We first review several concepts from
the theory of directed graphs. We then introduce the notion of trellis codes,
which can be viewed as the state-dependent counterpart of block codes: the
elements of a trellis code form the set of images of a finite-state encoder. We
next turn to describing how trellis codes can be encoded and decoded. In
particular, given an encoder for a trellis code, we present an algorithm for
implementing a maximum-likelihood decoder for such an encoder.

The remaining part of the chapter is devoted to convolutional codes,
which play the role of linear codes among trellis codes. Convolutional codes
are defined through a special class of labeled directed graphs, referred to as
linear finite-state machines. We present methods for constructing encoders
for convolutional codes and then develop tools for analyzing the decoding

452

14.1. Labeled directed graphs 453

error probability (per message) of maximum-likelihood decoders for these
encoders.

14.1 Labeled directed graphs

A labeled directed finite graph (in short, a labeled digraph) is a quintuple
G = (V, E, ι, τ, L), where V is a nonempty finite set of states and E is a
(possibly empty) finite set of edges, with the following three functions that
are defined on E,

ι : E → V , τ : E → V , and L : E → Σ ,

for some finite alphabet Σ. For each edge e ∈ E, we call ι(e), τ(e), and L(e)
the initial state, terminal state, and label, respectively, of e. A self-loop is
an edge e ∈ E for which ι(e) = τ(e), and two edges e, e′ ∈ E are parallel if
ι(e) = ι(e′) and τ(e) = τ(e′). Unlike our definition of (unlabeled) undirected
graphs in Section 13.1, we allow both self-loops and parallel edges in labeled
digraphs; still, in all circumstances that we will be interested in, parallel
edges will never carry the same label. We will sometimes denote an edge e
with initial state s, terminal state s̃, and label c by

s
c−→ s̃ .

For the sake of simplicity, we will abbreviate the notation (V, E, ι, τ, L)
into just a triple (V, E, L).

Example 14.1 Figure 14.1 shows a labeled digraph G with a set of
states

V = {α, β, γ, δ}
and eight edges, out of which two are self-loops. The labels, taking values
in the alphabet Σ = {a, b, c, d}, are written next to the edges.

Borrowing similar terms from undirected graphs, we say that a labeled
digraph G′ = (V ′, E′, L′) is a subgraph of G = (V,E, L) if V ′ ⊆ V and
E′ ⊆ E (with the initial and terminal states of each edge in G′ being the
same as in G), and L′ is the restriction of L to the domain E′. Given a
nonempty subset V ′ of V , the induced subgraph of G on V ′ is the subgraph
(V ′, E′, L′) of G where

E′ =
{
e ∈ E : ι(e), τ(e) ∈ V ′} .

A path of length � > 0 in a labeled digraph G = (V, E, L) is a sequence
of � edges

π = e0e1 . . . e�−1 ,

454 14. Trellis and Convolutional Codes

δ

α

β γ

�
a

�
d

	
a

�
d

�

b

� c

�

c

�
b

Figure 14.1. Labeled digraph G for Example 14.1.

where ι(et+1) = τ(et) for 0 ≤ t < �−1. The states s = ι(e0) and s̃ = τ(e�−1)
are called the initial and terminal states, respectively, of the path π, and
will be denoted by ι(π) and τ(π); we then say that the path is from state s
to state s̃. We formally define zero-length paths as consisting of one state
and no edges (the only state in the path then serves as both the initial state
and the terminal state of that path). We will also use the notion of infinite
paths where � =∞ (in which case the terminal state is undefined). A finite
path π is called a cycle if ι(π) = τ(π). Clearly, G contains an infinite path
if and only if it contains a cycle.

For each (possibly infinite) path π = e0e1 . . . e�−1 in G, we can associate
the word

L(π) = L(e0)L(e1) . . . L(e�−1)

of length � over Σ; we will say that the path π generates the word L(π). For
example, the cycle

α
a−→ α

b−→ γ
d−→ β

b−→ α

in Figure 14.1 generates the word abdb.

14.1.1 Irreducible digraphs

The following definition classifies digraphs according to their connectivity.
A (labeled) digraph G = (V, E,L) is irreducible or strongly-connected or

controllable if for every ordered pair of states (s, s̃) ∈ V × V there is a path
from s to s̃ in G (as zero-length paths are allowed, there is always a path from
a state to itself). Note that irreducibility does not depend on the labeling
L. A digraph that is not irreducible is called reducible. For example, the
digraph G in Figure 14.2 is irreducible, while Ĝ is reducible.

Let G = (V, E,L) be a digraph (which may be either irreducible or re-
ducible), and define the following relation on the set V : two states s and s̃ in
V are called bi-connected if there is a (possibly zero-length) path from s to s̃

14.1. Labeled directed graphs 455

�
�

�
�

G

�
�

� �
�
Ĝ

Figure 14.2. Irreducible and reducible digraphs.

and a path from s̃ to s. It can be shown (Problem 14.2) that bi-connection is
an equivalence relation; namely, it satisfies reflexivity, symmetry, and transi-
tivity. The induced subgraphs of G on the equivalence classes of this relation
are called the irreducible components of G. Each irreducible component of
G is an irreducible digraph, which is maximal in the following sense: no ir-
reducible component of G is a proper subgraph of any irreducible subgraph
of G. At least one of the irreducible components of G must be an irreducible
sink : no state in that component has an outgoing edge in G to any other
irreducible component of G.

We next present a useful property of irreducible digraphs.
Let G = (V,E, L) be an irreducible digraph and assume that G contains

at least one edge (and, hence, it contains a cycle; the trivial digraph, which
consists of one state and no edges, is the only irreducible digraph that con-
tains no cycles). Let s be a state in V and � be a nonnegative integer, and
consider the set V (s, �) of all terminal states of paths of length � in G that
start at state s. It turns out that there are positive integers Δ and p, which
depend only on G, such that from every state in V (s, �) there is a path of
length exactly

Δ− (� MOD p)

back to state s, where � MOD p denotes the remainder of � when divided by p.
The constant p is called the period of G and it equals the greatest common
divisor of the lengths of cycles in G (see Problems 14.3 and 14.4). When the
period equals 1 then the digraph is said to be aperiodic or primitive. For
example, the digraph G′ in Figure 14.3 is aperiodic, while G′′ has period 2.

� �
�

G′

�
�

�
�

G′′

Figure 14.3. Digraphs with periods 1 and 2.

We will refer to Δ as a back-length of G. Clearly, there are infinitely many
back-lengths for a given digraph; in fact, every sufficiently large multiple of
p is a back-length (the condition that p |Δ is necessary—see Problem 14.4).
For our purposes any finite back-length will suffice, although smaller values

456 14. Trellis and Convolutional Codes

will be preferable. Turning again to Figure 14.3, we can take Δ = 1 for G′

and Δ = 2 for G′′.

14.1.2 Lossless digraphs

We now turn to classifying labeled digraphs according to their labeling.
A labeled digraph G = (V, E,L) is called deterministic if for every state

in V , no two outgoing edges from that state have the same label. The labeled
digraph in Example 14.1 is deterministic, and so are the labeled digraphs G1

and G2 in Figure 14.4. The labeled digraphs G3 and G4, on the other hand,
are not deterministic.

�a
�

b

G1

�a
�

b
�

b

�
a

G2

�a
�

b
�

a

�
b

G3

�
b

�
b

�
a

�
a

�
a

�
b

G4

Figure 14.4. Lossless digraphs.

When a labeled digraph G is deterministic, then the initial state of a
path and the word that it generates uniquely identify the path. We next
generalize this property and introduce a wider family of labeled digraphs,
which contains deterministic digraphs as a subset.

A labeled digraph G is called lossless if distinct paths in G with the same
initial state and the same terminal state always generate distinct words;
equivalently, for every two paths π and π′ in G,

if ι(π) = ι(π′) and τ(π) = τ(π′) and L(π) = L(π′), then π = π′ .

It is straightforward to see that every deterministic digraph is lossless.
The converse is not true: all the labeled digraphs in Figure 14.4 are lossless,
although two of them—namely, G3 and G4—are not deterministic. Not every
labeled digraph is lossless; for example, if we changed the label of the right
self-loop in G2 into a, then the resulting labeled digraph would not be lossless.

14.1.3 Sequence sets of labeled digraphs

Labeled digraphs will be used in this chapter to define sets of sequences
(these sets, in turn, will serve as our codes). To this end, we need several
basic terms, which we introduce next.

14.1. Labeled directed graphs 457

Let G = (V,E, L) be a labeled digraph. For the definitions that follow
we need one state in V to be designated as the start state of G; e.g., if we
assume some ordering on the elements of V , then the start state can be the
smallest state in V . We let ι(G) denote the start state of G and define C(G)
to be the set of all (distinct) infinite words that are generated in G by infinite
paths that start at state ι(G). We refer to the set C(G) as the sequence set
of G.

For example, the sequence set of the labeled digraph G1 in Figure 14.4
is the set of all infinite words over the alphabet Σ = {a, b}. The same holds
for the labeled digraph G2 in that figure, regardless of the choice of ι(G2).

We will find it convenient to deal with labeled digraphs that are irre-
ducible. Therefore, we will adopt the convention that the start state of a
labeled digraph G will always belong to some irreducible sink G0 of G, and
the start state of G0 will be the same as that of G. Based on this convention
we have

C(G) = C(G0) ,

which effectively means that it suffices to consider only sequence sets of
irreducible labeled digraphs.

For practical reasons, we will also need to consider words that are gener-
ated by finite paths. Given a positive integer �, two sets of words of length
� will be of interest: the first set, which we denote by C�(G), consists of all
distinct words of length � that are generated in G by paths of length � that
start at state ι(G). The second set, denoted by C◦

� (G), is defined similarly,
except that we require that the generating paths be cycles, namely, they also
terminate in ι(G).

Thus, for the labeled digraph G1 in Figure 14.4 we have

C�(G1) = C◦
�(G1) = {a, b}�

for every � ≥ 1. As for the labeled digraph G2 in that figure, we still have

C�(G2) = {a, b}�

(regardless of the choice of ι(G2)), yet the set C◦
�(G2) is now a proper subset

of C�(G2): it consists of the words in C�(G2) that end with a (if ι(G2) is
chosen to be the left state in G2) or b (otherwise).

When a labeled digraph G is deterministic, then every word in C�(G) is
generated in G by exactly one path from ι(G). Similarly, when G is lossless,
then every word in C◦

�(G) is generated in G by exactly one cycle from ι(G).
As mentioned in Section 14.1.1, when a labeled digraph G is irreducible

(with at least one edge), then every path of length h can be extended to a
cycle by adding Δ − (h MOD p) edges, where p and Δ are the period and

458 14. Trellis and Convolutional Codes

back-length of G, respectively. This, in turn, implies that every word in
Ch(G) is a prefix of some word in C◦

� (G), where

� = Δ + h− (h MOD p) . (14.1)

14.1.4 Trellis diagram of labeled digraphs

Let G = (V, E, L) be a labeled digraph. In the sequel, we will find it helpful
on occasions to describe the paths in G through the trellis diagram of G.
The trellis diagram, which we denote by T(G), is an infinite labeled directed
graph whose set of states is given by the infinite set

V (0) ∪ V (1) ∪ V (2) ∪ · · · ,

where
V (t) = {s(t) : s ∈ V } , for every t ≥ 0 .

The subset V (t) is called layer t of T(G). The set of edges of T(G) is defined
as

E(0) ∪ E(1) ∪E(2) ∪ · · · , (14.2)

where
E(t) = {e(t) : e ∈ E} ,

and the initial state, terminal state, and label of each edge e(t) in T(G) are
given by

(ι(e))(t) , (τ(e))(t+1) , and L(e) ,

respectively; equivalently, for each edge

s
c−→ s̃

in G, we endow T(G) with the edges

s(t) c−→ s̃(t+1) , for every t ≥ 0 .

Thus, edges in T(G) whose initial states are in layer t have their terminal
states in layer t+1.

Example 14.2 Figure 14.5 shows the trellis diagram of the labeled di-
graph in Figure 14.1.

There is a straightforward one-to-one correspondence which we can define
between the paths of length � in G and paths from layer 0 to layer � in T(G);
specifically, we associate the path

s0
c0−→ s1

c1−→ s2
c2−→ . . .

c�−1−→ s�

14.1. Labeled directed graphs 459

δ(0)

γ(0)

β(0)

α(0)

V (0) V (1) V (2) V (3) V (4) V (5) V (6) · · ·

�a

�

b �

b

�

a �

d

�

c

c �
d

�a

�

b �

b

�

a �

d

�

c

c �
d

�a

�

b �

b

�

a �

d

�

c

c �
d

�a

�

b �

b

�

a �

d

�

c

c �
d

�a

�

b �

b

�

a �

d

�

c

c �
d

�a

�

b �

b

�

a �

d

�

c

c �
d

�

�

�
�

�
�

�

Figure 14.5. Trellis diagram for the labeled digraph G in Figure 14.1.

in G with the path

s
(0)
0

c0−→ s
(1)
1

c1−→ s
(2)
2

c2−→ . . .
c�−1−→ s

(�)
�

in T(G). Obviously, both paths generate the same word.
A similar correspondence exists between infinite paths from state ι(G) in

G and paths from state (ι(G))(0) in T(G). Thus, the elements of the sequence
set C(G) of G are the infinite words that are generated in T(G) by paths from
state (ι(G))(0).

14.1.5 Regular digraphs

A labeled digraph G = (V, E,L) is called M -regular if each state in V has
exactly M (> 0) outgoing edges. The labeled digraph G in Figure 14.1 is
2-regular, and so is every labeled digraph in Figure 14.4. In the case of M -
regular digraphs, we find it convenient to name edges as pairs [s;u], where
s is the initial state of the edge and u is an element of a prescribed set Υ of
size M . Thus,

E = V ×Υ = {[s; u] : s ∈ V , u ∈ Υ} . (14.3)

We refer to the component u in the name of an edge as the tag of the
edge. Any such naming of edges will be considered valid as long as it assigns
distinct tags to edges with the same initial state. Note also the difference
between a tag and a label: the tag is considered to be part of the identity
of an edge (in a regular digraph), while a label is the value of the function
L at that edge. The outgoing edges from each state must all have distinct
tags, but not necessarily distinct labels.

460 14. Trellis and Convolutional Codes

Example 14.3 Let G be the 2-regular labeled digraph in Figure 14.1.
We select Υ = {0, 1} and assign tags to the edges of G, as shown in Fig-
ure 14.6. For the sake of simplicity and clarity, we have abbreviated each
edge name [s; u] in the figure into just [u], where the edge tag u is italicized.

δ

α

β γ

�
[0], a

�
[1], d

	
[0], a

�
[1], d

�

[1], b

� [0], c

�

[0], c

�[1], b

Figure 14.6. Labeled digraph G for Example 14.1.

A regular labeled digraph G whose edges are named as in (14.3) is some-
times called a finite-state machine (in short, FSM). A FSM G induces for
every � > 0 a mapping

E� : Υ� → C�(G)

which is defined by
E�(u0u1 . . . u�−1) = L(π) , (14.4)

where π is the unique path from ι(G) in G whose edges are tagged by
u0u1 . . . u�−1, i.e.,

π = [s0; u0][s1;u1] . . . [s�−1; u�−1] , (14.5)

where s0 = ι(G) and st+1 = τ ([st; ut]) for 0 ≤ t < �−1. The mapping E� will
be referred to in the sequel as a (finite-state) path encoder that is associated
with G.

14.2 Trellis codes

We now turn to defining codes that are based on labeled digraphs.
Let n and M be positive integers and F be a finite alphabet. An (n,M)

trellis code over F is a set of infinite sequences over Fn that equals C(G) for
some M -regular lossless digraph G = (V, E, L) with labeling L : E → Fn.
We then say that G presents the trellis code and refer to the set of images
of the mapping L as codewords of G and to the elements of the trellis code
as codeword sequences.

14.2. Trellis codes 461

We will denote a given (n,M) trellis code over F by C(G) (or, in short,
just C), where G is one of its presenting M -regular lossless digraphs. Note
that the presenting digraph of a given trellis code C is not unique. For
example, the deterministic digraphs G1 and G2 in Figure 14.4 both present
the same (1, 2) trellis code over F = {a, b}: this code consists of all infinite
sequences over F .

There is no loss of generality in assuming that the presenting lossless
digraph G is irreducible. Indeed, if it is reducible, then—according to our
convention—we select ι(G) to be a state in an irreducible sink G0 of G, in
which case C = C(G) = C(G0). The labeled digraph G0, in turn, is lossless,
irreducible, and M -regular.

The sets C�(G) and C◦
�(G) are defined for a given trellis code C = C(G)

as in Section 14.1.3. While the set C�(G) does not depend on the particular
lossless digraph G that is selected to present C, the set C◦

� (G) does (e.g.,
the deterministic digraphs G1 and G2 in Figure 14.4 both present the same
trellis code, yet C◦

�(G1) �= C◦
�(G2)). We point out, however, that regardless

of the choice of the (lossless) digraph G, each codeword sequence in C◦
�(G)

is generated by exactly one cycle in G that starts at ι(G).
Both sets C�(G) and C◦

�(G) will be treated as block codes of length � over
the alphabet Fn, and their elements will be referred to as (finite) codeword
sequences.

Example 14.4 A (2, 2) trellis code C over F = {0, 1} is presented by
the lossless digraph G′ in Figure 14.7, where we let ι(G′) = α. This digraph
is the same as the one in Figure 14.1, except that the labels have been
changed according to the rule

a→ 00 , b→ 11 , c→ 01 , and d → 10 .

The trellis code C can be described also by the trellis diagram T(G′) of G′,
which is shown in Figure 14.8 (compare with Figure 14.5). The elements of

δ

α

β γ

�
00

�
10

	
00

�
10

�

11

� 01

�

01

�
11

Figure 14.7. Labeled digraph G′ that presents the trellis code in Example 14.4.

462 14. Trellis and Convolutional Codes

δ(0)

γ(0)

β(0)

α(0)

V (0) V (1) V (2) V (3) V (4) V (5) V (6) · · ·

�00

�

11 �

11

�

00
�

10

�

01

01 �
10

�00

�

11 �

11

�

00
�

10

�

01

01 �
10

�00

�

11 �

11

�

00
�

10

�

01

01 �
10

�00

�

11 �

11

�

00
�

10

�

01

01 �
10

�00

�

11 �

11

�

00
�

10

�

01

01 �
10

�00

�

11 �

11

�

00
�

10

�

01

01 �
10

�

�

�
�

�
�

�

Figure 14.8. Trellis diagram T(G′) for Example 14.4.

C�(G′) are the codeword sequences over F 2 that are generated by paths of
length � in T(G′) that start at state α(0). The same holds for the set C◦

�(G′),
except that now the paths also terminate in state α(�).

A special instance of trellis codes is obtained when one of the presenting
digraphs G has one state only. Here C1(G) = C◦

1(G) and

C(G) =
{
c0c1c2 · · · : ct ∈ C1(G) for every t ≥ 0

}
,

that is, the codewords of G are freely-concatenable.

14.2.1 Rate and free distance of trellis codes

Let C be an (n,M) trellis code over F . The rate of C is defined as

R =
log|F | M

n
.

For instance, the trellis code in Example 14.4 has rate 1
2 .

The following result relates the rate of a trellis code C(G) with the rates
of the block codes C�(G) and C◦

� (G).

Proposition 14.1 Let C = C(G) be an (n,M) trellis code over an al-
phabet of size q. Then

lim
�→∞

logqn |C�(G)|
�

= lim sup
�→∞

logqn |C◦
�(G)|

�
=

logq M

n
.

In other words, the rates of the block codes C�(G) and C◦
�(G) can get arbi-

trarily close to the rate of the trellis code C.

14.2. Trellis codes 463

The proof of Proposition 14.1 is given as a guided exercise in Prob-
lem 14.6. We remark that the “lim sup” in Proposition 14.1 can be changed
into “lim” only when the (irreducible) presenting digraph G is aperiodic. If
the period p is greater than 1 then the set C◦

�(G) is empty unless p divides �.
The next term that we present can be regarded as an extension of the

notion of minimum distance to trellis codes. Our definition makes use of the
following notation. Let

x0x1 . . .x�−1 and y0y1 . . .y�−1

be two (possibly infinite) sequences over Fn. The Hamming distance over F
between these sequences is defined by

dF (x0x1 . . .x�−1,y0y1 . . .y�−1) =
�−1∑
t=0

d(xt,yt) .

Equivalently, the Hamming distance over F is the (ordinary) Hamming dis-
tance between the two words

(x0 |x1 | . . . |x�−1) and (y0 |y1 | . . . |y�−1) ,

which are of length �n over F .
Let C be an (n, M>1) trellis code over F . We define the free distance

of C by

dfree(C) = min dF (c0c1c2 · · · , c′0c′1c′2 · · ·)

= min
∞∑

t=0

d(ct, c′t) ,

where the minimum is taken over all pairs (c0c1c2 · · · , c′0c′1c′2 · · ·) of distinct
codeword sequences in C.

Example 14.5 Let C be the (2, 2) trellis code over F = {0, 1} as in
Example 14.4 and let G′ = (V, E,L) be the presenting digraph that is shown
in Figure 14.7. The codeword sequences

11 10 11 00 00 00 · · · and 11 01 01 11 00 00 · · ·

can be generated in G′ by paths that start at state ι(G′) = α; the respec-
tive paths in T(G′) are shown in the partial trellis diagram in Figure 14.9.
Comparing these two codeword sequences, we get that dfree(C) ≤ 5. We will
show in Example 14.11 below that dfree(C) is exactly 5 in this case.

464 14. Trellis and Convolutional Codes

δ(0)

γ(0)

β(0)

α(0)

V (0) V (1) V (2) V (3) V (4) V (5) V (6) · · ·

�

11

�
10

�
11

�00

�
01

01

�
11

�00 �00 �

Figure 14.9. Partial trellis diagram for Example 14.5.

The free distance of a trellis code C(G) can be related to the minimum
distance, over F , of the block codes C◦

�(G); assuming that |C◦
�(G)| > 1, this

minimum distance is defined by

dF (C◦
�(G)) = min dF (c0c1 . . . c�−1, c′0c

′
1 . . . c′�−1) ,

where (c0c1 . . . c�−1, c′0c′1 . . . c′�−1) ranges over all pairs of distinct codeword
sequences in C◦

�(G). It is easy to verify that

dF (C◦
�(G)) ≥ dfree . (14.6)

14.2.2 Encoding of trellis codes

Let C = C(G) be an (n,M) trellis code over an alphabet F of size q. We
are going to use C for transmission by encoding sequences of messages into
codeword sequences of C◦

�(G). Recall that the latter is a block code of length
� over Fn, with the property that each of its codeword sequences is generated
by a unique cycle from state ι(G); this uniqueness, in turn, will allow a one-
to-one mapping from sequences of messages to codeword sequences of C◦

�(G).
To construct the encoder, we fix G = (V,E, L) to be one of the presenting

M -regular lossless digraphs of C; we further assume (without loss of general-
ity) that G is irreducible and denote by p and Δ its period and back-length,
respectively. We name the edges of G as in (14.3), where Υ is taken as the
set of messages. The value of � will be typically large—in particular, at least
Δ. We should also select it to be a multiple of p, or else C◦

�(G) would be
empty.

The mapping from message sequences to codeword sequences will essen-
tially be carried out by the path encoder

E� : Υ� → C�(G) ,

14.2. Trellis codes 465

which was defined in (14.4) and (14.5): this encoder maps a sequence

u0u1 . . . u�−1 ∈ Υ� (14.7)

through a path
π = [s0; u0][s1;u1] . . . [s�−1; u�−1]

(from s0 = ι(G)) to the codeword sequence

c0c1 . . . c�−1 = L([s0; u0])L([s1;u1]) . . . L([s�−1;u�−1]) . (14.8)

However, the mapping E� does require a modification, since we need π to be
a cycle in G. Therefore, we proceed as follows: the first

h = �−Δ

elements in the sequence (14.7) are set to the messages that are to be trans-
mitted, while the remaining �−h = Δ elements are set so that the sub-path

π′ = [sh;uh][sh+1; uh+1] . . . [s�−1; u�−1]

terminates in ι(G). Observe that (14.1) is satisfied for the selected value of
h, since both � and Δ are divisible by p; hence, such a path π′ always exists.
The modification to E� that we have just described defines a mapping

E◦� : Υh → C◦
�(G) ,

where

E◦� (u0u1 . . . uh−1) = E�(u0u1 . . . uh−1uhuh+1 . . . u�−1) . (14.9)

We refer to E◦� as a (finite-state) cycle encoder that is associated with G.
The trailing Δ elements

uhuh+1 . . . u�−1

will be called dummy messages: these are added only to guarantee that the
path π is a cycle (and that the generated codeword sequence is an element
of C◦

�(G)).
The actual encoding is now carried out by the cycle encoder E◦� . If no

errors have occurred, then knowledge of the initial (and terminal) state s0

and the codeword sequence (14.8) allows the receiving end to reconstruct
the cycle π and, hence, the message sequence u0u1 . . . uh−1; in other words,
the mapping E◦� is one-to-one into C◦

�(G).
While the mapping E◦� is not necessarily onto C◦

�(G), its set of images
does have a rate that approaches the rate of the trellis code C when � goes
to infinity. Indeed, the number of images is Mh = M �−Δ and, so,

logqn M �−Δ

�
=
(

1− Δ
�

)
·
logq M

n
.

466 14. Trellis and Convolutional Codes

14.3 Decoding of trellis codes

We next turn to the problem of decoding trellis codes. Let C be an (n,M)
trellis code over an alphabet F and let G = (V, E, L) be an irreducible
M -regular lossless digraph that presents C. We assume that a codeword
sequence

c0c1 . . . c�−1 ∈ C◦
�(G)

is generated by a cycle encoder E◦� that is associated with G. This sequence
is regarded as a word of length �n over F and transmitted as such through a
probabilistic channel S = (F, Φ, Prob), whose input alphabet, F , is the same
as the alphabet of the codewords of C. We denote by

y0y1 . . .y�−1 (14.10)

the respective received sequence, where each word yt belongs to Φn. Since
we treat the set C◦

�(G) as a block code of length � over Fn, we will adapt the
description of the channel S accordingly and regard S as having an input
alphabet Fn and output alphabet Φn, simply by grouping together non-
overlapping sub-blocks of n symbols (both in the input and the output) into
one new symbol.

14.3.1 Maximum-likelihood decoder for trellis codes

A maximum-likelihood decoder (MLD) for C◦
�(G) with respect to the channel

S maps the sequence (14.10) into the codeword sequence

ĉ0ĉ1 . . . ĉ�−1 ∈ C◦
�(G) (14.11)

that maximizes the conditional probability distribution

Prob{y0y1 . . .y�−1 received | ĉ0ĉ1 . . . ĉ�−1 transmitted } .

We assume hereafter in the discussion that S is a memoryless channel (see
Problem 1.8); in this case,

Prob{y0y1 . . .y�−1 received | ĉ0ĉ1 . . . ĉ�−1 transmitted }

=
�−1∏
t=0

Prob{yt received | ĉt transmitted } .

Taking logarithms, we thus find that an MLD for C◦
�(G) with respect to S

decodes (14.10) into the codeword sequence (14.11) that minimizes the sum

�−1∑
t=0

χ(yt, ĉt) , (14.12)

14.3. Decoding of trellis codes 467

where

χ(yt, ĉt) = − log Prob{yt received | ĉt transmitted } , 0 ≤ t < �

(the base of the logarithm can be chosen arbitrarily, as long as it is greater
than 1). We refer to the value χ(yt, ĉt) as the cost of the codeword ĉt with
respect to the received word yt, and to the sum (14.12) as the cost of the
codeword sequence (ĉt)�−1

t=0 with respect to the received sequence (yt)�−1
t=0.

Example 14.6 Let S be the memoryless q-ary symmetric channel with
positive crossover probability p < 1 − (1/q). In this case we have for every
x,y ∈ Fn,

Prob{y received | x transmitted }
= (p/(q−1))d(y,x)(1−p)n−d(y,x)

= (1−p)n

(
p

(1−p)(q−1)

)d(y,x)

.

Hence here,
χ(yt, ĉt) = a + b · d(yt, ĉt) ,

where

a = −n log (1−p) and b = − log
(

p

(1−p)(q−1)

)
.

Since b > 0, we get the (familiar) result that an MLD for C◦
�(G) with re-

spect to S returns a codeword sequence (14.11) that minimizes the Hamming
distance

�−1∑
t=0

d(yt, ĉt) = dF (y0y1 . . .y�−1, ĉ0ĉ1 . . . ĉ�−1)

(see Problem 1.7).

14.3.2 Viterbi’s algorithm

We next turn to the problem of effectively computing the codeword sequence
(ĉt)�−1

t=0 whose cost (14.12) with respect to the received sequence is the small-
est. The problem of minimizing (14.12) is equivalent to finding a cycle π of
length � in G that starts at ι(G) and generates a codeword sequence with a
minimal cost.

Given the sequence (14.10) of received words over Φn, we associate with
each edge e ∈ E and integer t ∈ {0, 1, . . . , �−1} the following edge cost of e
at time t:

χt(e) = χ(yt, L(e)) .

468 14. Trellis and Convolutional Codes

The cost of a path
π = e0e1 . . . et−1

with initial state ι(G) and length t ≤ � is defined as the sum of the edge
costs along that path, taking the “time” of each edge as its location along
the path, namely,

χ(π) = χ0(e0) + χ1(e1) + . . . + χt−1(et−1) . (14.13)

We readily obtain that χ(π) equals the cost of the codeword sequence, L(π),
that π generates. Finally, we associate with each state s ∈ V its state cost
at time t,

χt(s) = min
π

χ(π) , (14.14)

where the minimum is taken over all paths of length t in G from state ι(G)
to s; if no such paths exist, we set χt(s) = ∞. The cost of ι(G) at time 0 is
defined as 0, and the path that minimizes (14.14) will be denoted by πt(s).

Our problem of minimizing (14.12) will be solved once we find a mini-
mizing cycle π�(ι(G)).

We can accomplish this by the algorithm that is shown in Figure 14.10.
This algorithm, known as Viterbi’s algorithm, computes the state costs

Input: edge costs χt(e) for e ∈ E and 0 ≤ t < �.
Output: path πmin.

1. For every s ∈ V do:

χ0(s) ←
{

0 if s = ι(G)
∞ otherwise .

2. Let π0(ι(G))← path of length 0.

3. For t = 0, 1, . . . , �−1 do:

For every state s ∈ V do:

(a) find an incoming edge e to s in G that minimizes the sum

χt(e) + χt(ι(e)) ;

(b) let χt+1(s) ← χt(e) + χt(ι(e));
(c) let πt+1(s) ← πt(ι(e)) e.

4. Return πmin = π�(ι(G)).

Figure 14.10. Viterbi’s algorithm for a labeled digraph G = (V, E, L).

14.3. Decoding of trellis codes 469

(χt(s))s∈V iteratively for times t = 0, 1, . . . , �, along with respective minimiz-
ing paths (πt(s))s∈V . The algorithm is based on the following observation,
which is easily proved by induction on t: for each state s ∈ V ,

χt+1(s) = min
e∈E:

τ(e)=s

{χt(e) + χt(ι(e))}

(that is, the minimum is taken over all the incoming edges e to state s in G).
Viterbi’s algorithm can be visualized also through the trellis diagram

T(G). With each edge e(t) in

E(0) ∪E(1) ∪ . . . ∪ E(�−1)

(see (14.2)), we associate the edge cost χt(e). Then, for t = 0, 1, . . . , �, the
algorithm finds a path with a smallest cost from state (ι(G))(0) (in layer 0)
to each state in layer t. The returned value of the algorithm is a path with
the smallest cost from (ι(G))(0) to (ι(G))(�).

Example 14.7 Let C = C(G′) be the (2, 2) trellis code over F = {0, 1}
as in Example 14.4, and suppose that a codeword sequence of C◦

6(G′) is
transmitted through a binary symmetric channel with crossover probability
p < 1

2 and that the received sequence is

y0y1 . . .y5 = 11 00 00 01 00 10 .

Figure 14.11 shows layers 0 through 6 of the trellis diagram T(G′) in Fig-
ure 14.8, except that in each layer t, we have replaced every edge label c
by the Hamming distance d(yt, c) (these distances appear as italic numbers
next to each edge in Figure 14.11).

We now apply Viterbi’s algorithm to the labeled digraph G′ in Fig-
ure 14.7, using for simplicity the integer values d(yt, L(e)) as our edge costs

δ(0)

γ(0)

β(0)

α(0)

δ(6)

γ(6)

β(6)

α(6)�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0

∞

∞

∞

2

0

0

2

1

1

1

1

2

∞

0

∞

0

2

2

0

1

1

1

1

2

1

4

1

0

2

2

0

1

1

1

1

2

2

1

2

1

1

1

1

2

0

0

2

3

2

3

1

0

2

2

0

1

1

1

1

3

2

2

2

1

1

1

1

0

2

2

0

3

2

3

2

Figure 14.11. Edge and state costs in the trellis diagram T(G′) for Example 14.7.

470 14. Trellis and Convolutional Codes

χt(e) (while this deviates from our original definition of edge costs, it follows
from Example 14.6 that this modification does not affect the minimization).
The resulting state costs are shown as boldface numbers in Figure 14.11,
where each value χt(s) is written next to the state s(t).

The (unique) minimum-cost path πmin is given by

α
11−→ γ

10−→ β
00−→ γ

01−→ δ
01−→ β

11−→ α ,

and the respective path in the trellis diagram T(G′) is shown in Figure 14.12.
The decoded codeword sequence is therefore

ĉ0ĉ1ĉ2ĉ3ĉ4ĉ5 = 11 10 00 01 01 11 ,

and its Hamming distance from the received sequence is

5∑
t=0

d(yt, ĉt) = 3 .

The sequence (ĉt)5t=0 is the closest in C◦
6(G) (with respect to the Hamming

distance) to the received sequence (yt)5t=0.

By looking at the two nested loops in Step 3 in Figure 14.10, we easily
see that the algorithm can be implemented using a number of real operations
that is proportional to � · |E|. For each iteration over t, the algorithm needs
to keep track of |V | paths of length t, thereby requiring space whose size (in
bits) is proportional to � · |V | log M . Additional space is then required to
record the |V | real values of the state costs. (Note that the computations
at iteration t+1 of Step 3 only require the results of the computations at
iteration t. Therefore, there is no need to record the whole history of values
of the state costs.)

δ(0)

γ(0)

β(0)

α(0)

δ(6)

γ(6)

β(6)

α(6)
0

0

1

1

1

2

3

�

11

0 �
10

1

�

00
0

�

01
0

01

1

�
11

1

Figure 14.12. Minimum-cost path in T(G′) for Example 14.7.

14.4. Linear finite-state machines 471

14.3.3 Decoding error probability

It should be noted that while Viterbi’s algorithm implements an MLD for
C◦

�(G), the decoding error probability of this decoder will typically approach
1 as � becomes large. This can be seen already for the simple case where the
presenting digraph G has one state only. Here, the transmitted codeword
sequence

c0c1 . . . c�−1

consists of elements of an (n,M) block code C1(G) over F , which are freely-
concatenable. An application of Viterbi’s algorithm to the respective re-
ceived sequence

y0y1 . . .y�−1

becomes a sequence of applications of an MLD D for C1(G) to each word yt,
independently of words at other times t. This results in a decoded codeword
sequence

ĉ0ĉ1 . . . ĉ�−1 ,

where ĉt = D(yt) for 0 ≤ t < �. Now, except for very special codes or
channels, the decoding error probability of D will be bounded from below
by some strictly positive real θ. It follows that there is a codeword sequence
c0c1 . . . c�−1 for which

Prob {ĉ0ĉ1 . . . ĉ�−1 = c0c1 . . . c�−1 | c0c1 . . . c�−1 transmitted } ≤ (1−θ)� ,

and this upper bound becomes zero as � →∞.
This seemingly absurd phenomenon is easily settled by observing that in

each transmission, we actually send � messages rather than just one message;
so, accordingly, we need to normalize the decoding error probability per each
sent message. And we will indeed do that in Section 14.7.2, for a certain
family of trellis codes over the q-ary symmetric channel.

14.4 Linear finite-state machines

In this section, we introduce a family of regular labeled digraphs with some
underlying linear properties. The trellis codes that these digraphs present
will then be the focus of our discussion in the upcoming sections of this
chapter.

Let F be the finite field GF(q) and let m, n, and k be positive integers.
Fix P , B, Q, and D to be matrices over F with orders

m×m , k ×m , m× n , and k × n ,

472 14. Trellis and Convolutional Codes

respectively, and consider the labeled digraph G = (V, E, L) which has the
following form:

• V = Fm; we denote a typical state in G as a row vector s ∈ Fm.

• E = V × F k; we denote a typical edge in G by [s;u], where s ∈ V and
u is a row vector in F k that serves as the edge tag.

• For every edge e = [s;u] in E,

ι(e) = s and τ(e) = sP + uB . (14.15)

• The range of the labeling L is Σ = Fn, and for every edge e = [s;u]
in E,

L(e) = sQ + uD . (14.16)

A labeled digraph G that satisfies these properties for some P , B, Q, and D,
is called a k-to-n linear finite-state machine (in short, a k : n LFSM) over
F . (We can formally extend the definition of LFSMs to include also the case
m = 0: here |V | = 1, making (14.15) vacuous and reducing (14.16) to just
L(e) = uD.)

It is easy to see that G is a qk-regular digraph. While an LFSM G is
completely determined by the quadruple (P, B,Q, D), different quadruples
may define isomorphic LFSMs (i.e., LFSMs that differ only in their state
names or edge names). We illustrate this in the next example (see also
Problem 14.8).

Example 14.8 Let F = GF(2) and let the matrices P , B, Q, and D
(over F) be given by

P =
(

0 1
1 1

)
, B =

(
0 1

)
, Q =

(
0 0
0 1

)
, and D =

(
1 1

)
.

These matrices define a 1 : 2 LFSM G over F , which is shown in Figure 14.13
(the state names are underlined in the figure and the edge names are ab-
breviated to indicate only the edge tags, which are italicized). The LFSM
G is identical to the labeled digraph in Figure 14.7, except that the edges
have been assigned tags and the names of the states have been changed as
follows:

α → 00 , β → 10 , γ → 01 , and δ → 11 .

Figure 14.13 shows a second 1 : 2 LFSM, G̃, over F that is defined by
the matrices

P̃ =
(

0 0
1 0

)
, B̃ =

(
0 1

)
, Q̃ =

(
1 1
1 0

)
, and D̃ =

(
1 1

)
.

Both G and G̃ are identical, except for the edge tags.

14.4. Linear finite-state machines 473

G

11

00

10 01

�
[0], 00

�
[1], 10

	
[0], 00

�
[1], 10

�

[1], 11

� [0], 01

�

[0], 01

�[1], 11

G̃

11

00

10 01

�
[0], 00

�
[1], 10

	
[1], 00

�
[0], 10

�

[1], 11

� [1], 01

�

[0], 01

�[0], 11

Figure 14.13. LFSMs G and G̃ for Example 14.8.

We select the start state of an LFSM to be the all-zero vector 0m. (As
we will be referring in the sequel to all-zero vectors in various vector spaces
over F , we will use subscripts—such as m here—to identify the dimensions
of these spaces.) An LFSM G is not necessarily irreducible, but the all-zero
state 0m belongs to an irreducible sink G0 of G. The irreducible sink G0 is
also an LFSM: it is aperiodic and every integer � ≥ m serves as a back-length
of G0 (see Problems 14.10 and 14.11).

14.4.1 Response matrix of LFSMs

The next step in our study of LFSMs is obtaining an algebraic characteri-
zation of the sequence set of a given LFSM.

Let G = (V =Fm, E, L) be a k : n LFSM over F that is defined by the
quadruple (P,B, Q, D). Consider an infinite path in G,

[s0;u0][s1;u1][s2;u2] · · · ,

and let
c0c1c2 · · ·

be the infinite sequence that it generates (each label ct is an element of
Σ = Fn). By (14.15) and (14.16) we get that for every t ≥ 0,

st+1 = stP + utB (14.17)

and
ct = stQ + utD . (14.18)

Henceforth, we associate with the infinite sequences

s0s1s2 · · · , u0u1u2 · · · , and c0c1c2 · · ·

474 14. Trellis and Convolutional Codes

the following expressions in the indeterminate x:

s(x) =
∞∑

t=0

stx
t , u(x) =

∞∑
t=0

utx
t , and c(x) =

∞∑
t=0

ctx
t .

Each of these expressions forms a vector over the ring, F [[x]], of (infinite)
formal power series over F (see Section 6.3.2); namely,

s(x) ∈ (F [[x]])m , u(x) ∈ (F [[x]])k , and c(x) ∈ (F [[x]])n .

Multiplying both sides of (14.17) by xt+1 and summing over t ≥ 0, we
obtain

s(x)− s0 = x (s(x)P + u(x)B)

or
s(x)(I − xP) = u(x) · xB + s0 , (14.19)

where I stands for the m ×m identity matrix. Now, I − xP is an m ×m
invertible matrix over F [[x]]; indeed,

(I − xP)
(∞∑

t=0

xtP t
)

=
(∞∑

t=0

xtP t
)
−
(∞∑

t=0

xt+1P t+1
)

= I .

We thus conclude from (14.19) that, over F [[x]],

s(x) = (u(x) · xB + s0)(I − xP)−1 . (14.20)

Equation (14.20) expresses the state sequence (st)∞t=0 along an infinite
path, in terms of the tag sequence (ut)∞t=0 and the initial state s0 of the
path. In a similar manner, we can obtain from (14.18) an expression that
relates c(x) to u(x) and s0. Specifically, if we multiply both sides of (14.18)
by xt and sum over t ≥ 0, we get

c(x) = s(x)Q + u(x)D ,

and plugging (14.20) into the latter equality yields

c(x) = u(x)G(x) + s0(I − xP)−1Q , (14.21)

where G(x) is the following k × n matrix over F [[x]]:

G(x) = (gi,j(x)) k
i=1

n
j=1 = xB(I − xP)−1Q + D . (14.22)

We will refer to G(x) as the response matrix of the LFSM G.
Of particular interest is the case where s0 = 0m (= ι(G)), for which we

obtain from (14.21) a characterization of the sequence set C(G) of G. We
summarize this case as follows.

14.4. Linear finite-state machines 475

Proposition 14.2 Let G be a k : n LFSM over F = GF(q) and G(x) be
the response matrix of G. Denote by span(G(x)) the linear span over F [[x]]
of the rows of G(x), namely,

span(G(x)) =
{
c(x) ∈ (F [[x]])n :

c(x) = u(x)G(x) for some u(x) ∈ (F [[x]])k
}

.

Then

C(G) =
{
c0c1c2 · · · :

∞∑
t=0

ctx
t ∈ span(G(x))

}
.

Based on Proposition 14.2, we will not distinguish hereafter between
the sets C(G) and span(G(x)). Along similar lines, we will regard each set
C�(G) or C◦

�(G) as a subset of (F�[x])n, with each sequence c0c1 . . . c�−1

being identified with the vector
∑�−1

t=0 ctx
t in (F�[x])n.

From (14.22) we can obtain some properties of the entries of the response
matrix G(x). To this end, we first recall from linear algebra that the inverse
of an invertible square matrix U over any given commutative ring can be
written as

U−1 =
1

det(U)
·Adj(U) ,

where Adj(U) is the adjoint matrix of U . We now apply this formula to the
matrix I − xP (as a matrix over F [[x]]) and obtain from (14.22) that

G(x) =
1

det(I − xP)

(
xB ·Adj(I − xP) ·Q + det(I − xP) ·D

)
.

The determinant det(I − xP) is a polynomial in Fm+1[x], which takes the
value 1 at x = 0; as such, it is an invertible element in F [[x]]. Also, each
entry of Adj(I−xP) is a cofactor of I−xP (namely, it is a minor of I−xP ,
up to a sign change); as such, it is a polynomial in Fm[x]. It follows that
each entry gi,j(x) of G(x) can be expressed as a ratio

gi,j(x) =
ωi,j(x)
σi,j(x)

, 1 ≤ i ≤ k , 1 ≤ j ≤ n ,

where ωi,j(x) and σi,j(x) are polynomials in F [x] such that

σi,j(0) = 1 and max{deg σi,j , deg ωi,j} ≤ m .

Furthermore, we can assume without loss of generality that each ratio
ωi,j(x)/σi,j(x) is reduced, i.e.,

gcd(σi,j(x), ωi,j(x)) = 1 .

476 14. Trellis and Convolutional Codes

Hence, in addition to being a matrix over F [[x]], the response matrix G(x) is
also a matrix over the field of rational functions over F ; we denote this field
by F (x) (see the proof of Lemma 9.1). We mention that there exists a field,
denoted by F ((x)), which contains both F [[x]] as a subring and F (x) as a
subfield. The field F ((x)) consists of all the Laurent series over F : these
series are similar to infinite formal power series, except that they may also
contain finitely many terms with negative powers of x. We define the field
F ((x)) formally in Problem 14.14.

Example 14.9 Let F = GF(2) and let the matrices P , B, Q, and D be
as in Example 14.8. Here

I − xP =
(

1 x
x 1+x

)
and, so,

(I − xP)−1 =
1

det(I − xP)
·Adj(I − xP)

=
1

1+x+x2

(
1+x x
x 1

)
.

Therefore,

G(x) = xB(I − xP)−1Q + D

=
(

1
1+x2

1+x+x2

)
.

We could do a similar computation also with the matrices P̃ , B̃, Q̃, and
D̃ in Example 14.8, in which case we would get the response matrix

G̃(x) = xB̃(I − xP̃)−1Q̃ + D̃

=
(

1+x+x2 1+x2
)

.

14.4.2 Lossless LFSMs

As mentioned at the beginning of Section 14.4, our goal in the sequel is
to study trellis codes whose presenting labeled digraphs are LFSMs. Such
digraphs need to be lossless, and the next result presents a necessary and
sufficient condition for them to be so.

Proposition 14.3 Let G be a k : n LFSM over F = GF(q) and G(x) be
the response matrix of G. Then G is lossless if and only if

rank(G(x)) = k

(over F (x)).

14.5. Convolutional codes 477

The proof of Proposition 14.3 is given as a guided exercise in Prob-
lem 14.15.

Let G be a lossless LFSM and G(x) be the response matrix of G. It follows
from Proposition 14.3 that G(x) has rank k in any field that contains F (x)
as a subfield. In particular, this holds for the field of Laurent series F ((x)),
which also contains F [[x]] as a subring (see Problem 14.14; recall that the
entries of G(x) are in the intersection F (x) ∩ F [[x]]). Hence, the rows of
G(x) are linearly independent over F [[x]] and, so, when G is lossless we have
that

span(G(x)) =
{
u(x)G(x) : u(x) ∈ (F [[x]])k

}
(where distinct elements u(x) in (F [[x]])k yield distinct elements u(x)G(x)
in span(G(x))).

14.5 Convolutional codes

Let F = GF(q) and let k and n be positive integers such that k ≤ n. An
[n, k] convolutional code over F is an (n, qk) trellis code C over F that is
presented by a lossless k : n LFSM over F . We will specify a convolutional
code through one of its presenting LFSMs G and use the notation C(G) (or
simply C). The rate of an [n, k] convolutional code over F is given by

R =
k

n
.

If G(x) is the response matrix of a presenting lossless LFSM G, then from
Propositions 14.2 and 14.3 we get that

C = C(G) = span(G(x)) and rank(G(x)) = k

(following the convention set in Section 14.4.1, we do not distinguish here
between an infinite codeword sequence c0c1c2 · · · over Fn and its represen-
tation as the element

∑∞
t=0 ctx

t of (F [[x]])n). Borrowing the term from
ordinary linear codes, we then say that G(x) is a generator matrix of the
convolutional code C.

Example 14.10 We have shown in Example 14.8 that the labeled di-
graph in Figure 14.7 is a (lossless) 1 : 2 LFSM over F = GF(2). Thus, the
trellis code C in Example 14.4 is a [2, 1] convolutional code of rate 1

2 over
F . From the computation in Example 14.9 we get that

G(x) =
(

1
1+x2

1+x+x2

)
is a generator matrix of C. This generator matrix is systematic, as its first
k (= 1) columns form the identity matrix.

478 14. Trellis and Convolutional Codes

We can state an alternate (equivalent) definition of convolutional codes
that is based directly on their generator matrices (without going through
the presenting LFSMs). Specifically, let F = GF(q) and let G(x) be a k× n
matrix of rank k over F (x) ∩ F [[x]]; that is, the entries of G(x) are of the
form

gi,j(x) =
ωi,j(x)
σi,j(x)

, 1 ≤ i ≤ k , 1 ≤ j ≤ n , (14.23)

where ωi,j(x) and σi,j(x) are polynomials in F [x] such that σi,j(0) = 1. Then
span(G(x)) is an [n, k] convolutional code over F .

To see why this definition coincides with our earlier one, it suffices to
show that G(x) is the response matrix of some k : n LFSM G over F (since
rank(G(x)) = k, we are guaranteed by Proposition 14.3 that G will then be
lossless). We leave it as an exercise (Problems 14.17 and 14.18) to show that
such an LFSM G can indeed be realized.

Based on the latter definition, we can view convolutional codes as an
extension of the notion of linear codes to alphabets that are infinite rings—
F [[x]] in our case. In fact, the underlying ring F [[x]] is “almost” a field: it
would have become one had we allowed its elements to contain also finitely
many negative powers of x (Problem 14.14).

We emphasize that when defining a convolutional code, the generator
matrix G(x) is restricted to be over the intersection of F (x) and F [[x]].
A convolutional code C has infinitely many generator matrices: given any
generator matrix G(x), we can obtain other generator matrices of C by
applying invertible linear operations over F (x) ∩ F [[x]] to the rows of G(x)
(see Problem 14.21). In particular, if the entries of G(x) are given by (14.23),
then for i = 1, 2, . . . , k, we can multiply row i in G(x) by the least common
multiplier of the denominators σi,1(x), σi,2(x), . . . , σi,n(x). This, in turn, will
produce a generator matrix whose entries are all polynomials in F [x] (e.g.,
see the generator matrix G̃(x) in Example 14.9).

Every [n, k] convolutional code C over F is a linear space over F . Thus,
if c1(x) and c2(x) are elements of C, then so is their difference c1(x)−c2(x).
It follows that the free distance of C equals

dfree(C) = min
∞∑

t=0

w(ct) ,

where the minimum is taken over all nonzero codeword sequences c0c1c2 · · ·
in C (compare with Proposition 2.1).

Given a (possibly finite) sequence c(x) =
∑∞

t=0 ctx
t in (F [[x]])n, we will

use the notation wF (c(x)) for the sum

∞∑
t=0

w(ct) ;

14.6. Encoding of convolutional codes 479

i.e., wF (c(x)) is the Hamming weight of c(x) over F . Using this notation,
the free distance of C can be written as

dfree(C) = min
c(x)∈C\{0}

wF (c(x)) .

Example 14.11 Let C be the [2, 1] convolutional code over F = GF(2)
as in Example 14.10. We will use the presenting lossless digraph G in Fig-
ure 14.13 to identify the minimum-weight nonzero codeword sequences in C.

We first observe that an infinite run of zeros can be generated in G only by
repeating the self-loop at state 00. Therefore, an infinite codeword sequence
with finite Hamming weight can be generated in G only by paths from state
00 that eventually return to state 00 and then repeat the self-loop at that
state forever. It follows that infinite codeword sequences with nonzero finite
weight are generated by paths that take the form

00
00−→ 00

00−→ . . .
00−→ 00

11−→ 01 −→ . . . −→ 10
11−→ 00

00−→ 00
00−→ · · · .

Now, the smallest weight that we can gain by any path from 01 to 10 is
1 (through the edge from 01 to 10). We thus conclude that the minimum-
weight nonzero codeword sequences in C take the form

00 00 . . . 00 11 10 11 00 00 · · ·

and, so, dfree(C) = 5 (compare with Example 14.5).

14.6 Encoding of convolutional codes

Since convolutional codes are trellis codes, the encoding method that was
described in Section 14.2.2 applies to them as well. Specifically, given an
[n, k] convolutional code C over F , we can select an (irreducible) lossless
k : n LFSM G = (V =Fm, E, L) over F that presents C and define for every
� ≥ 1 the path encoder

E� : (F k)� → C�(G)

as in (14.4) and (14.5). The cycle encoder

E◦� : (F k)h → C◦
�(G)

is then defined by (14.9), where h = �−Δ for some back-length Δ of G; e.g.,
by Problem 14.10 we can take Δ = m.

Alternatively, we can obtain the mapping E� directly from a generator
matrix G(x) of C: such a mapping will then be a path encoder that is

480 14. Trellis and Convolutional Codes

associated with any LFSM whose response matrix is G(x). We will use the
following notation. For an element a(x) =

∑∞
t=0 atx

t in F [[x]], denote by

a(x) MOD x�

the polynomial
∑�−1

t=0 atx
t; the operation MOD extends in a straightforward

manner to vectors in (F [[x]])n. Using this notation, we now define E� to be
the function from (F�[x])k to C�(G) ⊆ (F�[x])n that is given by

E�(u(x)) = u(x)G(x) MOD x� . (14.24)

Suppose first that k = n = 1, i.e., G(x) is the scalar ω(x)/σ(x) in F [[x]],
where σ(0) = 1. In this case, we can implement (14.24) by a circuit that
multiplies a formal power series u(x) ∈ F [[x]]—in particular, a polynomial
u(x) ∈ F�[x]—by the fixed multiplier ω(x)/σ(x) in F (x). Such a circuit is
shown in Figure 14.14 for the polynomials

σ(x) = 1 + λ1x + λ2x
2 + . . . + λmxm

and
ω(x) = γ0 + γ1x + γ2x

2 + . . . + γmxm ,

for some nonnegative integer m. (Without loss of generality we can assume
that m = max{deg σ,deg ω}; in fact, the same value of m can be taken in
the LFSM realization of G(x) in Problem 14.17.)

The circuit in Figure 14.14 is, in a way, a montage of Figure 5.1 in
Section 5.3 and Figure 6.4 in Section 6.7.1. It consists of m cascaded delay
units, which are controlled by a clock and are initially reset to zero. The
input to the circuit is a sequence of coefficients u0u1u2 · · · of the multiplicand
u(x). At every clock tick t ≥ 0, the coefficient ut is fed into the circuit, and
for each r = 1, 2, . . . , m, the contents of the rth delay unit is multiplied by
λr. The sum of the m resulting products is then subtracted from the input
ut to produce a value named bt (compare with Figure 6.4: the multiplicand
u(x) plays the role of the input therein). At the same time, the contents of
the rth delay unit is multiplied also by γr and the resulting products for all
r are summed with γ0bt to produce a value named ct (note that the same
computation is carried out in Figure 5.1, except that the order of coefficients
is reversed both in the input sequence and in the multiplying polynomial).
Clock tick t ends by shifting the contents of the delay units to the right and
feeding the newly computed bt into the leftmost delay unit.

Suppose that we run this circuit infinitely, and let b(x) and c(x) denote
the formal power series

∑∞
t=0 btx

t and
∑∞

t=0 ctx
t, respectively. The values bt

are computed for every t ≥ 0 by the formula

bt = ut −
m∑

r=1

λrbt−r , (14.25)

14.6. Encoding of convolutional codes 481

�ut �

bt

�

bt−1

�

bt−2

�

bt−3

�

bt−m+1 bt−m

� � � �

· · ·

� �

γ0 γ1 γ2 γ3 · · · γm−1 γm

�

��
! "

�
+

�ct

� � �

· · ·

� �

+

−1 λ1 λ2 λ3 · · · λm−1 λm

�
	�
�

+

�

�

Figure 14.14. Multiplication circuit by ω(x)/σ(x).

where we assume that br = 0 for r < 0. Therefore,

bt +
m∑

r=1

λrbt−r = ut ,

and when we multiply both sides by xt and sum over t, we obtain

σ(x)b(x) = u(x) .

Hence,

b(x) =
u(x)
σ(x)

. (14.26)

In a similar manner, we see that the values ct are computed for every t ≥ 0
by

ct =
m∑

r=0

γrbt−r

and, so,
c(x) = ω(x)b(x) .

Together with (14.26) we thus conclude that

c(x) =
ω(x)
σ(x)

· u(x) .

482 14. Trellis and Convolutional Codes

We can use the circuit in Figure 14.14 as a building block for implement-
ing the mapping E� in (14.24) also for general k and n. For i = 1, 2, . . . , k, de-
note by (u(x))i the ith entry of the argument u(x) of E� (each such entry is an
element of F�[x]). From (14.23) we get that the n entries of c(x) = u(x)G(x)
are given by

(c(x))j =
k∑

i=1

(u(x))igi,j(x) =
k∑

i=1

ωi,j(x)
σi,j(x)

· (u(x))i , 1 ≤ j ≤ n .

The number of delay units that we will need then equals

k∑
i=1

n∑
j=1

max{deg σi,j , deg ωi,j} . (14.27)

This number may be reduced if we bring all entries in every given row of
G(x) to have a common denominator; the entries of G(x) then take the form
ω̂i,j(x)/σi(x), where σi(0) = 1,

deg σi ≤
n∑

j=1

deg σi,j , and deg ω̂i,j = deg ωi,j − deg σi,j + deg σi .

With this structure of G(x), the multiplication circuits that correspond to
the entries of row i can share both the delay units and the division portion
in Figure 14.14 (i.e., the part of the figure below the delay units). Thus, we
will need

m =
k∑

i=1

max{deg σi, deg ω̂i,1, deg ω̂i,2, . . . ,deg ω̂i,n} (14.28)

delay units, and this number is never greater than (14.27).
If we now multiply row i of G(x) by σi(x) for each i, we get a generator

matrix whose entries are all polynomials in F [x]. In this case, the division
portions can be eliminated altogether, and Figure 14.14 reduces to just a
multiplication by the (numerator) polynomial ω(x) = ωi,j(x); multiplication
by a fixed polynomial, in turn, is sometimes called convolution, which is
where the codes got their name from. We therefore conclude that if the
entries gi,j(x) of G(x) are all polynomials in F [x], then we can implement
the respective path encoder—which is commonly referred to in this case as
a convolutional encoder—by using at most

k∑
i=1

n
max
j=1

deg gi,j (14.29)

14.6. Encoding of convolutional codes 483

delay units, and the circuits contain no feedback. The value in (14.29) is
sometimes called the constraint length of the convolutional encoder.

Having shown how the mapping E� can be obtained from G(x), we next
discuss how we construct the cycle encoder E◦� ; namely, we determine the
sequence of dummy messages

u�−Δu�−Δ+1 . . .u�−1

at the end of the transmission so that the encoding circuit is led into the
all-zero state. We assume that all entries in row i of G(x) share the same
denominator σi(x), in which case Δ can be taken as the value m in (14.28)
(see Problem 14.18). Write

σi(x) = 1 +
m∑

r=1

λr,ix
r and (u(x))i =

∞∑
t=0

ut,ix
t ,

and let bt,i denote the value that is fed at clock tick t to the leftmost delay
unit of the circuit in Figure 14.14 that corresponds to row i. We readily get
from (14.25) that when the input ut,i at clock ticks �−m ≤ t < � is set to

ut,i =
m∑

r=1

λr,ibt−r,i ,

then we end up with

b�−m,i = b�−m+1,i = . . . = b�−1,i = 0 .

In particular, when all the entries in G(x) are polynomials in F [x], then we
reach the all-zero state 0m simply by taking

u�−m = u�−m+1 = . . . = u�−1 = 0k .

Example 14.12 Let C be the [2, 1] convolutional code over F = GF(2)
as in Example 14.10 and select the generator matrix

G(x) =
(

1
1+x2

1+x+x2

)
.

Figure 14.15 shows a circuit that implements the path encoder that is asso-
ciated with G(x). The message to be encoded at time t comprises one bit,
denoted by ut, and the generated codeword at time t is the two-bit vector

ct = (ct,1 ct,2) .

Since the generator matrix G(x) is systematic, the message ut appears as
part of the generated codeword ct.

484 14. Trellis and Convolutional Codes

�ut �bt �bt−1 bt−2

� ct,1

�

+� � ct,2

�
+ �

�

+

Figure 14.15. Encoding circuit for Example 14.12.

Example 14.13 Let C and G(x) be as in Example 14.12. By looking
at the circuit in Figure 14.15, we can see that

ct,2 = bt + bt−2

= (ut + bt−1 + bt−2)︸ ︷︷ ︸
bt

+ bt−2 = ut + bt−1 .

Therefore, the path encoder of Example 14.12 can also be implemented by
the circuit in Figure 14.16.

�ut �bt �

bt−1 bt−2

� ct,1

�

+� � ct,2

�
+ �

�

+

Figure 14.16. Encoding circuit for Example 14.13.

Let
st = (bt−2 bt−1)

denote the contents of the two delay units in Figure 14.16 at time t. It is
easily seen from the figure that

st+1 = stP + utB ,

where

P =
(

0 1
1 1

)
and B =

(
0 1

)
.

14.7. Decoding of convolutional codes 485

Also, we see that the generated codeword ct is obtained from ut and st by

ct = stQ + utD ,

where

Q =
(

0 0
0 1

)
and D =

(
1 1

)
.

The matrix quadruple (P, B, Q,D) defines the 1 : 2 LFSM G in Figure 14.13,
and Figure 14.16 implements the path encoder that is associated with G by
effectively simulating the state sequence (st)t along the unique path from
s0 = 0m whose edges are tagged by the input (ut)t. Recall that we have
shown in Example 14.9 that G(x) is indeed the response matrix of G.

Example 14.14 Let C be again as in Example 14.12. A third encoding
circuit for C is shown in Figure 14.17. This circuit implements a path
encoder that is associated with the generator matrix

G̃(x) =
(

1+x+x2 1+x2
)

(the same path encoder is also associated with the 1 : 2 LFSM G̃ in Fig-
ure 14.13). The matrix G̃(x) is non-systematic; on the other hand, all the
entries in G̃(x) are polynomials and, so, the circuit in Figure 14.17 contains
no feedback, as it does not perform any divisions.

ut � �

�

�

+ � ct,1

�
+� � ct,2

Figure 14.17. Encoding circuit for Example 14.14.

14.7 Decoding of convolutional codes

As with all other trellis codes, MLDs for convolutional codes can be im-
plemented by Viterbi’s algorithm from Section 14.3.2. In this section, we
analyze the decoding error probability of such an MLD, while focusing on
the q-ary symmetric channel. Following the discussion in Section 14.3.3, our
interest will be in bounding from above the probability of erring on a given
message—as opposed to the probability of erring on at least one message—
within the transmitted sequence.

486 14. Trellis and Convolutional Codes

14.7.1 Length–weight enumerator of LFSMs

In our analysis of the decoding error probability, we will need to know the
Hamming weight distribution of certain codeword sequences that are gener-
ated by a given LFSM presentation of the convolutional code. In this section,
we characterize those codeword sequences and show how their weight distri-
bution can be computed.

Let F be a finite Abelian group and n be a positive integer, and let G =
(V, E,L) be a labeled digraph with labeling L : E → Fn. The generalized
adjacency matrix of G, denoted by AG(z), is the following |V | × |V | matrix
over the ring R[z] (of real polynomials in the indeterminate z): the rows and
columns of AG are indexed by the states of V , and for every s, s̃ ∈ V , the
entry of AG(z) that is indexed by (s, s̃) is given by

(AG(z))s,s̃ =
∑
e∈E:

ι(e)=s, τ(e)=s̃

zw(L(e)) .

In other words, entry (s, s̃) is the (Hamming) weight enumerator of the block
code in Fn whose codewords are the labels of the edges from state s to state s̃
in G (recall that we used the term weight enumerator also in Section 4.4, for
the special case of block codes that are linear). We adopt the convention that
the first row and the first column in AG correspond to the start state ι(G).

When we substitute z = 1 in AG(z), we get the (ordinary) adjacency
matrix of G: the value (AG(1))s,s̃ equals the number of edges in G from s
to s̃.

Example 14.15 The generalized adjacency matrix of the labeled di-
graph G′ in Figure 14.7 is given by

AG′(z) =

⎛⎜⎜⎝
1 0 z2 0
z2 0 1 0
0 z 0 z
0 z 0 z

⎞⎟⎟⎠ ,

where the rows and columns have been arranged assuming the ordering α <
β < γ < δ on the states of G′. This is also the generalized adjacency matrix
of the LFSMs G and G̃ in Figure 14.13.

We specialize from now on to labeled digraphs G that are LFSMs.
Let G = (V =Fm, E, L) be a k : n LFSM over F = GF(q). The self-

loop [0m;0k] at state 0m will hereafter be referred to as the trivial cycle.
A fundamental cycle in G is a positive-length nontrivial cycle whose initial
(and terminal) state is 0m, yet otherwise 0m is not visited along the cycle.
Namely, a path

ψ = e0e1 . . . e�−1

14.7. Decoding of convolutional codes 487

in G is called a fundamental cycle if � > 0, ψ �= [0m;0k], and

ι(e0) = τ(e�−1) = 0m ,

yet
ι(et) �= 0m for every 0 < t < � .

The set of all fundamental cycles of length � in G will be denoted by Ψ�.
Clearly, every positive-length cycle that starts at 0m can be expressed as a
concatenation of fundamental cycles and trivial cycles.

We now define the length–weight enumerator of G by

WG(x, z) =
∞∑

�=1

∞∑
i=0

W�,ix
�zi ,

where W�,i is the number of fundamental cycles in G of length � that generate
sequences whose Hamming weight over F is i; equivalently,

WG(x, z) =
∞∑

�=1

x�
∑

ψ∈Ψ�

zwF (L(ψ)) . (14.30)

At this point, we regard WG(x, z) as an element of the set of bivariate formal
power series over the real field R. This set is given by

R[[x, z]] =
{

b(x, z) =
∑∞

�,i=0b�,ix
�zi : b�,i ∈ R

}
and, by a straightforward generalization from the univariate case, it can be
shown that R[[x, z]] forms a ring. Later on, we will substitute real values
for x and z in WG(x, z), in which case the range of convergence will be of
interest.

The length–weight enumerator WG(x, z) can be computed from the gen-
eralized adjacency matrix AG(z) in a manner that we now describe. We
assume here that |V | > 1 (leaving the case |V | = 1 to Problem 14.25), and
define G∗ as the subgraph of G that is induced on V \{0m}. The generalized
adjacency matrix of G∗ can be related to that of G by

AG(z) =

⎛⎜⎜⎝
a(z) b(z)

v(z) AG∗(z)

⎞⎟⎟⎠ ,

where
a(z) = (AG(z))0m,0m ,

and b(z) and v(z) are row and column vectors, respectively, in (R[z])|V |−1.

488 14. Trellis and Convolutional Codes

Next, we calculate the contribution of the cycles in Ψ� to the sum (14.30),
for each length value �. For � = 1 we have∑

ψ∈Ψ1

zwF (ψ) = a(z)− 1 . (14.31)

As for larger values of �, any cycle in Ψ� takes the form

e0πe�−1 ,

where ι(e0) = τ(e�−1) = 0m while the sub-path π is entirely contained in G∗.
It readily follows from the rules of matrix multiplication that∑

ψ∈Ψ�

zwF (ψ) = b(z) (AG∗(z))�−2 v(z) . (14.32)

From (14.31) and (14.32) we conclude that, over R[[x, z]],

WG(x, z) = x · (a(z)−1) + b(z)
(∞∑

�=2

x� (AG∗(z))�−2
)
v(z) (14.33)

= x · (a(z)−1) + x2 · b(z) (I − xAG∗(z))−1 v(z) . (14.34)

Example 14.16 For the LFSM G in Figure 14.13 we have

a(z) = 1 , b(z) = (0 z2 0) , v(z) =

⎛⎝ z2

0
0

⎞⎠ ,

and

AG∗(z) =

⎛⎝ 0 1 0
z 0 z
z 0 z

⎞⎠ .

The inverse of I − xAG∗(z) is given by

(I − xAG∗(z))−1 =
1

1−xz−x2z

⎛⎝ 1−xz x−x2z x2z
xz 1−xz xz
xz x2z 1−x2z

⎞⎠
and, so, we get the length–weight enumerator

WG(x, z) = x · (a(z)−1) + x2 · b(z) (I − xAG∗(z))−1 v(z)

=
x3z5

1− xz − x2z
.

14.7. Decoding of convolutional codes 489

We can extend the notation of (partial) derivatives from R[[x]] or R[x, z]
also to R[[x, z]]: the partial derivative of WG(x, z) with respect to x can be
calculated from (14.33) to yield

W ′
G(x, z) =

∂WG(x, z)
∂x

= a(z)−1 + b(z)
(∞∑

�=2

� · x�−1 (AG∗(z))�−2
)
v(z) .

(14.35)
In Section 14.7.2, we will compute upper bounds on the decoding error prob-
ability and, for this purpose, we will treat the derivative of the length–weight
enumerator as a function

(x, z) �→W ′
G(x, z) ,

where x and z range over the nonnegative reals. We next identify a range of
values of (x, z) for which the sum (14.35) converges.

For every nonnegative real z, let

λ(z) = λ(AG∗(z))

be the spectral radius of AG∗(z), i.e., λ(z) is the largest absolute value of any
eigenvalue of AG∗(z). By transforming the matrix AG∗(z) into its Jordan
canonical form, we readily get that the entries of (AG∗(z))� are bounded
from above by f(�, z) · (λ(z))�, where f(�, z) is a function that depends on
G and grows polynomially with �. It follows that the sum (14.35) converges
whenever x and z are nonnegative reals such that

x · λ(z) < 1 .

In Section 14.7.2, we will be particularly interested in the values of W ′
G(x, z)

when x = 1, and from our analysis here we conclude that W ′
G(1, z) converges

whenever λ(z) < 1. It turns out that when G is lossless, the latter inequality
holds for some z ≥ 0, if and only if G satisfies the following condition (see
Problem 14.26):

None of the nontrivial cycles in G generates an all-zero sequence.

We will elaborate more on this condition in Section 14.8.

Example 14.17 The characteristic polynomial of the matrix AG∗(z) in
Example 14.16 is given by

det(ξI −AG∗(z)) = det

⎛⎝ ξ −1 0
−z ξ −z
−z 0 ξ−z

⎞⎠ = ξ(ξ2 − ξz − z) .

490 14. Trellis and Convolutional Codes

Therefore, for z ≥ 0,

λ(z) =
1
2

(
z +

√
z2 + 4z

)
and

λ(z) < 1 ⇐⇒ z < 1
2 .

14.7.2 Bounds on the decoding error probability

Let C be an [n, k] convolutional code over F = GF(q) and let G =
(V =Fm, E, L) be a lossless k : n LFSM that presents C. Our goal in this
section is to obtain a computable upper bound on the decoding error prob-
ability per message of an MLD, given that we use a cycle encoder that is
associated with G. We obtain the upper bound by using the tools of Sec-
tion 14.7.1, but first we need to define what we mean by the per-message
decoding error probability.

We assume that a codeword sequence

c(x) =
�−1∑
t=0

ctx
t

of C◦
�(G) is transmitted through a q-ary symmetric channel with crossover

probability p. The codeword sequence c(x) defines a unique cycle

π = [s0;u0][s1;u1] . . . [s�−1;u�−1]

in G from state s0 = 0m, where ct = L([st;ut]) for 0 ≤ t < �; we refer to π
as the correct cycle. The sequence of edge tags along π,

u(x) =
�−1∑
t=0

utx
t ,

consists of the transmitted messages—including the dummy messages that
guarantee that π is indeed a cycle. The received sequence at the output of
the channel will be denoted by

y(x) =
�−1∑
t=0

ytx
t ,

where yt ∈ Fn.
An MLD (as in Figure 14.10) is applied to y(x) and produces a decoded

cycle
π̂ = [ŝ0; û0][ŝ1; û1] . . . [ŝ�−1; û�−1]

14.7. Decoding of convolutional codes 491

in G from state ŝ0 = 0m, with the property that the codeword sequence

ĉ(x) =
�−1∑
t=0

ĉtx
t

(in C◦
�(G)) that π̂ generates maximizes the conditional probability

Prob(y(x) | ĉ(x)) = Prob{y(x) received | ĉ(x) transmitted } (14.36)

(when p < 1 − (1/q), the sequence ĉ(x) is a closest codeword sequence in
C◦

�(G) to y(x) with respect to the Hamming distance over F). The decoded
message sequence is then given by

û(x) =
�−1∑
t=0

ûtx
t ,

which is the sequence of edge tags along π̂.
We now define the decoding error probability per message of the MLD by

Perr(G) = sup
1≤�<∞

max
c(x)∈C◦

� (G)
max
0≤t<�

Perr(c(x), t; �) , (14.37)

where Perr(c(x), t; �) is the probability that the MLD decodes the message at
time t incorrectly, conditioned on transmitting the codeword sequence c(x);
that is,

Perr(c(x), t; �) = Prob{ ût �= ut | c(x) transmitted } . (14.38)

(When maximizing over c(x) in (14.37), we assume that every codeword
sequence of C◦

�(G) can in effect be generated by the cycle encoder. This
only means that our definition of Perr(G) is somewhat conservative: a cycle
encoder is typically not onto C◦

�(G).)
To facilitate the analysis of Perr(G), we first reduce to the case where the

correct cycle π consists of � repetitions of the trivial cycle. This reduction
is based on the following three observations:

1. By the linearity of C◦
�(G) over F , the difference ĉ(x)− c(x) is a code-

word sequence in C◦
�(G).

2. The cycle from 0m in G that generates ĉ(x)−c(x) is tagged by û(x)−
u(x).

3. By the definition of the q-ary symmetric channel, the probability dis-
tribution of y(x)− c(x) does not depend on the transmitted codeword
sequence c(x).

492 14. Trellis and Convolutional Codes

It follows from these properties that if ĉ(x) maximizes the expression (14.36)
for a given y(x), then ĉ(x)− c(x) will maximize that expression for y(x)−
c(x). Therefore, we subtract c(x) from y(x) and ĉ(x) and, accordingly,
subtract u(x) from û(x), thereby allowing us to assume from now on in the
analysis that both u(x) and c(x) are all-zero.

Figure 14.18 shows the correct cycle and an example of a decoded cycle
for the LFSM G in Figure 14.13, the way these cycles are seen in the trellis
diagram of G. Within the time frame that is covered in the figure, the
decoded cycle contains two sub-paths that are fundamental cycles: one of
length 3 which starts at time 2, and the other of length 4 which starts at
time 8. Thus, the decoded cycle lies off the correct cycle at times 2–4 and
8–11.

11(0)

01(0)

10(0)

00(0)

t 0 1 2 3 4 5 6 7 8 9 10 11 12 · · ·

�00 �00 �00 �00 �00 �00 �00 �00 �00 �00 �00 �00 �00 �

�
11 �

10

�
11

�
11

�01

01

�
11

Figure 14.18. Correct cycle and decoded cycle.

In our next step of the analysis, we bound from above the conditional
probability (14.38), which can now be re-written in the form

Prob{ ût �= 0k | 0�
n } ,

where the conditioning is on the event of transmitting the all-zero codeword
sequence (of length � over Fn). We start with the simple inequality

Prob{ ût �= 0k | 0�
n } ≤ Prob

{
[ŝt; ût] �= [0m;0k]

∣∣∣ 0�
n

}
. (14.39)

Notice that the right-hand side of (14.39) is the conditional probability of
the event that the decoded cycle π̂ is off the correct cycle at time t.

To compute the right-hand side of (14.39), we make use of the following
definition: given a fundamental cycle ψ ∈ Ψh, denote by X (ψ, t) the event
that the decoded cycle π̂ contains ψ as a sub-path starting at time t, namely,
X (ψ, t) is the event

[ŝt; ût][ŝt+1; ût+1] . . . [ŝt+h−1; ût+h−1] = ψ

(for the sake of simplicity, we allow the time index t to be negative or greater
than �−h; in these cases, the probability of the event X (ψ, t) will be defined
to be zero). Now, π̂ will be off the correct cycle at time t, if and only if time

14.7. Decoding of convolutional codes 493

t belongs to a sub-path of π̂ that forms a fundamental cycle; for example,
the decoded cycle in Figure 14.18 at time 9 is off the correct cycle, since the
decoded cycle enters a fundamental cycle of length 4 at time 8. Based on
this reasoning, we conclude that the event

[ŝt; ût] �= [0m;0k]

(of being off the correct cycle at time t) is identical to the following union
of (disjoint) events:

∞⋃
h=1

⋃
ψ∈Ψh

h−1⋃
j=0

X (ψ, t−j) .

Hence, we reach the following expression for the right-hand side of (14.39):

Prob
{

[ŝt; ût] �= [0m;0k]
∣∣∣ 0�

n

}
=

∞∑
h=1

h−1∑
j=0

∑
ψ∈Ψh

Prob{X (ψ, t−j) | 0�
n } .

(14.40)
Next, we bound from above the conditional probability of the event

X (ψ, t) for ψ ∈ Ψh. By the definition of an MLD it follows that the event
X (ψ, t) occurs only if the following inequality is satisfied by the sub-sequence
ytyt+1 . . .yt+h−1:

Prob (ytyt+1 . . .yt+h−1 | L(ψ)) ≥ Prob
(
ytyt+1 . . .yt+h−1 | 0h

n

)
(14.41)

(we use here the abbreviated notation Prob(·|·) as in (14.36): the first argu-
ment in this notation stands for a received sequence and the second argument
is the transmitted sequence on which we condition). Indeed, (14.41) is a nec-
essary condition that an MLD would prefer the cycle ψ over h repetitions of
the trivial cycle.

We proceed with the next lemma, which will be used to bound from
above the conditional probability that the inequality (14.41) is satisfied.
This lemma is general in that it applies to every memoryless channel.

Lemma 14.4 (The Bhattacharyya bound) Let (F, Φ, Prob) be a discrete
memoryless channel and let

w = w1w2 . . . wN and w′ = w′
1w

′
2 . . . w′

N

be two words over F . Denote by P(w,w′) the probability that the received
word y ∈ ΦN satisfies the inequality

Prob
(
y|w′) ≥ Prob (y|w) ,

conditioned on the event that w was transmitted. Then

P(w,w′) ≤
∏

j : wj �=w′
j

∑
y∈Φ

√
Prob(y|wj) · Prob(y|w′

j) . (14.42)

494 14. Trellis and Convolutional Codes

Lemma 14.4 is a special case of part 3 of Problem 1.9: simply take the
code C therein to be {w,w′}. It also follows from that problem that for the
q-ary symmetric channel, the right-hand side of (14.42) becomes

γd(w,w′) ,

where

γ = 2

√
p(1−p)
q−1

+
p(q−2)
q−1

.

If we now substitute

w ← 0h
n , w′ ← L(ψ) , and y ← ytyt+1 . . .yt+h−1

in Lemma 14.42, we get that the conditional probability of the event (14.41)
is bounded from above by

γwF (L(ψ)) .

This is also an upper bound on Prob{X (ψ, t) | 0�
n }, since the event (14.41)

contains X (ψ, t). Therefore, we get from (14.40) the following upper bound
on the conditional probability of being off the correct cycle at time t:

Prob
{

[ŝt; ût] �= [0m;0k]
∣∣∣ 0�

n

}
≤

∞∑
h=1

h
∑

ψ∈Ψh

γwF (L(ψ))

=
∞∑

h=1

h
∞∑
i=0

Wh,iγ
i

=
∂WG(x, z)

∂x

∣∣∣
(x,z)=(1,γ)

= W ′
G(1, γ) .

Combining this with (14.37)–(14.39) finally yields the upper bound

Perr(G) ≤W ′
G(1, γ) , (14.43)

under the assumption that W ′
G(1, γ) converges.

Example 14.18 Let G be the LFSM as in Figure 14.13. We have shown
in Example 14.16 that

WG(x, z) =
x3z5

1− xz − x2z
.

14.8. Non-catastrophic generator matrices 495

The partial derivative of WG(x, z) with respect to x is given by

W ′
G(x, z) =

3x2z5 − x3z6(2 + x)
(1− xz − x2z)2

and, so, for the binary symmetric channel with crossover probability p we
obtain

Perr(G) ≤W ′
G(1, γ) =

3γ5(1−γ)
(1− 2γ)2

,

where
γ = 2

√
p(1−p) .

Now, we have seen in Example 14.17 that W ′
G(1, γ) converges whenever 0 ≤

γ < 1
2 . This range corresponds to values of p that satisfy either p < 1

2 −
1
4

√
3

or p > 1
2 + 1

4

√
3.

The behavior of the upper bound (14.43) is strongly dictated by the free
distance of C: as exhibited in Problem 14.29, this bound becomes propor-
tional to

γdfree(C)

for small values of γ. See also Problem 14.30 for an improvement on the
bound (14.43).

14.8 Non-catastrophic generator matrices

Let C be an [n, k] convolutional code that is presented by an irreducible
lossless k : n LFSM G = (V =Fm, E, L) over F = GF(q), and let G(x) be
the response matrix of G (G(x) is therefore a generator matrix of C). In Sec-
tion 14.7.1, we mentioned a certain condition, which guarantees convergence
of W ′

G(1, z) for at least one nonnegative real z. That condition required
that no nontrivial cycle in G generate an all-zero codeword sequence. In this
section, we discuss this condition in more detail.

Suppose that G contains a cycle ψ �= [0m;0k] that generates an all-zero
codeword sequence, and let s0 denote the initial (and terminal) state of ψ.
Obviously, s0 cannot be 0m, or else G would not be lossless; in fact, since
any cyclic shift of ψ is also a cycle, we find for the same reason that 0m is
not visited at all along ψ.

Consider first the case where the edge tags along the cycle ψ are all equal
to 0k. It turns out that in this case the state s0 is indistinguishable from
state 0m in the following sense: two paths from 0m and s0, respectively, that
have the same tag sequence, also generate the same codeword sequence. This
means that G is an inefficient LFSM realization of the generator matrix G(x),

496 14. Trellis and Convolutional Codes

as the state s0 is actually redundant. In fact, there is a way by which G can be
transformed into another LFSM where such redundant states are eliminated
while the response matrix G(x) remains the same (see Problem 14.13). A
lossless LFSM whose states are pairwise distinguishable is called observable
or reduced .

Next, assume that there is at least one edge tag along ψ that does not
equal 0k. If we happen to choose G for the encoding, then a respective MLD
may run into a severe problem, as we now demonstrate. Denote by π0 the
shortest path from 0m to s0 and by π1 the shortest path back from s0 to
0m. Consider the path

ψ′ = π0ψ
rπ1

in G, where r is a large integer and ψr denotes r repetitions of ψ. The path
ψ′ is a cycle that starts at 0m, and the codeword sequence that it generates
is almost all-zero: any nonzero codeword in that sequence is generated only
by the prefix π0 or the suffix π1 of ψ′. As r becomes large, the lengths of π0

and π1 become negligible compared to r and, thus, to the overall length of
ψ′. Assuming that the correct cycle consists of repetitions of the trivial cycle
(and that the crossover probability of the channel is less than 1− (1/q)), we
reach the conclusion that there are error patterns with a relatively small
number of channel errors—e.g., the error pattern that equals L(ψ′)—which
will cause an MLD to incorrectly decide upon ψ′ instead of the correct cycle.
Yet, with the exception of the initial and terminal states, ψ′ never even
touches the correct cycle; furthermore, each of the r repetitions of ψ within ψ′

produces at least one nonzero—and therefore erroneous—decoded message.
The event which we have just described is called catastrophic error prop-

agation: a bounded number of channel errors may cause an arbitrarily large
number of decoding errors in the message sequence. Accordingly, we say
that the irreducible lossless LFSM G is catastrophic if it contains a cycle ψ
such that the edge tags along ψ are not all zero yet the edge labels are.

Example 14.19 All three LFSMs in Figure 14.19 present the following
simple [3, 1] convolutional code over F = GF(2):

C =
{ ∞∑

t=0

ctx
t : ct ∈ {000, 111} for all t ≥ 0

}
.

The single-state LFSM G1 is defined by a matrix quadruple (P1, B1, Q1, D1),
where P1, B1, and Q1 are vacuous (having no rows or no columns) and

D1 =
(

1 1 1
)

.

Clearly, G1 is both observable and non-catastrophic.

14.8. Non-catastrophic generator matrices 497

The two-state LFSM G2 is defined by

P2 =
(

0
)
, B2 =

(
1
)
, Q2 =

(
0 0 0

)
, and D2 =

(
1 1 1

)
.

This LFSM is not observable yet still non-catastrophic.
The matrix quadruple (P3, B3, Q3, D3) that defines G3 is almost the same

as that of G2; the only difference is that here

Q3 =
(

1 1 1
)

.

The LFSM G3, however, is catastrophic.

0�[0], 000
�

[1], 111

G1

0 1�
[0], 000

�
[0], 000

�
[1], 111

�
[1], 111

G2

0 1�
[0], 000

�
[1], 000

�
[1], 111

�
[0], 111

G3

Figure 14.19. LFSMs for Example 14.19.

We can determine whether an irreducible lossless LFSM G is catastrophic
also from the response matrix G(x) of G: it can be shown (Problem 14.31)
that G is catastrophic if and only if there exists a formal power series u(x) ∈
F [[x]] such that

wF (u(x)) =∞ and wF (u(x)G(x)) <∞ . (14.44)

Thus, the catastrophic property can be seen as a characteristic of the genera-
tor matrix which we select for the encoding: the LFSM realizations of a given
generator matrix G(x) are either all catastrophic or all non-catastrophic,
depending on whether (14.44) holds for some u(x) ∈ F [[x]]. This, in turn,
motivates the following definition: given a convolutional code C over F ,
we say that a generator matrix G(x) of C is catastrophic if there exists
u(x) ∈ F [[x]] that satisfies (14.44).

Turning to the three LFSMs in Example 14.19, their respective response
matrices are

G1(x) = G2(x) =
(

1 1 1
)

and G3(x) =
(

1+x 1+x 1+x
)

.

498 14. Trellis and Convolutional Codes

We can see that (14.44) holds for G3(x) when we take

u(x) =
∞∑

t=0

xt .

The following result presents a necessary and sufficient algebraic condi-
tion that a given generator matrix G(x) is non-catastrophic, provided that
the entries of G(x) are all polynomials.

Proposition 14.5 Let G(x) be a k × n generator matrix over F [x] of
an [n, k] convolutional code over F . Then G(x) is non-catastrophic if and
only if the greatest common divisor of the

(
n
k

)
determinants of the k × k

sub-matrices of G(x) equals some power of x.

Proof. We show the “only if” direction; the “if” part is given as a
guided exercise in Problem 14.32. Suppose that all the determinants of the
k × k sub-matrices of G(x) are divisible (in F [x]) by a monic irreducible
polynomial a(x) �= x over F . Denote by K the extension field F [ξ]/a(ξ)
of F and consider the k × n matrix G(ξ) over K, which is obtained by
substituting x = ξ in G(x). All the k × k sub-matrices of G(ξ) are singular
and, so, over K,

rank(G(ξ)) < k .

It follows that by applying a sequence of elementary linear operations to the
rows of G(ξ), we can always reach a k×n matrix G̃(ξ) over K whose last row
is all-zero. Each of these linear operations belongs to one of the following two
types: interchanging two rows or adding a scalar multiple (over K) of one
row to another row. Elementary operations of the first type are represented
by k × k permutation matrices over F with entries that are 0’s and 1’s;
elementary operations of the second type are triangular matrices having 1’s
on the main diagonal and only one nonzero element off the main diagonal.
In either case, the representing matrix of the elementary operation can be
obtained by substituting x = ξ in a k×k matrix over F [x] whose determinant
is ±1. Thus, the sequence of elementary operations can be expressed as the
matrix product

G̃(ξ) = Tr(ξ)Tr−1(ξ) . . . T1(ξ)G(ξ) ,

where det(Ti(x)) = ±1 over F [x] for i = 1, 2, . . . , r. In particular, each
matrix Ti(x) has an inverse, (Ti(x))−1, over F [x]. We conclude that the
matrix

T (x) = Tr(x)Tr−1(x) . . . T1(x)

and its inverse (over F (x)) are both over F [x].
Consider now the k × n matrix

Ĝ(x) = T (x)G(x)

14.8. Non-catastrophic generator matrices 499

over F [x]. Clearly, Ĝ(ξ) = G̃(ξ) over K; hence, the last row in Ĝ(x) is a
multiple of a(x). Define the vectors

û(x) = (0 0 . . . 0 1/a(x))

and
u(x) = û(x)T (x)

in (F [[x]])k. On the one hand, û(x)Ĝ(x) is a vector over F [x] and, so,

wF (u(x)G(x)) = wF (û(x)Ĝ(x)) <∞ .

On the other hand,

wF

(
u(x)(T (x))−1

)
= wF (û(x)) = wF (1/a(x)) =∞ ,

which readily implies that

wF (u(x)) =∞ .

This completes the proof that G(x) is catastrophic.

The next result guarantees that every convolutional code over F has a
non-catastrophic generator matrix; moreover, there is such a matrix whose
entries are all polynomials over F .

Proposition 14.6 Every [n, k] convolutional code over F has a k × n
generator matrix over F [x] that is non-catastrophic.

Proof. Given an [n, k] convolutional code C over F , let G(x) be any
k × n generator matrix of C with entries in F [x] and let f(x) be the great-
est common divisor of the determinants of the k × k sub-matrices of G(x).
Suppose that f(x) is divisible by a monic irreducible polynomial a(x) �= x
over F . As we did in the proof of Proposition 14.5, we apply to the rows of
G(x) elementary linear operations, resulting in a k × n matrix

Ĝ(x) = T (x)G(x)

over F [x] whose last row is a multiple of a(x). Since T (x) is invertible over
F [[x]] with det(T (x)) = ±1, we get that Ĝ(x) is a generator matrix of C
and also that f(x) is the greatest common divisor of the determinants of the
k × k sub-matrices of Ĝ(x).

Next, we reduce that greatest common divisor to f(x)/a(x), by multiply-
ing the last row of Ĝ(x) by the inverse, 1/a(x), of a(x) in F [[x]]. This results
in a new generator matrix of C over F [x], and we can now repeat the process,
with this new matrix playing the role of G(x), until we reach a stage where

500 14. Trellis and Convolutional Codes

the only irreducible factor (if any) of the greatest common divisor is x. By
Proposition 14.5, the generator matrix at that point is non-catastrophic.

The proof of Proposition 14.6 can be made into a rather efficient al-
gorithm for transforming a (possibly catastrophic) generator matrix G(x)
(over F [x]) into a non-catastrophic one. In such an algorithm, we will need
to find an irreducible factor a(x) of the (as yet unknown) greatest common
divisor f(x), and we can accomplish this as follows. By applying elementary
operations (over F (x)) to the rows of G(x), we identify a k × k nonsin-
gular sub-matrix G0(x) of G(x) and bring it into a triangular form over
F (x). The diagonal of the resulting matrix already provides a factorization
of det(G0(x)) over F , although the factors are not necessarily irreducible.
Then, using available factoring algorithms (like those mentioned in the notes
on Section 3.2), we compute the full irreducible factorization of det(G0(x))
over F ; clearly, each irreducible factor of f(x) also divides det(G0(x)). Fi-
nally, for each irreducible factor a(x) of det(G0(x)), we compute the rank
of G(ξ) in the field F [ξ]/a(ξ): the rank will be smaller than k if and only
if a(x) divides f(x). Once we know an irreducible factor a(x) of f(x), we
proceed as outlined in the proof of Proposition 14.6: we find a new genera-
tor matrix over F [x] where now the greatest common divisor is f(x)/a(x),
and then continue recursively, until the greatest common divisor becomes a
power of x.

Having found a non-catastrophic generator matrix of C, it follows from
Problem 14.19 that we can always realize it by an LFSM that is lossless,
irreducible, observable, and of course non-catastrophic.

The next theorem lists several properties of irreducible LFSM realizations
of a given matrix G(x) whose entries are polynomials over F .

Theorem 14.7 Let F be a finite field and G(x) be a k × n matrix over
F [x]. The following properties hold for every irreducible LFSM over F whose
response matrix is G(x):

(i) G is lossless if and only if rank(G(x)) = k (over F (x)).

(ii) G is deterministic if and only if rank(G(0)) = k (over F).

(iii) G is (lossless and) non-catastrophic if and only if rank(G(α)) = k over
every finite extension field K of F , for every nonzero element α in K.

Part (i) of the theorem is already covered in Proposition 14.3, and the
other two parts are given as exercises in Problems 14.33 and 14.34.

Problems 501

Problems

[Section 14.1]
Problem 14.1 Let G = (V, E,L) be a (labeled) digraph in which each state has
at least M > 1 outgoing edges. Show that for every state s ∈ V and every integer
� > logM |V | there exist at least two distinct paths π and π′ of length � in G such
that

ι(π) = ι(π′) = s and τ(π) = τ(π′) .

Problem 14.2 Let G = (V,E, L) be a digraph and define the bi-connection relation
on the set V as in Section 14.1.1.

1. Show that bi-connection is an equivalence relation.

Let V1, V2, . . . , Vk be the equivalence classes of the bi-connection relation and for i =
1, 2, . . . , k, let Gi be the induced subgraph of G on Vi. The subgraphs G1,G2, . . . ,Gk

are the irreducible components of G.

2. Show that each irreducible component of G is an irreducible digraph.

3. Show that no irreducible component of G is a proper subgraph of any irre-
ducible subgraph of G.

4. Show that if there is a path in G from a state in an irreducible component Gi

to a state in another irreducible component Gj , then there can be no path in
G from any state in Gj to any state in Gi.

5. Show that G must contain at least one irreducible sink; namely, there is at
least one equivalence class Vi such that any edge in E with initial state in Vi

must also have its terminal state in Vi.

Hint: Use part 4.

Problem 14.3 Let �1, �2, . . . , �k be positive integers and let p denote their greatest
common divisor, namely,

p = gcd(�1, �2, . . . , �k) .

Show that every sufficiently large multiple of p can be written as a nonnegative
integer linear combination of �1, �2, . . . , �k; i.e., there exists an integer t0 (which
depends on �1, �2, . . . , �k) such that for every integer t ≥ t0 one can find nonnegative
integers a1, a2, . . . , ak such that

pt =
k∑

i=1

ai�i .

Hint: First argue that it suffices to consider the case where p = 1. Then apply
Euclid’s algorithm in Problem A.3 to show that there exist integers b1, b2, . . . , bk

(some of which may be negative) such that

k∑
i=1

bi�i = gcd(�1, �2, . . . , �k) = 1 .

502 14. Trellis and Convolutional Codes

Define
α =

∑
i : bi>0

bi�i and β = −
∑

i : bi<0

bi�i

and select t0 = β(β−1). Given t ≥ t0, write it in the form

t = βq + r ,

where q ≥ β−1 and 0 ≤ r ≤ β−1. Show that

t = αr + β(q−r) ,

and conclude that the coefficients ai can be taken as follows:

ai =
{

bir if bi ≥ 0
bi(r−q) if bi < 0 , i = 1, 2, . . . , k .

Problem 14.4 (Period of irreducible digraphs) Let G = (V, E,L) be an irreducible
(labeled) digraph and assume that G contains at least one edge. Define the period
p of G as the greatest common divisor of all the cycle lengths in G.

1. Let s and s̃ be two states in V . Show that the lengths of any two paths from
s to s̃ in G are congruent modulo the period p.

Hint: Let π1 and π2 be two distinct paths from s to s̃ and let π3 be a path
from s̃ back to s. Consider the lengths of the cycles π1π3 and π2π3.

2. Two states s and s̃ in V are said to be congruent if there is a path from s
to s̃ whose length is divisible by the period p. Show that congruence is an
equivalence relation.

3. Show that the congruence relation in part 2 partitions V into p equivalence
classes; furthermore, these classes can be labeled V0, V1, . . . , Vp−1 such that
for every i = 0, 1, . . . , p−1, edges outgoing from states in Vi terminate in Vi+1

(where Vp is read as V0).

4. Show that there exists an integer N (which depends on the digraph G) such
that for every t ≥ N and every two congruent states s and s̃ in V , there is a
path of length (exactly) pt in G from s to s̃.

Hint: Let �1, �2, . . . , �k be lengths of cycles in G such that gcd(�1, �2, . . . , �k) =
p and let si be the initial (and terminal) state of a cycle of length �i. Assume in
addition that the states s1 and sk are congruent (explain why this assumption
is allowed). Based on Problem 14.3, show that for every sufficiently large t,
there is a path ψt from s1 to sk in G of length pt. Given any two congruent
states s and s̃ in V , denote by π the shortest path from s to s1 and by π̃ the
shortest path from sk to s̃. Consider the paths

πψtπ̃

for sufficiently large t.

Problems 503

5. Let N be as in part 4. Show that for every t > N , the integers pt are
back-lengths of G; that is, every path π of length � in G can be extended by

(pt)− (� MOD p)

edges so that the resulting path is a cycle (that terminates in ι(π)).

Hint: Given a state s ∈ V , let Vi be the congruence equivalence class that
contains s and V (s, �) be the set of terminal states of the paths of length �
from state s. Show that any path of length p − (� MOD p) from any state in
V (s, �) terminates in Vi. Then use part 4.

6. (Converse to part 5) Show that every back-length of G must be divisible by p.

Problem 14.5 Let G be a labeled digraph, and suppose that there is a nonnegative
integer N such that the following property holds: for any two paths

π = e0e1 . . . eN and π′ = e′0e
′
1 . . . e′N

of length N+1 in G,

if ι(π) = ι(π′) and L(π) = L(π′), then e0 = e′0 ;

that is, if π and π′ have the same initial state and generate the same word (of
length N+1), then they also agree on their first edge. The smallest such N , if any,
for which this holds is called the anticipation of G. If there is no such N then the
anticipation is defined as ∞.

1. What is the anticipation of deterministic digraphs?

2. Show that the labeled digraph G3 in Figure 14.4 has anticipation 1 while G4

has infinite anticipation.

3. Let G be a labeled digraph with anticipation A < ∞ and let

w = w0w1 . . . w�−1

be a word of length � > A that is generated in G by at least one path that
starts at state s0. Show that all paths from s0 in G that generate w agree on
their first �−A edges.

4. Let G be a labeled digraph in which each state has at least one outgoing edge.
Show that if G has finite anticipation then G is lossless.

[Section 14.2]
Problem 14.6 Let F be an alphabet of size q and let G = (V,E, L) be an M -
regular lossless digraph with labeling L : E → Fn. The purpose of this problem is
to show that

lim
�→∞

logqn |C�(G)|
�

= lim sup
�→∞

logqn |C◦
� (G)|

�
=

logq M

n
.

By looking at the irreducible sink in G that contains ι(G), assume hereafter in this
problem that G is irreducible, and let p and Δ be the period and back-length of G,
respectively.

504 14. Trellis and Convolutional Codes

1. Let h be a positive integer and define the integer �(h) by

�(h) = Δ + h− (h MOD p) .

Show that
|Ch+Δ(G)| ≥ |C�(h)(G)| ≥ |C◦

�(h)(G)| ≥Mh .

2. Deduce from part 1 that

lim inf
�→∞

logqn |C�(G)|
�

≥
logq M

n

and that

lim sup
�→∞

logqn |C◦
� (G)|

�
≥

logq M

n
.

3. Based on part 2, show that

lim
�→∞

logqn |C�(G)|
�

= lim sup
�→∞

logqn |C◦
� (G)|

�
=

logq M

n
.

Hint:
|C◦

� (G)| ≤ |C�(G)| ≤M � .

[Section 14.3]

Problem 14.7 Let G = (V, E, L) be an M -regular lossless graph with labeling
L : E → Fn and let

E◦� : Υh → C◦
� (G)

be a cycle encoder that is associated with G, as defined in Section 14.2.2 (note that
E◦� is typically not onto C◦

� (G)). Explain how Viterbi’s algorithm in Figure 14.10
can be modified so that it minimizes (14.12) only over the codeword sequences
ĉ0ĉ1 . . . ĉ�−1 that are images of E◦� (rather than over all the codeword sequences
in C◦

� (G)).

[Section 14.4]

Problem 14.8 Let F = GF(q) and let G = (V =Fm, E, L) be a k : n LFSM
over F that is defined by the matrix quadruple (P,B, Q, D). Show that by
renaming of states and tags in G, it can also be defined by the quadruple
(XPX−1, Y BX−1, XQ, Y D), for every m × m (respectively, k × k) nonsingular
matrix X (respectively, Y) over F .

(Observe that no such matrices X and Y can yield the quadruple (P̃ , B̃, Q̃, D̃)
in Example 14.8 from the quadruple (P, B, Q,D) therein. Nevertheless, the LFSMs
G and G̃ that these two quadruples define are isomorphic.)

Problems 505

Problem 14.9 (Irreducible LFSMs) Let F = GF(q) and let G = (V =Fm, E, L) be
a k : n LFSM over F that is defined by the matrix quadruple (P, B, Q, D). For any
positive integer �, denote by Γ� the (�k)×m matrix over F that is given by

Γ� =

⎛⎜⎜⎜⎜⎜⎝
B

BP
BP 2

...
BP �−1

⎞⎟⎟⎟⎟⎟⎠ .

1. Let s and s̃ be two states in G. Show that there is a path of length � from s
to s̃ in G, if and only if there exist tags u0,u1, . . . ,u�−1 ∈ F k such that

s̃ = sP � +
�−1∑
t=0

utBP t .

2. Let s be a state in G and let � be a positive integer. Show that there are
paths of length � from s to each state in G, if and only if

rank(Γ�) = m .

3. Show that for every � > m, the rows of Γ� are spanned by the rows of Γm.

Hint: Let

a(z) = det(zI − P) = zm +
m−1∑
t=0

atz
t

be the characteristic polynomial of P over F . By the Cayley–Hamilton The-
orem,

Pm = −
m−1∑
t=0

atP
t .

4. Show that G is irreducible if and only if

rank(Γm) = m .

Problem 14.10 Let G = (V =Fm, E, L) be an irreducible k : n LFSM over F .
Using Problem 14.9, show that G is aperiodic and that every integer � ≥ m is a
back-length of G.

Problem 14.11 Let F = GF(q) and let G = (V =Fm, E, L) be a k : n LFSM over
F that is defined by the matrix quadruple (P, B, Q, D). Define the matrix Γ� as in
Problem 14.9, and denote by V (0m) the set of terminal states of all finite paths in
G that start at state 0m.

1. Show that V (0m) equals the linear span of the rows of Γm.

2. Show that for every � ≥ m there is a path in G of length (exactly) � from
state 0m to each state in V (0m).

506 14. Trellis and Convolutional Codes

3. Show that for every � ≥ m and every state s ∈ V (0m) there is a path of
length � in G from s back to state 0m.

Hint: Show that for every m vectors

u0,u1, . . . ,um−1 ∈ F k

there are � vectors
u′

0,u
′
1, . . . ,u

′
�−1 ∈ F k

such that (m−1∑
t=0

utBP t
)
P � +

�−1∑
t=0

u′
tBP t = 0m .

4. Conclude from part 3 that state 0m belongs to an irreducible sink of G.

5. Show that the irreducible sink of G that contains state 0m is itself a k : n
LFSM over F .

Hint: Write Fm as a direct sum of two linear spaces, one of which is V (0m).

Problem 14.12 Let G be a lossless k : n LFSM over F = GF(q).

1. Show that for every � ≥ 1, the sets C�(G) and C◦
� (G) are linear spaces over F .

2. Show that for every � > m, the dimensions of C�(G) and C◦
� (G) (as linear

spaces over F) are at least (�−m)k.

Hint: Use Problem 14.10.

Problem 14.13 (Observable LFSMs) Let F = GF(q) and let G = (V =Fm, E, L)
be a k : n LFSM over F that is defined by the matrix quadruple (P, B, Q,D). For
any positive integer �, denote by Ω� the following m× (�n) matrix over F :

Ω� =
(

Q PQ P 2Q . . . P �−1Q
)

.

1. Show that for every � > m, the columns of Ω� are spanned by the columns
of Ωm.

Hint: Use arguments similar to those in part 3 of Problem 14.9.

Two states s and s̃ in V are said to be distinguishable in G if there exist paths π
and π̃ that start at s and s̃, respectively, such that the sequences of edge tags along
π and π̃ are the same, yet L(π) �= L(π̃).

2. Show that the following conditions are equivalent:

(i) s and s̃ are distinguishable in G.

(ii) (s̃− s)(I − xP)−1Q �= 0n.

(iii) There exists a positive integer � such that (s̃− s)Ω� �= 0�n.

(iv) (s̃− s)Ωm �= 0mn.

(v) The following property holds for every two paths π and π̃ of length
m that start at s and s̃, respectively: if π and π̃ have the same tag
sequence, then L(π) �= L(π̃).

Problems 507

3. The LFSM G is called observable or reduced if every two distinct states in V
are distinguishable in G. Show that G is observable if and only if

rank(Ωm) = m .

4. Let U be the set of states in V that are indistinguishable from state 0m in G.
Show that U forms a linear subspace of V of dimension m − rank(Ωm) over
F and that

s ∈ U =⇒ sP ∈ U .

5. Show that—regardless of whether G is observable or not—there always exists
an observable k : n LFSM Ĝ = (V̂ =Fh, Ê, L̂) whose response matrix is the
same as that of G and

h = rank(Ωm) .

Hint: Write Fm as a direct sum of two linear spaces, one of which is U .

Problem 14.14 Let F be a field. A Laurent series over F (in the indeterminate
x) is an expression of the form

∞∑
t=μ

atx
t ,

where at ∈ F and μ is a (possibly negative) integer. That is, a Laurent series can
include also terms with negative powers of x, as long as the number of such terms
is finite. The set of all Laurent series over F will be denoted by F ((x)).

Given two Laurent series

a(x) =
∞∑

t=μ

atx
t and b(x) =

∞∑
t=ν

btx
t ,

their sum and product in F ((x)) are defined, respectively, by

a(x) + b(x) =
∞∑

t=−∞
(at + bt)xt =

∞∑
t=min{μ,ν}

(at + bt)xt

and

a(x)b(x) =
∞∑

t=−∞

(∞∑
r=−∞

arbt−r

)
xt =

∞∑
t=μ+ν

(t−ν∑
r=μ

arbt−r

)
xt ,

where at (respectively, bt) is defined to be zero when t < μ (respectively, t < ν).

1. Show that F ((x)) is a commutative ring with unity under these definitions of
addition and multiplication.

2. Show that the ring F [[x]] of formal power series over F is a subring of F ((x)).

3. Show that every nonzero element in F ((x)) has a multiplicative inverse and,
so, F ((x)) is a field.

508 14. Trellis and Convolutional Codes

Hint: Let a(x) =
∑∞

t=μ atx
t be an element in F ((x)) such that aμ �= 0. Show

that its multiplicative inverse in F ((x)) is given by b(x) =
∑∞

t=−μ btx
t, where

b−μ =
1
aμ

and bt = − 1
aμ

t+μ∑
r=1

ar+μbt−r , t > −μ .

4. Show that the field F (x) of rational functions over F is a subfield of F ((x)).

Problem 14.15 Let G be a k : n LFSM over F = GF(q) that is defined by the
matrix quadruple (P, B,Q, D) and let G(x) be the response matrix of G. The
purpose of this problem is to show that G is lossless if and only if rank(G(x)) = k.

Suppose first that rank(G(x)) < k (over F (x)); i.e., there exists a nonzero vector
u(x) ∈ (F (x))k such that

u(x)G(x) = 0n .

1. Show that without loss of generality, one can assume that the vector u(x)
satisfies the following properties:

(i) u(x) ∈ (F�[x])k for some (finite) integer �, i.e.,

u(x) = u0 + u1x + . . . + u�−1x
�−1

for some � vectors u0,u1, . . . ,u�−1 ∈ F k.

(ii) u0 �= 0k.

(iii) Each entry in u(x) is divisible (in F [x]) by the polynomial det(I−xP).

2. Under the assumptions on u(x) in part 1, let the infinite state sequence

s0s1s2 · · ·

be defined inductively by s0 = 0m and

st+1 = stP + utB , t ≥ 0 ,

where ut = 0k for every t ≥ �. Show that there is an index r > 0 such that
sr = s0.

Hint: Show that for the given s0 and u(x), the right-hand side of (14.20) is
a vector over F [x].

3. Let the infinite sequence s0s1s2 · · · and the index r be as in part 2. Show that
the cycle

[s0;u0][s1;u1] . . . [sr−1;ur−1]

generates the all-zero sequence. Deduce that G is not lossless.

Turning to proving the converse result, assume now that rank(G(x)) = k.

4. Let π and π′ be two distinct infinite paths in G that start at the same state.
Show that π and π′ generate distinct sequences.

5. Conclude from part 4 that G is lossless.

Problems 509

Problem 14.16 Let G be a lossless k : n LFSM over F = GF(q) that is defined by
the matrix quadruple (P, B, Q,D) and let G(x) be the response matrix of G. The
purpose of this problem is to show that G has finite anticipation (see Problem 14.5).

Let the subset J of {1, 2, . . . , n} index k columns in G(x) that are linearly
independent over F (x) (why do such columns exist?) and let GJ (x) be the k × k
sub-matrix of G(x) that is formed by these columns. The determinant of GJ(x),
which is a nonzero element of F (x), can be written as

det(GJ(x)) =
ω(x)
σ(x)

,

where both σ(x) and ω(x) are nonzero polynomials in F [x]. Denote by r the largest
integer such that xr divides ω(x) in F [x].

Fix s0 to be a state in G and let

c(x) =
∞∑

t=0

ctx
t

be an infinite sequence that is generated by some path from state s0 in G; by part 4
of Problem 14.15 this path is unique. Denote the tag sequence along this path by

u(x) =
∞∑

t=0

utx
t .

1. Define the vector v(x) ∈ (F [[x]])n by

v(x) = c(x)− s0(I − xP)−1Q

and let vJ(x) be the sub-vector of v(x) that is indexed by J . Show that

σ(x) · vJ(x) ·Adj(GJ(x)) = u(x) · ω(x) .

2. Show that u0 can be effectively computed only from s0 and c0, c1, . . . , cr (i.e.,
it is unnecessary to know the values ct for t > r in order to determine u0).

[Section 14.5]
Problem 14.17 Let

σ(x) = 1 + λ1x + λ2x
2 + . . . + λmxm

and
ω(x) = γ0 + γ1x + γ2x

2 + . . . + γmxm

be polynomials over a field F , where

m ≥ max{deg σ,deg ω} .

Define the column vector q = q(σ, ω) in Fm by

q =

⎛⎜⎜⎜⎝
γm

γm−1

...
γ1

⎞⎟⎟⎟⎠− γ0

⎛⎜⎜⎜⎝
λm

λm−1

...
λ1

⎞⎟⎟⎟⎠

510 14. Trellis and Convolutional Codes

and let P be the m×m companion matrix of the reverse polynomial

xm · σ(x−1) = xm + λ1x
m−1 + . . . + λm ;

that is,

P =

⎛⎜⎜⎜⎜⎜⎝
0 0 . . . 0 −λm

1 0 . . . 0 −λm−1

0 1 . . . 0 −λm−2

...
. 0

...
0 . . . 0 1 −λ1

⎞⎟⎟⎟⎟⎟⎠
(see Problem 3.9). Show that

ω(x)
σ(x)

= x e(I − xP)−1q + ω(0) ,

where I is the m×m identity matrix and e is the row vector

(0 0 . . . 0 1)

in Fm.

Hint: Using Problem 3.9, identify the characteristic polynomial a(z) of P and then
show that the last row of (zI − P)−1 equals

1
a(z)

· (1 z z2 . . . zm−1) .

Problem 14.18 (LFSM realizations of generator matrices) Let

G(x) = (ωi,j(x)/σi(x)) k
i=1

n
j=1

be a k × n matrix over F (x), where σi(x) and ωi,j(x) are polynomials over F such
that σi(0) = 1 (thus, it is assumed here that the entries in each row of G(x) are
brought to a common denominator).

For 1 ≤ i ≤ k, define

mi = max{deg σi, deg ωi,1, deg ωi,2, . . . ,deg ωi,n} ,

and let qi,j be the column vector q(σi, ωi,j) ∈ Fmi as defined in Problem 14.17.
Also, denote by Pi the mi ×mi companion matrix of the reverse polynomial

xmi · σi(x−1) ,

and by ei the row vector (0 0 . . . 0 1) in Fmi . Define m to be the sum
∑k

i=1 mi.
Show that G(x) can be written in the form

G(x) = xB(I − xP)−1Q + D ,

Problems 511

where P , B, Q, and D are matrices over F of orders m ×m, k ×m, m × n, and
k × n, respectively, which are given by

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1

P2

. . .

Pk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B =

⎛⎜⎜⎜⎝
e1

e2

. . .
ek

⎞⎟⎟⎟⎠ ,

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q1,1 q1,2 . . . q1,n

q2,1 q2,2 . . . q2,n

...
...

...
...

qk,1 qk,2 . . . qk,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and
D = (ωi,j(0)) k

i=1
n

j=1

(the entries outside the marked blocks in P and B are all zero).

Problem 14.19 Let F = GF(q) and let G(x) be a k × n matrix of rank k over
F (x) ∩ F [[x]]. Show that G(x) is a response matrix of some k : n LFSM G over F
that is lossless, irreducible, and observable.

Hint: See Problems 14.11, 14.13, and 14.18.

Problem 14.20 Let C = C(G) be an [n, k] convolutional code over F = GF(q)
and suppose that C has a k × n generator matrix G(x) whose entries are all in the
ground field F .

1. What is the smallest number of states in any lossless LFSM that presents C?

2. Show that the set of codewords in C1(G) forms a linear [n, k] block code over
F whose generator matrix is G(x).

Problem 14.21 Let C be an [n, k] convolutional code over F = GF(q) and let
G(x) be a generator matrix of C over F (x) ∩ F [[x]]. Show that a k × n matrix

512 14. Trellis and Convolutional Codes

Ĝ(x) over F (x) ∩ F [[x]] is a generator matrix of C, if and only if it can be written
as

Ĝ(x) = T (x)G(x) ,

where T (x) is a k × k matrix over F (x) ∩ F [[x]] such that det(T (0)) �= 0 (over F).

Hint: Show that a k× k matrix T (x) over F (x)∩ F [[x]] has an inverse over F (x)∩
F [[x]], if and only if det(T (0)) �= 0.

Problem 14.22 (Wyner–Ash codes) Let F = GF(q) and let n = qm for some
positive integer m. Consider the [n, n−1] convolutional code C over F with a
generator matrix

G(x) =

⎛⎜⎜⎜⎜⎝ I
1 + x · g1(x)
1 + x · g2(x)

...
1 + x · gn−1(x)

⎞⎟⎟⎟⎟⎠ ,

where I is the (n−1) × (n−1) identity matrix and g1(x), g2(x), . . . , gn−1(x) range
over all the nonzero elements in Fm[x]. For example, when F = GF(2) and m = 2,

G(x) =

⎛⎝ I
1+x
1+x2

1+x+x2

⎞⎠ .

Show that
dfree(C) = 3 .

Hint: Let c(x) = u(x)G(x) be a nonzero codeword sequence in C. Assume first
that u(x), as a vector in (F [[x]])n−1, has just one nonzero entry (in F [[x]]), say
ui(x), and show that it suffices to rule out only the case where ui(x) = 1 + axr for
some a ∈ F . Then assume that u(x) has two nonzero entries, ui(x) and uj(x), and
reduce the problem to the case where ui(x) = 1 and uj(x) = axr.

Problem 14.23 (Upper bound on the free distance) Let G = (V =Fm, E, L) be a
lossless k : n LFSM over F = GF(q). Denote by dmax(ν, κ, q) the largest minimum
distance of any linear [ν, κ>0] block code over F . Show that

dfree(C(G)) ≤ min
�>m

dmax(�n, (�−m)k, q) .

Hint: See Problem 14.12.

[Section 14.6]
Problem 14.24 Let

σ(x) = 1 + λ1x + λ2x
2 + . . . + λmxm

and
ω(x) = γ0 + γ1x + γ2x

2 + . . . + γmxm

Problems 513

be polynomials over a field F , and consider the circuit in Figure 14.20. The m delay
units are initially reset to zero and at each clock tick t ≥ 0, the circuit is fed with
the coefficient of xt in the formal power series

u(x) =
∞∑

t=0

utx
t

and produces the respective coefficient in

c(x) =
∞∑

t=0

ctx
t .

Show that the circuit implements a multiplication by ω(x)/σ(x) in F [[x]]; i.e., c(x)
is related to u(x) by

c(x) =
ω(x)
σ(x)

· u(x) .

+ + + · · · + +� � � � � � � �

γm γm−1 γm−2 · · · γ1 γ0

� � � � �

� � � � �

ut · · ·

λm λm−1 λm−2 · · · λ1

−1� � � �

� � � �

· · · � �ct

Figure 14.20. Multiplication circuit for Problem 14.24.

[Section 14.7]
Problem 14.25 Let G be a single-state LFSM over F and let AG(z) be its 1 × 1
generalized adjacency matrix. What is the length–weight enumerator of G?

Problem 14.26 Let G = (V =Fm, E, L) be a lossless k : n LFSM over F with
|V | > 1 and let G∗ be the induced subgraph of G on V \ {0m}. Denote by λ(z) the
spectral radius of the generalized adjacency matrix AG∗(z).

1. Suppose that no nontrivial cycle in G generates an all-zero sequence. Show
that λ(0) = 0. (Since λ(z) is continuous in z, it follows that there is a
positive-length interval of nonnegative values of z for which λ(z) < 1.)

Hint: Show that (AG∗(0))|V |−1 = 0 (i.e., AG∗(0) is nilpotent).

514 14. Trellis and Convolutional Codes

2. Suppose now that there is a nontrivial cycle in G that generates an all-zero
sequence (since G is lossless, that cycle must be wholly contained in G∗).
Show that λ(z) ≥ 1 for every z ≥ 0.

Hint: Show that there exists s ∈ V \ {0m} such that
(
(AG∗(z))�

)
s,s
≥ 1

for infinitely many integers � and for every z ≥ 0. Then use the fact that
the trace of (AG∗(z))� (which is the sum of entries on its main diagonal) is
bounded from above by (|V |−1) · (λ(z))�.

Problem 14.27 Let F = GF(q) and consider transmission of codeword sequences
of a convolutional code C over F through a memoryless q-ary erasure channel
(F, F ∪ {?}, Prob) with erasure probability p. Verify that the bound (14.43) on the
per-message decoding error probability holds also for this channel, if one substitutes

γ = p .

Hint: Compute the right-hand side of (14.42) for this channel.

Problem 14.28 Let G be an irreducible lossless k : n LFSM over F and for every
i ≥ 0, denote by Wi the number of fundamental cycles in G that generate sequences
whose Hamming weight (over F) is i. The values Wi are related to the coefficients
of the length–weight enumerator WG(x, z) by

Wi =
∞∑

�=1

W�,i .

1. What is the value of W0?

2. Show that Wi < ∞ for all i ≥ 0, if and only if no nontrivial cycle in G
generates an all-zero sequence.

Assume hereafter in this problem that no nontrivial cycle in G generates an all-zero
sequence.

3. Show that

WG(1, z) =
∞∑

i=0

Wiz
i .

4. Show that dfree(C(G)) equals the smallest i such that Wi > 0.

5. Show that the inequality (14.6) is attained for some �, that is,

dfree(C(G)) = min
�

dF (C◦
� (G)) ,

where the minimum is taken over all � such that |C◦
� (G)| > 1.

Problem 14.29 Let G be a k : n LFSM over F and assume that no nontrivial cycle
in G generates an all-zero sequence (by parts 1–3 of Problem 14.15, this condition
implies that the response matrix of G has rank k and, therefore, G is lossless). Show
that for d = dfree(C(G)),

0 < lim
z→0

W ′
G(1, z)
zd

=
∞∑

�=1

� ·W�,d <∞ .

Problems 515

Problem 14.30 (Improvements on the bound (14.43)) Let G = (V =Fm, E, L) be
a k : n LFSM over F = GF(q) and assume that no nontrivial cycle in G generates
an all-zero sequence. For a path

π = [s0;u0][s1;u1] . . . [s�−1;u�−1]

in G, define the tag support T (π) as the set of indexes t for which ut �= 0k. The tag
weight of π is the size of its tag support; namely, the tag weight is the Hamming
weight over F k of the sequence of edge tags along π.

Define the tag-weight enumerator of G by

UG(x, z) =
∞∑

h=0

∞∑
i=0

Uh,ix
hzi ,

where Uh,i is the number of fundamental cycles in G with tag weight h (over F k)
that generate sequences with Hamming weight i (over F).

1. Let the |V | × |V | matrix AG(x, z) be defined by

(AG(x, z))s,s̃ =
∑
e∈E:

ι(e)=s, τ(e)=s̃

xδ(e)zw(L(e)) ,

where

δ(e) =
{

0 if the edge tag of e equals 0k

1 otherwise .

Show that

UG(x, z) = x · (a(z)−1) + x · b(z) (I −AG∗(x, z))−1 v(x, z) ,

where
a(z) = (AG(x, z))0m,0m ,

and b(x), v(x, z), and AG∗(x, z) are obtained from AG(x, z) as follows:

AG(x, z) =

⎛⎜⎜⎜⎜⎝
a(z) x · b(z)

v(x, z) AG∗(x, z)

⎞⎟⎟⎟⎟⎠ .

2. Show that for the LFSMs G and G̃ in Figure 14.13,

UG(x, z) =
x2z5(x− x2z + z)

1− 2xz + x2z2 − z2
and UG̃(x, z) =

xz5

1− 2xz
.

3. Show that the upper bound (14.43) can be improved to

Perr(G) ≤ U ′
G(1, γ) ,

where U ′
G(x, z) is the partial derivative of UG(x, z) with respect to x.

516 14. Trellis and Convolutional Codes

Hint: Using the notation of Section 14.7.2, show that the event

ût �= 0k

(of decoding into the wrong message at time t) is identical to the union of
events ∞⋃

h=1

⋃
ψ∈Θh

⋃
j∈T (ψ)

X (ψ, t−j) ,

where Θh stands for the set of fundamental cycles in G with tag weight h.

4. Verify that for the LFSMs G and G̃ in Figure 14.13,

U ′
G(1, γ) =

γ5(3− 6γ + 2γ2)
(1− 2γ)2

and U ′
G̃(1, γ) =

γ5

(1− 2γ)2
,

whenever γ ∈ [0, 1
2).

[Section 14.8]
Problem 14.31 Let G be an irreducible lossless k : n LFSM over F = GF(q)
and let G(x) be the response matrix of G. Show that the following conditions are
equivalent:

(i) G is non-catastrophic.

(ii) For every nonnegative integer w there exists a (finite) integer N(w) such that
for every u(x) ∈ F [[x]],

wF (u(x)G(x)) ≤ w =⇒ wF (u(x)) ≤ N(w) .

(iii) G(x) is non-catastrophic, i.e., for every u(x) ∈ (F [[x]])k,

wF (u(x)G(x)) <∞ =⇒ wF (u(x)) <∞ .

Problem 14.32 Let G(x) be a k × n catastrophic generator matrix of an [n, k]
convolutional code over F , and suppose that the entries of G(x) are all in F [x].
The purpose of this problem is to show that there is a monic irreducible polynomial
a(x) �= x over F that divides all

(
n
k

)
determinants of the k×k sub-matrices of G(x).

Let G = (V =Fm, E, L) be a lossless LFSM that realizes G(x) as in Prob-
lem 14.18, and denote by (P,B,Q, D) the defining quadruple of G. Based on that
problem, assume further that the nonzero entries in P are all below the main diag-
onal.

1. Show that there are nonzero vectors s0 ∈ V and u(x) ∈ (F�[x])k for some
� < ∞ such that (

u(x)
∞∑

i=0

x�i
)
G(x) = −s0(I − xP)−1Q .

Hint: By Problem 14.31, there is an irreducible sink in G that is catastrophic.
Therefore, there exists a cycle ψ in G from a state s0 �= 0m such that the
edge tags along ψ are not all zero yet the labels are. Select the coefficients of
u(x) to be the edge tags along ψ.

Problems 517

Hereafter, let s0, u(x), and � be as in part 1.

2. Show that
u(x)G(x) = (x� − 1)s0(I − xP)−1Q .

3. Let G0(x) be a k × k sub-matrix of G(x). Show that

u(x) det(G0(x)) = (x� − 1)s0(I − xP)−1Q0 ·Adj(G0(x)) ,

where Q0 is an m× k sub-matrix of Q formed by the columns of Q with the
same indexes as the columns of G0(x) within G(x).

Hint: G0(x) ·Adj(G0(x)) = det(G0(x)) · I.

4. Show that the vector equality in part 3 is over F [x] (i.e., the entries of the
vectors are all polynomials).

Hint: Under the assumption on the matrix P , what is the determinant of
(I − xP)?

5. Let uj(x) denote any nonzero entry in u(x). Show that for every k × k
sub-matrix G0(x) of G(x),

x� − 1 |uj(x) det(G0(x)) .

6. Show that there is a monic irreducible factor a(x) (�= x) of x�−1 over F that
divides det(G0(x)) for all k × k sub-matrices G0(x) of G(x).

Problem 14.33 Let C be an [n, k] convolutional code over F and let G(x) be a
generator matrix of C.

1. Show that the following conditions are equivalent:

(i) rank(G(0)) = k (over F).

(ii) C has a generator matrix that contains the k × k identity matrix as a
sub-matrix; i.e., the generator matrix is systematic—or can made into
one by permutation of columns.

(iii) Every LFSM presentation of C is deterministic.

Suppose now that the entries of G(x) are all in F [x], and let r be the largest integer
such that xr divides all the determinants of the k × k sub-matrices of G(x).

2. Show that there exists an [n, k] convolutional code C′ over F that satisfies
the following properties:

(i) C′ has a (possibly column-permuted) systematic generator matrix.

(ii) C ⊆ C′.

(iii) If c(x) ∈ C′ then xr · c(x) ∈ C.

Hint: Follow the steps of the proof of Proposition 14.6 with a(x) = x. Notice
that multiplying a row of Ĝ(x) therein by 1/x results now in a generator
matrix of another convolutional code.

518 14. Trellis and Convolutional Codes

Problem 14.34 Let G(x) be a k × n matrix over F [x] where F is a finite field
and let G be an irreducible LFSM realization of G(x). Show that G is lossless and
non-catastrophic if and only if rank(G(α)) = k over every finite extension field K
of F , for every nonzero element α ∈ K.

Hint: Consider first the case where rank(G(x)) < k (over F (x)). Next, assume that
rank(G(x)) = k and deduce from Proposition 14.5 that G(x) is catastrophic if and
only if there is a nonzero element α in a finite extension field of F such that the
minimal polynomial of α (with respect to F) divides det(G0(x)) for every k × k
sub-matrix G0(x) of G(x).

Notes

There is a vast body of literature on convolutional codes and trellis codes, and
this chapter only attempts to be an introductory exposition to this subject. More
information on these codes can be found in Blahut [46, Chapter 12], Forney [131]–
[133], Johannesson and Zigangirov [197], Lin and Costello [230, Chapters 10–12],
McEliece [258], [259, Chapter 10], and Viterbi and Omura [374, Chapters 4–6].

[Section 14.1]

Labeled digraphs serve as a descriptive tool in many areas. Their use in this chapter
is very similar to the role they play in automata theory, symbolic dynamics, and
constrained coding theory. For example, our notion of a sequence set is almost
the same as a regular language in automata theory, a sofic system in symbolic
dynamics, and a constrained system in constrained coding. See Hopcroft et al. [188,
Chapters 2–4], Kohavi [217], Lind and Marcus [232], and Marcus et al. [251].

[Section 14.2]

In our definition of a trellis code, we require that the presenting lossless digraph be
regular. The next result implies that there is no loss of generality in this require-
ment.

Proposition 14.8 Let G be an irreducible lossless digraph and λ be the spectral
radius of the adjacency matrix of G. There exists an irreducible M -regular lossless
digraph G′ such that C(G′) ⊆ C(G), if and only if M ≤ λ.

Proposition 14.8 follows from a key theorem in constrained coding theory, by
Adler et al. [2]. Their theorem provides an algorithm, known as the state-splitting
algorithm, for obtaining the regular digraph G′ out of G. This algorithm serves as
a primary tool for constructing encoders for constrained systems; see Marcus et
al. [251, Section 4]. The proof of Adler et al. in [2] makes use of Perron–Frobenius
theory for nonnegative matrices. (See the notes on Section 13.2 at the end of Chap-
ter 13. It follows from this theory that the spectral radius λ in Proposition 14.8 is,
in fact, an eigenvalue of the adjacency matrix of G. The same can be said about the
spectral radius λ(z) of the generalized adjacency matrix AG∗(z) in Section 14.7.1.)

Notes 519

[Section 14.3]

Viterbi’s algorithm was suggested in [373] for the decoding of convolutional codes.
Viterbi’s algorithm is an instance of an optimization algorithm which is known
in computer science and operations research as dynamic programming. See, for
example, Hillier and Lieberman [177, Chapter 11].

Other decoding algorithms are discussed in the notes on Section 14.7 below.

[Section 14.4]

Linear finite-state machines are found in other disciplines as well, such as signal
processing and linear dynamical systems. In these applications, the underlying field
is typically the real or the complex field, rather than a finite field. The terms “con-
trollable” and “observable” are borrowed from these disciplines, and so is “response
matrix,” which has been adapted from the term “impulse response” used in linear
systems. See Kailath [202] and Kwakernaak and Sivan [221, Chapter 5] (for the
linear systems approach to LFSMs) and Kohavi [217, Chapter 15] (for the finite
automata approach).

[Section 14.5]

Convolutional codes were first introduced by Elias in [115]. Many of the convolu-
tional codes with the largest-known free distance were found by computer search,
and they are available through tables. See Blahut [46, Section 12.5] and Lin and
Costello [230, Section 11.3].

The codes in Problem 14.22 are due to Wyner and Ash [389].
Convolutional codes can be used as ingredients for constructing other codes.

One important example of the latter is the class of turbo codes. A turbo code is
defined through two systematic generator matrices,

G1(x) =
(

I A1(x)
)

and G2(x) =
(

I A2(x)
)

,

of two respective convolutional codes, an [n1, k] code C1 and an [n2, k] code C2,
both over the same field F . The sequence of messages u(x) to be sent is encoded
into a codeword sequence c1(x) = u(x)G1(x), and a permuted (interleaved) copy
of u(x), denoted by û(x), is mapped into the sequence ĉ2(x) = û(x)A2(x). The
transmitted sequence is then given by (c1(x) | ĉ2(x)), which is a vector of length
n1+n2−k over F [[x]]. Turbo codes were introduced by Berrou et al. in [41], [42],
along with an iterative method for decoding them. While the theory of turbo codes
is not yet fully understood, they have exhibited remarkable performance in empirical
results.

[Section 14.7]

The time complexity of Viterbi’s algorithm, when applied to a k : n LFSM G =
(V =Fm, E, L) over F = GF(q), is proportional to � · qm+k, where � is the length of
the received sequence. In practical applications, the parameters k and n are usually
small; the value of m, however, may need to be large so that we meet the desired
decoding error probability. This, in turn, poses a limitation on the use of Viterbi’s

520 14. Trellis and Convolutional Codes

algorithm (such a limitation applies also to the computation of the formula (14.34)
for the length–weight enumerator of G, since the number of rows and columns in
AG∗(z) equals qm−1).

Alternate decoding algorithms exist with a considerably smaller time complex-
ity, yet with some sacrifice in the decoding error probability. These algorithms
usually go under the collective term sequential decoding . Early sequential decoders
were suggested by Wozencraft [387] and Wozencraft and Reiffen [388], and the
predominant algorithms currently known are Fano’s algorithm [120] and the stack
algorithm due to Jelinek [196] and Zigangirov [395].

We next provide a brief description of these two algorithms. Both algorithms
operate on the trellis diagram T(G), where it is assumed that states from which there
are no paths to state (ι(G))(�) have been pruned. In addition, since the algorithms
compare paths of different lengths, a certain adjustment for the length is inserted
into the definition (14.13) of a path cost.

Fano’s algorithm constructs a path by starting at state (ι(G))(0) in layer 0 and
then making its way greedily towards subsequent layers, always selecting an edge
that yields the lowest (adjusted) cost to the traversed path so far. This process
continues until one of the following occurs: (a) we reach state (ι(G))(�), in which
case the algorithm terminates, or (b) the path cost exceeds a certain threshold T .
In the latter case, the algorithm backtracks one layer and tries another outgoing
edge, if any. The threshold T is updated throughout the execution of the algorithm:
backtracking loosens it while progress tightens it.

The stack algorithm does not maintain a running threshold; instead, it keeps a
list (“stack”) of all the paths from (ι(G))(0) that have been traversed so far, sorted
according to their cost. In each step of the algorithm, the path π with the lowest
cost in the list is replaced by all qk paths in T(G) that are obtained by extending
π by one edge. The list is re-sorted and the process continues until we reach state
(ι(G))(�). Practical space constraints may cause the list to be overflowed, in which
case the worst paths are removed from the list during the re-sorting.

A detailed description of Fano’s algorithm and the stack algorithm can be
found in several references: see Blahut [46, Section 12.9], Forney [133], Lin
and Costello [230, Chapter 12], McEliece [259, Section 10.4], and Viterbi and
Omura [374, Chapter 6].

Our decoding error analysis for MLDs in Section 14.7.2 was done for a given
convolutional code. It is known that convolutional codes attain the capacity of
the q-ary symmetric channel, with a per-message decoding error probability that
decays exponentially with the constraint length of the encoder. See Shulman and
Feder [337], Viterbi and Omura [374, Chapter 5], and Zigangirov [396].

[Section 14.8]
Proposition 14.5 is due to Massey and Sain [256].

Appendix

Basics in Modern Algebra

We summarize below several concepts—mainly from modern algebra—which
are used throughout the book. Some of the properties of these concepts are
included in the problems that follow.

A group is a nonempty set G with a binary operation “·” that satisfies
the following properties:

• Closure: a · b ∈ G for every a, b ∈ G.

• Associativity: (a · b) · c = a · (b · c) for every a, b, c ∈ G.

• Unity element: there exists an element 1 ∈ G such that 1 ·a = a ·1 = a
for every a ∈ G.

• Inverse element: for every element a ∈ G there is an element a−1 ∈ G
such that a · a−1 = a−1 · a = 1.

A group G is called commutative or Abelian if a · b = b · a for every
a, b ∈ G.

For an element a in a group G and a positive integer n, the notation an

will stand for
a · a · . . . · a︸ ︷︷ ︸

n times

,

and a−n will denote the element (a−1)n in G. Also, define a0 = 1.
A group G is called cyclic if there is an element a ∈ G, called a generator,

such that each element in G has the form an for some integer n.
An element a in a group G has finite order if there is a positive integer

n such that an = 1. The smallest n for which this holds is called the order
of a and is denoted by O(a).

A nonempty subset H of a group G is a subgroup of G if H is a group
with respect to the operation of G.

521

522 Appendix: Basics in Modern Algebra

Let H be a subgroup of a group G. Two elements a, b ∈ G are said to
be congruent modulo H if and only if a · b−1 ∈ H.

Let H be a subgroup of a group G and let a be an element of G. The
(right) coset Ha (of H in G) is the set {h · a : h ∈ H }.

A subgroup H of a group G is called normal if for every a ∈ G and
h ∈ H, the element aha−1 belongs to H.

A ring is a nonempty set R with two binary operations “+” and “·” that
satisfy the following properties:

• R is a commutative group with respect to “+”.

• Associativity of “·”: (a · b) · c = a · (b · c) for every a, b, c ∈ R.

• Distributivity: a · (b+ c) = (a · b)+(a · c) and (b+ c) ·a = (b ·a)+(c ·a)
for every a, b, c ∈ R.

The unity element of “+” is called the zero element and is denoted by
0. The inverse of an element a ∈ R with respect to “+” is denoted by −a
and the notation a − b stands for a + (−b). When writing expressions, the
operation “·” takes precedence over “+” and is usually omitted when no
confusion arises.

A ring with unity is a ring R in which the operation “·” has a unity
element; namely, there is an element 1 ∈ R such that 1 · a = a · 1 = a for
every a ∈ R.

A commutative ring is a ring in which the operation “·” is commutative.
An integral domain is a commutative ring with unity in which

ab = 0 =⇒ a = 0 or b = 0 ;

namely, there are no zero divisors.
A nonempty subset S of a ring R is a subring of R if S is a ring with

respect to the operations “+” and “·” of R.
A subring I of R is called an ideal if for every r ∈ R and a ∈ I, both ar

and ra are in I.
A field is a commutative ring in which the nonzero elements form a group

with respect to the operation “·”.

Problems

Problem A.1 Let Z+ denote the set of positive integers (excluding zero) and let
φ : Z+ → Z+ be the Euler function; namely, for every positive integer n,

φ(n) =
∣∣∣{i ∈ {1, 2, . . . , n} : gcd(i, n) = 1

}∣∣∣
(where gcd(·, ·) denotes the greatest common divisor and | · | denotes the size of a
set).

Problems 523

1. Show that φ(pe) = pe−1(p−1) for every prime p and positive integer e.

2. Let
∏s

j=1 p
ej

j be the factorization of n into distinct primes p1, p2, . . . , ps. Show
that

φ(n) = n ·
s∏

j=1

(
1− 1

pj

)
.

3. Let m and n be positive integers such that gcd(m,n) = 1. Show that φ(mn) =
φ(m)φ(n).

4. Show that for every positive divisor m of n,

φ(n/m) =
∣∣∣{i ∈ {1, 2, . . . , n} : gcd(i, n) = m

}∣∣∣ .

5. Show that for every positive integer n,∑
m |n

φ(m) =
∑
m |n

φ(n/m) = n ,

where the summation is taken over all positive integers m that divide n.

Problem A.2 Define the Möbius function μ : Z+ → {−1, 0, 1} as follows. Given
a positive integer n, let

∏s
j=1 p

ej

j be the factorization of n into distinct primes
p1, p2, . . . , ps. Then,

μ(n) =

⎧⎨⎩
1 if n = 1

(−1)s if ej = 1 for 1 ≤ j ≤ s
0 otherwise

.

1. (The Möbius inversion formula) Let h : Z+ → R and H : Z+ → R be two
real-valued functions defined over the domain of positive integers. Show that
the following two conditions are equivalent:

(i) For every n ∈ Z+,
H(n) =

∑
m |n

h(m) .

(ii) For every n ∈ Z+,

h(n) =
∑
m |n

μ(m)H(n/m) .

Hint: Show that ∑
m |n

μ(m) =
{

1 if n = 1
0 if n > 1 .

2. Show that
φ(n)

n
=

∑
m |n

μ(m)
m

.

Hint: Use part 5 of Problem A.1.

524 Appendix: Basics in Modern Algebra

r−1 ← a; r0 ← b;
s−1 ← 1; s0 ← 0;
t−1 ← 0; t0 ← 1;
for (i← 1; ri−1 �= 0; i++) {

qi ← �ri−2/ri−1;
ri ← ri−2 − qiri−1;
si ← si−2 − qisi−1;
ti ← ti−2 − qiti−1;

}

Figure A.1. Euclid’s algorithm for integers.

Problem A.3 (Extended Euclid’s algorithm for integers) Let a and b be nonnega-
tive integers, not both zero, and consider the algorithm in Figure A.1 for computing
remainders ri, quotients qi, and auxiliary values si and ti.

Let ν denote the largest index i for which ri �= 0. Prove the following four
properties (apply induction in properties 1–3):

1. sia + tib = ri for i = −1, 0, . . . , ν+1.

2. If c divides both a and b then c divides ri for i = −1, 0, . . . , ν+1.

3. rν divides ri for i = ν−1, ν−2, . . . ,−1.

4. rν = gcd(a, b).

Problem A.4 Let n be a positive integer. Show that the set {0, 1, 2, . . . , n−1},
with the operation of integer addition modulo n, is a cyclic group (the sum of two
integers modulo n is the remainder obtained when their ordinary sum is divided
by n).

Problem A.5 Show that the unity element in a group is unique.

Problem A.6 Show that the inverse of a given element in a group is unique.

Problem A.7 Show that (an)−1 = (a−1)n for every element a in a group and
every positive integer n.

Problem A.8 Show that every element in a finite group has finite order.

Problem A.9 Let a be an element of finite order in a group G.

1. Show that for every positive integer �,

a� = 1 if and only if O(a) | � .

Hint: a� = ar, where r is the remainder of � when divided by O(a).

Problems 525

2. Show that for every positive integer n,

O(an) =
O(a)

gcd(O(a), n)
.

Problem A.10 Let a and b be elements with finite orders m and n, respectively,
in a commutative group and suppose that gcd(m,n) = 1. Show that O(a · b) = mn.

Hint: First verify that e = O(a · b) divides mn. Then suppose to the contrary
that e < mn. Argue that this implies the existence of a prime divisor p of n (say)
such that e | (mn/p). Compute (ab)mn/p and show that it is equal both to 1 and
to bmn/p.

Problem A.11 Let G be a cyclic group of size n with a generator a and let m be
a positive divisor of n. Show that the elements of G of order m are given by ai,
where i ranges over the set{

i ∈ {1, 2, . . . , n} : gcd(i, n) = n/m
}

.

Conclude that there are φ(m) elements of order m in G; in particular, there are
φ(n) generators in G.

Problem A.12 Let G be a group. Show that a nonempty subset H of G is a
subgroup of G if and only if every two (possibly equal) elements a, b ∈ H satisfy
a · b−1 ∈ H.

Problem A.13 Let H be a nonempty finite subset of a group G and suppose that
H is closed under the operation of G. Show that H is a subgroup of G.

Problem A.14 Let H be a subgroup of a group G.

1. Show that congruence modulo H is an equivalence relation; namely, it is
reflexive, symmetric, and transitive.

2. Show that the equivalence classes in G of the relation of congruence modulo
H are the cosets of H in G.

3. Show that if H is finite then all the cosets of H in G have the same size.

4. (Lagrange’s Theorem) Show that if G is finite then |H| divides |G|.

Problem A.15 Let H be a normal subgroup of a group G. Show that the cosets of
H in G form a group with respect to the operation (Ha)·(Hb) = (Hab). (This group
is called the factor group or quotient group of G by H and is denoted by G/H.)

Problem A.16 Let a be an element of finite order in a group G.

1. Show that the set {ai}O(a)−1
i=0 forms a subgroup of G.

2. Show that if G is finite then O(a) divides |G|.
Hint: Apply Lagrange’s Theorem (part 4 of Problem A.14).

526 Appendix: Basics in Modern Algebra

Problem A.17 Let n be a positive integer.

1. Show that the set {b ∈ {1, 2, . . . , n} : gcd(b, n) = 1} with the operation of
integer multiplication modulo n is a commutative group.

Hint: Use part 1 of Problem A.3 to show that every element in the set has
an inverse.

2. (The Euler–Fermat Theorem) Let a be an integer such that gcd(a, n) = 1.
Show that n divides aφ(n) − 1.

3. (Fermat’s Little Theorem) Suppose that n is a prime and let a be an integer.
Show that n divides an − a.

Problem A.18 Show that 0 · a = a · 0 = 0 for every element a in a ring R.

Problem A.19 Let Z denote the set of integers with “+” and “·” standing, re-
spectively, for ordinary addition and multiplication of integers.

1. Verify that Z is an integral domain.

2. Show that for every positive integer m, the integer multiples of m form an
ideal in Z. Is this ideal a ring with unity?

Problem A.20 Let m be a positive integer. Show that the m ×m matrices over
R form a ring with unity, where “+” and “·” stand, respectively, for addition and
multiplication of matrices.

Problem A.21 For a positive integer n, denote by Zn the set {0, 1, 2, . . . , n−1}
with the operations “+” and “·” standing, respectively, for addition and multipli-
cation of integers modulo n.

1. Show that Zn is a commutative ring with unity.

2. Show that when n is a prime then Zn is a field.

Bibliography

(Citing chapters of a reference are listed next to it in bracketed italics.)

[1] L.M. Adleman, The function field sieve, Proc. 1st Int’l Symp. Algorithmic
Number Theory (ANTS-I), Ithaca, New York (1994), L.M. Adleman, M.-
D. A. Huang (Editors), Lecture Notes in Computer Science, Volume 877,
Springer, Berlin, 1994, pp. 108–121 [3] .

[2] R.L. Adler, D. Coppersmith, M. Hassner, Algorithms for sliding block
codes—an application of symbolic dynamics to information theory, IEEE
Trans. Inform. Theory, 29 (1983), 5–22 [14] .

[3] S.S. Agaian, Hadamard Matrices and Their Applications, Lecture Notes in
Mathematics, Volume 1168, Springer, Berlin, 1985 [2] .

[4] M. Agrawal, S. Biswas, Primality and identity testing via Chinese re-
maindering, J. ACM, 50 (2003), 429–443 [3] .

[5] M. Agrawal, N. Kayal, N. Saxena, PRIMES is in P, Ann. Math., 160
(2004), 781–793 [3] .

[6] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis
of Computer Algorithms, Addison-Wesley, Reading, Massachusetts, 1974
[3, 5, 6] .

[7] M. Alekhnovich, Linear Diophantine equations over polynomials and soft
decoding of Reed–Solomon codes, IEEE Trans. Inform. Theory, 51 (2005),
2257–2265 [9] .

[8] N. Alon, Eigenvalues and expanders, Combinatorica, 6 (1986), 83–96 [13] .

[9] N. Alon, Eigenvalues, geometric expanders, sorting in rounds, and Ramsey
theory, Combinatorica, 6 (1986), 207–219 [13] .

[10] N. Alon, J. Bruck, J. Naor, M. Naor, R.M. Roth, Construction of
asymptotically good low-rate error-correcting codes through pseudo-random
graphs, IEEE Trans. Inform. Theory, 38 (1992), 509–516 [12, 13] .

[11] N. Alon, F.R.K. Chung, Explicit construction of linear sized tolerant net-
works, Discrete Math., 72 (1988), 15–19 [13] .

527

528 Bibliography

[12] N. Alon, M. Luby, A linear time erasure-resilient code with nearly optimal
recovery, IEEE Trans. Inform. Theory, 42 (1996), 1732–1736 [13] .

[13] N. Alon, V.D. Milman, Eigenvalues, expanders, and superconcentra-
tors, Proc. 25th Annual IEEE Symp. Foundations of Computer Science
(FOCS’1984), Singer Island, Florida (1984), IEEE Computer Society Press,
Los Alamitos, California, 1984, pp. 320–322 [13] .

[14] N. Alon, V.D. Milman, λ1, isoperimetric inequalities for graphs, and su-
perconcentrators, J. Comb. Theory B, 38 (1985), 73–88 [13] .

[15] N. Alon, Y. Roichman, Random Cayley graphs and expanders, Random
Struct. Algorithms, 5 (1994), 271–284 [13] .

[16] N. Alon, J.H. Spencer, The Probabilistic Method, Second Edition, Wiley,
New York, 2000 [13] .

[17] S. Arora, L. Babai, J. Stern, Z. Sweedyk, The hardness of approximate
optima in lattices, codes, and systems of linear equations, J. Comput. Syst.
Sci., 54 (1997), 317–331 [2] .

[18] E.F. Assmus, Jr., J.D. Key, Designs and their Codes, Cambridge Tracts
in Mathematics, Volume 103, Cambridge University Press, Cambridge, 1992
[2, 5, 8] .

[19] J. Astola, On the non-existence of certain perfect Lee-error-correcting
codes, Ann. Univ. Turku A 1, 167 (1975), 1–13 [10] .

[20] J. Astola, On perfect codes in the Lee metric, Ann. Univ. Turku A 1, 176
(1978), 1–56 [10] .

[21] J. Astola, A note on perfect Lee-codes over small alphabets, Discrete Appl.
Math., 4 (1982), 227–228 [10] .

[22] J.T. Astola, An Elias-type bound for Lee-codes over large alphabets and
its application to perfect codes, IEEE Trans. Inform. Theory, 28 (1982),
111–113 [10] .

[23] J.T. Astola, Concatenated codes for the Lee metric, IEEE Trans. Inform.
Theory, 28 (1982), 778–779 [10] .

[24] J. Astola, On the asymptotic behaviour of Lee-codes, Discrete Appl. Math.,
8 (1984), 13–23 [10] .

[25] D. Augot, L. Pecquet, A Hensel lifting to replace factorization in list-
decoding of algebraic–geometric and Reed–Solomon codes, IEEE Trans. In-
form. Theory, 46 (2000), 2605–2614 [9] .

[26] L. Babai, Spectra of Cayley graphs, J. Comb. Theory B, 27 (1979), 180–189
[13] .

[26’] L. Babai, H. Oral, K.T. Phelps, Eulerian self-dual codes, SIAM J. Dis-
crete Math., 7 (1994), 325–330 [2] .

Bibliography 529

[27] A. Barg, G.D. Forney, Jr., Random codes: minimum distances and error
exponents, IEEE Trans. Inform. Theory, 48 (2002), 2568–2573 [4] .

[28] A. Barg, J. Justesen, C. Thommesen, Concatenated codes with fixed
inner code and random outer code, IEEE Trans. Inform. Theory, 47 (2001),
361–365 [12] .

[29] A. Barg, G. Zémor, Error exponents of expander codes, IEEE Trans.
Inform. Theory, 48 (2002), 1725–1729 [13] .

[30] A. Barg, G. Zémor, Concatenated codes: serial and parallel, IEEE Trans.
Inform. Theory, 51 (2005), 1625–1634 [13] .

[31] L.A. Bassalygo, A necessary condition for the existence of perfect codes
in the Lee metric, Math. Notes, 15 (1974), 178–181 [10] .

[32] M. Ben-Or, Probabilistic algorithms in finite fields, Proc. 22nd Annual
IEEE Symp. Foundations of Computer Science (FOCS’1981), Nashville, Ten-
nessee (1981), IEEE Computer Society Press, Los Alamitos, California, 1981,
pp. 394–398 [3] .

[33] C. Berge, Hypergraphs: Combinatorics of Finite Sets, North-Holland, Am-
sterdam, 1989 [13] .

[34] E.R. Berlekamp, Factoring polynomials over large finite fields, Math. Com-
put., 24 (1970), 713–735 [3] .

[35] E.R. Berlekamp, Long primitive binary BCH codes have distance d ∼
2n lnR−1/ log n · · ·, IEEE Trans. Inform. Theory, 18 (1972), 415–426 [5, 8] .

[36] E.R. Berlekamp, Algebraic Coding Theory, Revised Edition, Aegean Park
Press, Laguna Hills, California, 1984 [Prf., 2, 3, 5, 6, 8, 10] .

[37] E.R. Berlekamp, Bounded distance +1 soft-decision Reed–Solomon decod-
ing, IEEE Trans. Inform. Theory, 42 (1996), 704–720 [6, 9] .

[38] E.R. Berlekamp, R.J. McEliece, H.C.A. van Tilborg, On the inherent
intractability of certain coding problems, IEEE Trans. Inform. Theory, 24
(1978), 384–386 [2] .

[39] E.R. Berlekamp, H. Rumsey, G. Solomon, On the solution of algebraic
equations over finite fields, Inform. Control, 10 (1967), 553–564 [3] .

[40] S.D. Berman, On the theory of group codes, Cybernetics, 3 (1967), 25–31
[8] .

[41] C. Berrou, A. Glavieux, Near optimum error correcting coding and de-
coding: turbo-codes, IEEE Trans. Commun., 44 (1996), 1261–1271 [14] .

[42] C. Berrou, A. Glavieux, P. Thitimajshima, Near Shannon limit error-
correcting coding and decoding: turbo-codes, Conf. Record 1993 IEEE Int’l
Conf. Communications (ICC’1993), Geneva, Switzerland (1993), pp. 1064–
1070 [14] .

530 Bibliography

[43] A. Bhattacharyya, On a measure of divergence between two statistical
populations defined by their probability distributions, Bull. Calcutta Math.
Soc., 35 (1943), 99–110 [1] .

[44] N.L. Biggs, Discrete Mathematics, Second Edition, Oxford University Press,
Oxford, 2002 [11] .

[45] S.R. Blackburn, Fast rational interpolation, Reed–Solomon decoding, and
the linear complexity profile of sequences, IEEE Trans. Inform. Theory, 43
(1997), 537–548 [9] .

[46] R.E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley,
Reading, Massachusetts, 1983 [Prf., 3, 6, 14] .

[47] R.E. Blahut, A universal Reed–Solomon decoder, IBM J. Res. Develop.,
28 (1984), 150–158 [3, 6] .

[48] R.E. Blahut, Algebraic Methods for Signal Processing and Communications
Coding, Springer, New York, 1992 [3] .

[49] I.F. Blake, R.C. Mullin, The Mathematical Theory of Coding, Academic
Press, New York, 1975 [Prf.] .

[50] M. Blaum, J. Brady, J. Bruck, J. Menon, EVENODD: an efficient
scheme for tolerating double disk failures in RAID architectures, IEEE Trans.
Comput., 445 (1995), 192–202 [11] .

[51] M. Blaum, J. Bruck, MDS array codes for correcting a single criss-cross
error, IEEE Trans. Inform. Theory, 46 (2000), 1068–1077 [11] .

[52] M. Blaum, J. Bruck, A. Vardy, MDS array codes with independent
parity symbols, IEEE Trans. Inform. Theory, 42 (1996), 529–542 [11] .

[53] M. Blaum, R.M. Roth, New array codes for multiple phased burst correc-
tion, IEEE Trans. Inform. Theory, 39 (1993), 66–77 [11] .

[54] M. Blaum, R.M. Roth, On lowest density MDS codes, IEEE Trans. In-
form. Theory, 45 (1999), 46–59 [11] .

[55] V.M. Blinovskii, Covering the Hamming space with sets translated by
linear code vectors, Probl. Inform. Transm., 26 (1990), 196–201 [4] .

[56] E.L. Blokh, V.V. Zyablov, Existence of linear concatenated binary codes
with optimal correcting properties, Probl. Inform. Transm., 9 (1973), 271–
276 [12] .

[57] E.L. Blokh, V.V. Zyablov, Coding of generalized concatenated codes,
Probl. Inform. Transm., 10 (1974), 218–222 [5, 12] .

[58] E.L. Blokh, V.V. Zyablov, Linear Concatenated Codes, Nauka, Moscow,
1982 (in Russian) [5, 12] .

Bibliography 531

[59] M.A. de Boer, Almost MDS codes, Designs Codes Cryptogr., 9 (1996),
143–155 [11] .

[60] B. Bollobás, Modern Graph Theory, Springer, New York, 1998 [13] .

[61] R.C. Bose, D.K. Ray-Chaudhuri, On a class of error correcting binary
group codes, Inform. Control, 3 (1960), 68–79 [5] .

[62] R.C. Bose, D.K. Ray-Chaudhuri, Further results on error correcting bi-
nary group codes, Inform. Control, 3 (1960), 279–290 [5] .

[63] P.A.H. Bours, Construction of fixed-length insertion/deletion correcting
runlength-limited codes, IEEE Trans. Inform. Theory, 40 (1994), 1841–1856
[10] .

[64] D.W. Boyd, On a problem of Byrnes concerning polynomials with restricted
coefficients, Math. Comput., 66 (1997), 1697–1703 [10] .

[65] D.W. Boyd, On a problem of Byrnes concerning polynomials with restricted
coefficients, II, Math. Comput., 71 (2002), 1205–1217 [10] .

[66] D. Le Brigand, On computational complexity of some algebraic curves over
finite fields, Proc. 3rd Int’l Conf. Algebraic Algorithms and Error Correcting
Codes (AAECC-3), Grenoble, France (1985), J. Calmet (Editor), Lecture
Notes in Computer Science, Volume 229, Springer, Berlin, 1986, pp. 223–227
[4] .

[67] R.A. Brualdi, H.J. Ryser, Combinatorial Matrix Theory, Cambridge Uni-
versity Press, Cambridge, 1991 [11, 13] .

[68] J. Bruck, M. Naor, The hardness of decoding linear codes with prepro-
cessing, IEEE Trans. Inform. Theory, 36 (1990), 381–385 [2] .

[69] D. Burshtein, M. Krivelevich, S. Litsyn, G. Miller, Upper bounds
on the rate of LDPC codes, IEEE Trans. Inform. Theory, 48 (2002), 2437–
2449 [13] .

[70] D. Burshtein, G. Miller, Expander graph arguments for message-passing
algorithms, IEEE Trans. Inform. Theory, 47 (2001), 782–790 [13] .

[71] D. Burshtein, G. Miller, Bounds on the performance of belief propaga-
tion decoding, IEEE Trans. Inform. Theory, 48 (2002), 112–122 [13] .

[72] K.A. Bush, Orthogonal arrays of index unity, Ann. Math. Stat., 23 (1952)
426–434 [5] .

[73] L. Carlitz, S. Uchiyama, Bounds for exponential sums, Duke Math. J.,
24 (1957), 37–41 [5] .

[74] L.R.A. Casse, A solution to Beniamino Segre’s “Problem Ir,q” for q even,
Atti Accad. Naz. Lincei Rend., 46 (1969), 13–20 [11] .

532 Bibliography

[75] L.R.A. Casse, D.G. Glynn, The solution to Beniamino Segre’s problem
Ir,q, r = 3, q = 2h, Geom. Dedic., 13 (1982), 157–163 [11] .

[76] G. Castagnoli, J.L. Massey, P.A. Schoeller, N. von Seemann, On
repeated-root cyclic codes, IEEE Trans. Inform. Theory, 37 (1991), 337–342
[8] .

[77] U. Cheng, On the continued fraction and Berlekamp’s algorithm, IEEE
Trans. Inform. Theory, 30 (1984), 541–544 [6] .

[78] J.C.-Y. Chiang, J.K. Wolf, On channels and codes for the Lee metric,
Inform. Control, 19 (1971), 159–173 [10] .

[79] R.T. Chien, Cyclic decoding procedures for Bose–Chaudhuri–Hocquenghem
codes, IEEE Trans. Inform. Theory, 10 (1964), 357–363 [6] .

[80] D.V. Chudnovsky, G.V. Chudnovsky, Algebraic complexity and alge-
braic curves over finite fields, J. Complexity, 4 (1988), 285–316 [3] .

[81] G. Cohen, I. Honkala, S. Litsyn, A. Lobstein, Covering Codes, North-
Holland, Amsterdam, 1997 [4] .

[82] G.D. Cohen, M.G. Karpovsky, H.F. Mattson, Jr., J.R. Schatz, Cov-
ering radius—survey and recent results, IEEE Trans. Inform. Theory, 31
(1985), 328–343 [4] .

[83] G.D. Cohen, A.C. Lobstein, N.J.A. Sloane, Further results on the cov-
ering radius of codes, IEEE Trans. Inform. Theory, 32 (1986), 680–694 [4] .

[84] C.J. Colbourn, J.H. Dinitz (Editors), The CRC Handbook of Combi-
natorial Designs, CRC Press, New York, 1996 [11] .

[85] D. Coppersmith, Fast evaluation of logarithms in fields of characteristic
two, IEEE Trans. Inform. Theory, 30 (1984), 587–594 [3] .

[86] D. Coppersmith, A.M. Odlyzko, R. Schroeppel, Discrete logarithms
in GF(p), Algorithmica, 1 (1986), 1–15 [3] .

[87] T.M. Cover, J.A. Thomas, Elements of Information Theory, Wiley, New
York, 1991 [1, 4] .

[88] I. Csiszár, J. Körner, Information Theory: Coding Theorems for Dis-
crete Memoryless Systems, Second Edition, Akadémiai Kiadó, Budapest,
1997 [1, 4] .

[89] D. Dabiri, I.F. Blake, Fast parallel algorithms for decoding Reed–Solomon
codes based on remainder polynomials, IEEE Trans. Inform. Theory, 41
(1995), 873–885 [9] .

[90] H. Davenport, Multiplicative Number Theory, Third Edition, revised by
H.L. Montgomery, Springer, New York, 2000 [13] .

Bibliography 533

[91] P.J. Davis, Circulant Matrices, Second Edition, Chelsea, New York, 1994
[10] .

[92] V.A. Davydov, Codes correcting errors in the modulus metric, Lee metric,
and operator errors, Probl. Inform. Transm., 29 (1993), 208–216 [10] .

[93] P. Delsarte, Bounds for unrestricted codes, by linear programming, Philips
Res. Rep., 27 (1972), 272–289 [4] .

[94] P. Delsarte, An algebraic approach to the association schemes of coding
theory, Philips Res. Rep. Suppl., 10 (1973) [4] .

[95] P. Delsarte, Four fundamental parameters of a code and their combinato-
rial significance, Inform. Control, 23 (1973), 407–438 [4] .

[96] P. Delsarte, On subfield subcodes of modified Reed–Solomon codes, IEEE
Trans. Inform. Theory, 21 (1975), 575–576 [5] .

[97] P. Delsarte, Bilinear forms over a finite field, with applications to coding
theory, J. Comb. Theory A, 25 (1978), 226–241 [11] .

[98] P. Delsarte, J.-M. Goethals, Alternating bilinear forms over GF(q), J.
Comb. Theory A, 19 (1975), 26–50 [10] .

[99] P. Delsarte, P. Piret, Algebraic constructions of Shannon codes for reg-
ular channels, IEEE Trans. Inform. Theory, 28 (1982), 593–599 [12] .

[100] P. Delsarte, P. Piret, Do most binary linear codes achieve the Goblick
bound on the covering radius?, IEEE Trans. Inform. Theory, 32 (1986), 826–
828 [4] .

[101] J. Dénes, A.D. Keedwell, Latin Squares and their Applications, Academic
Press, New York, 1974 [11] .

[102] J. Dénes, A.D. Keedwell, Latin Squares—New Developments in the The-
ory and Applications, Annals of Discrete Mathematics, Volume 46, North-
Holland, Amsterdam, 1991 [11] .

[103] O. Deutsch, Decoding methods for Reed–Solomon codes over polynomial
rings, M.Sc. dissertation, Computer Science Department, Technion, Haifa,
Israel, 1994 (in Hebrew) [6, 11] .

[104] R. Diestel, Graph Theory, Second Edition, Springer, New York, 2000 [13] .

[105] C. Ding, T. Helleseth, W. Shan, On the linear complexity of Legendre
sequences, IEEE Trans. Inform. Theory, 44 (1998), 1276–1278 [7] .

[106] S.M. Dodunekov, I.N. Landjev, On near-MDS codes, J. Geom., 54
(1995), 30–43 [11] .

[107] S.M. Dodunekov, I.N. Landjev, Near-MDS codes over some small fields,
Discrete Math., 213 (2000), 55–65 [11] .

534 Bibliography

[108] J.L. Dornstetter, On the equivalence between Berlekamp’s and Euclid’s
algorithms, IEEE Trans. Inform. Theory, 33 (1987), 428–431 [6] .

[109] I. Dumer, Concatenated codes and their multilevel generalizations, in Hand-
book of Coding Theory, Volume II, V.S. Pless, W.C. Huffman (Editors),
North-Holland, Amsterdam, 1998, pp. 1911–1988 [12] .

[110] I. Dumer, D. Micciancio, M. Sudan, Hardness of approximating the
minimum distance of a linear code, IEEE Trans. Inform. Theory, 49 (2003),
22–37 [2] .

[111] A. Dür, The automorphism groups of Reed–Solomon codes, J. Comb. Theory
A, 44 (1987), 69–82 [5] .

[112] A. Dür, On linear MDS codes of length q+1 over GF(q) for even q, J. Comb.
Theory A, 49 (1988), 172–174 [8] .

[113] E. Eleftheriou, R. Cideciyan, On codes satisfying Mth-order running
digital sum constraints, IEEE Trans. Inform. Theory, 37 (1991), 1294–1313
[10] .

[114] P. Elias, Error-free coding, IRE Trans. Inform. Theory, 4 (1954), 29–37 [5] .

[115] P. Elias, Coding for noisy channels, IRE Int’l Conv. Rec., 1955, 37–46 [14] .

[116] P. Elias, Error-correcting codes for list decoding, IEEE Trans. Inform. The-
ory, 37 (1991), 5–12 [9] .

[117] T. Etzion, A. Vardy, Perfect binary codes: constructions, properties, and
enumeration, IEEE Trans. Inform. Theory, 40 (1994), 754–763 [4] .

[118] A. Faldum, W. Willems, Codes of small defect, Designs Codes Cryptogr.,
10 (1997), 341–350 [11] .

[119] G. Falkner, W. Heise, B. Kowol, E. Zehendner, On the existence of
cyclic optimal codes, Atti. Sem. Mat. Fis. Univ. Modena, 28 (1979), 326–341
[8] .

[120] R.M. Fano, A heuristic discussion of probabilistic decoding, IEEE Trans.
Inform. Theory, 9 (1963), 64–74 [14] .

[121] P.G. Farrell, A survey of array error control codes, Eur. Trans. Telecom-
mun. Relat. Technol., 3 (1992), 441–454 [5] .

[122] U. Feige, D. Micciancio, The inapproximability of lattice and coding
problems with preprocessing, Proc. 17th Annual IEEE Conf. Computational
Complexity (CCC’2002), Montréal, Québec (2002), IEEE Computer Society
Press, Los Alamitos, California, 2002, pp. 44–52 [2] .

[123] G.-L. Feng, Two fast algorithms in the Sudan decoding procedure, 37th
Annual Allerton Conf. Communication, Control, and Computing, Urbana-
Champaign, Illinois (1999), pp. 545–554 [9] .

Bibliography 535

[124] G.-L. Feng, K.K. Tzeng, A generalized Euclidean algorithm for multise-
quence shift-register synthesis, IEEE Trans. Inform. Theory, 35 (1989) 584–
594 [6] .

[125] G.-L. Feng, K.K. Tzeng, A generalization of the Berlekamp–Massey algo-
rithm for multisequence shift-register synthesis with applications to decoding
cyclic codes, IEEE Trans. Inform. Theory, 37 (1991) 1274–1287 [6] .

[126] P. Fitzpatrick, G.H. Norton, Finding a basis for the characteristic ideal
of an n-dimensional linear recurring sequence, IEEE Trans. Inform. Theory,
36 (1990), 1480–1487 [6] .

[127] P. Fitzpatrick, G.H. Norton, The Berlekamp–Massey algorithm and lin-
ear recurring sequences over a factorial domain, Appl. Algebra Eng. Commun.
Comput., 6 (1995) 309–323 [6] .

[128] G.D. Forney, Jr., On decoding BCH codes, IEEE Trans. Inform. Theory,
11 (1965) 549–557 [6] .

[129] G.D. Forney, Jr., Concatenated Codes, MIT Press, Cambridge, Massachu-
setts, 1966 [4, 5, 12] .

[130] G.D. Forney, Jr., Generalized minimum distance decoding, IEEE Trans.
Inform. Theory, 12 (1966) 125–131 [12] .

[131] G.D. Forney, Jr., Convolutional codes I: algebraic structure, IEEE Trans.
Inform. Theory, 16 (1970), 720–738 (see the correction in IEEE Trans. In-
form. Theory, 17 (1971), 360) [14] .

[132] G.D. Forney, Jr., Convolutional codes II: maximum-likelihood decoding,
Inform. Control, 25 (1974), 222–266 [14] .

[133] G.D. Forney, Jr., Convolutional codes III: sequential decoding, Inform.
Control, 25 (1974), 267–297 [14] .

[134] G. Freiman, S. Litsyn, Asymptotically exact bounds on the size of high-
order spectral-null codes, IEEE Trans. Inform. Theory, 45 (1999), 1798–1807
[10] .

[135] E.M. Gabidulin, Theory of codes with maximum rank distance, Probl. In-
form. Transm., 21 (1985), 1–12 [11] .

[136] E.M. Gabidulin, Optimum codes correcting lattice errors, Problemy Pered-
achi Informatsii, 21 No. 2 (April–June 1985), 103–108 (in Russian) [11] .

[137] E.M. Gabidulin, V.I. Korzhik, Codes correcting lattice-pattern errors,
Izvestiya VUZ Radioelektronika, 15 (1972), 492–498 (in Russian) [11] .

[138] R.G. Gallager, Low-density parity-check codes, IRE Trans. Inform. The-
ory, 8 (1962), 21–28 [13] .

536 Bibliography

[139] R.G. Gallager, Low-Density Parity-Check Codes, MIT Press, Cambridge,
Massachusetts, 1963 [13] .

[140] R.G. Gallager, Information Theory and Reliable Communication, Wiley,
New York, 1968 [1, 4] .

[141] F.R. Gantmacher, Matrix Theory, Volume II, Chelsea, New York, 1960
[13] .

[142] S. Gao, M.A. Shokrollahi, Computing roots of polynomials over func-
tion fields of curves, in Coding Theory and Cryptography: from Enigma and
Geheimschreiber to Quantum Theory, D. Joyner (Editor), Springer, Berlin,
2000, pp. 214–228 [9] .

[143] M.R. Garey, D.S. Johnson, Computers and Intractability: a Guide to the
Theory of NP-Completeness, Freeman, New York, 1979 [2] .

[144] J. von zur Gathen, J. Gerhard, Modern Computer Algebra, Cambridge
University Press, Cambridge, 1999 [3, 5, 6] .

[145] J. Georgiades, Cyclic (q+1, k)-codes of odd order q and even dimension k
are not optimal, Atti. Sem. Mat. Fis. Univ. Modena, 30 (1982), 284–285 [8] .

[146] E.N. Gilbert, A comparison of signalling alphabets, Bell Syst. Tech. J., 31
(1952), 504–522 [4] .

[147] D.G. Glynn, The non-classical 10-arc of PG(4, 9), Discrete Math., 59 (1986),
43–51 [11] .

[148] T.J. Goblick, Jr., Coding for a discrete information source with a dis-
tortion measure, Ph.D. dissertation, Department of Electrical Engineering,
Massachusetts Institute of Technology, Cambridge, Massachusetts, 1962 [4] .

[149] M.J.E. Golay, Notes on digital coding, Proc. IEEE, 37 (1949), 657 [2, 4] .

[150] M.J.E. Golay, Anent codes, priorities, patents, etc., Proc. IEEE, 64 (1976),
572 [2] .

[151] O. Goldreich, R. Rubinfeld, M. Sudan, Learning polynomials with
queries: the highly noisy case, SIAM J. Discrete Math., 13 (2000), 535–570
[4, 9] .

[152] S.W. Golomb, Shift Register Sequences, Revised Edition, Aegean Park
Press, Laguna Hills, California, 1982 [3, 6, 7] .

[153] S.W. Golomb, E.C. Posner, Rook domains, Latin squares, affine planes,
and error-distribution codes, IEEE Trans. Inform. Theory, 10 (1964), 196–
208 [11] .

[154] S.W. Golomb, L.R. Welch, Algebraic coding and the Lee metric, in Error
Correcting Codes, H.B. Mann (Editor), Wiley, New York, 1968, pp. 175–194
[10] .

Bibliography 537

[155] S.W. Golomb, L.R. Welch, Perfect codes in the Lee metric and the pack-
ing of polyominoes, SIAM J. Appl. Math., 18 (1970), 302–317 [10] .

[156] V.D. Goppa, A new class of linear correcting codes, Probl. Inform. Transm.,
6 (1970), 207–212 [5, 12] .

[157] V.D. Goppa, A rational representation of codes and (L, g)-codes, Probl.
Inform. Transm., 7 (1971), 223–229 [5, 12] .

[158] V.D. Goppa, Binary symmetric channel capacity is attained with irreducible
codes, Probl. Inform. Transm., 10 (1974), 89–90 [5, 12] .

[159] D.M. Gordon, Discrete logarithms in GF(p) using the number field sieve,
SIAM J. Discrete Math., 6 (1993), 124–138 [3] .

[160] D.C. Gorenstein, N. Zierler, A class of error-correcting codes in pm

symbols, J. Soc. Ind. Appl. Math., 9 (1961), 207–214 [5, 6] .

[161] R.L. Graham, N.J.A. Sloane, On the covering radius of codes, IEEE
Trans. Inform. Theory, 31 (1985), 385–401 [4] .

[162] S. Gravier, M. Mollard, C. Payan, On the non-existence of 3-
dimensional tiling in the Lee metric, Europ. J. Combinatorics, 19 (1998),
567–572 [10] .

[163] J.H. Griesmer, A bound for error-correcting codes, IBM J. Res. Develop.,
4 (1960), 532–542 [4] .

[164] B.R. Gulati, E.G. Kounias, On bounds useful in the theory of symmetrical
factorial designs, J. Roy. Statist. Soc. B, 32 (1970), 123–133 [11] .

[165] V. Guruswami, P. Indyk, Expander-based constructions of efficiently de-
codable codes, Proc. 42nd Annual IEEE Symp. Foundations of Computer
Science (FOCS’2001), Las Vegas, Nevada (2001), IEEE Computer Society
Press, Los Alamitos, California, 2001, pp. 658–667 [13] .

[166] V. Guruswami, P. Indyk, Linear-time codes to correct a maximum possible
fraction of errors, 39th Annual Allerton Conf. Communication, Control, and
Computing, Urbana-Champaign, Illinois (2001) [13] .

[167] V. Guruswami, P. Indyk, Near-optimal linear-time codes for unique decod-
ing and new list-decodable codes over smaller alphabets, Proc. 34th Annual
ACM Symp. Theory of Computing (STOC’2002), Montréal, Québec (2002),
ACM, New York, 2002, pp. 812–821 [13] .

[168] V. Guruswami, M. Sudan, Improved decoding of Reed–Solomon and
algebraic–geometry codes, IEEE Trans. Inform. Theory, 45 (1999), 1757–
1767 [9] .

[169] R.W. Hamming, Error detecting and error correcting codes, Bell Syst. Tech.
J., 26 (1950), 147–160 [2, 4] .

538 Bibliography

[170] A.R. Hammons, Jr., P.V. Kumar, A.R. Calderbank, N.J.A. Sloane,
P. Solé, The Z4-linearity of Kerdock, Preparata, Goethals, and related
codes, IEEE Trans. Inform. Theory, 40 (1994), 301–319 [10] .

[171] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers,
Fifth Edition, Oxford University Press, Oxford, 1979 [10, 13] .

[172] C.R.P. Hartmann, K.K. Tzeng, Generalizations of the BCH bound, In-
form. Control, 20 (1972), 489–498 [8] .

[173] A. Hasan, V.K. Bhargava, T. Le-Ngoc, Algorithms and architectures
for the design of a VLSI Reed–Solomon codec, in Reed–Solomon Codes and
their Applications, S.B. Wicker, V.K. Bhargava (Editors), IEEE Press, New
York, 1994, 60–107 [6] .

[174] H.J. Helgert, Alternant codes, Inform. Control, 26 (1974), 369–380 [5] .

[175] A.E. Heydtmann, J.M. Jensen, On the equivalence of the Berlekamp–
Massey and the Euclidean algorithms for decoding, IEEE Trans. Inform.
Theory, 46 (2000), 2614–2624 [6] .

[176] H.M. Hilden, D.G. Howe, E.J. Weldon, Jr., Shift error correcting mod-
ulation codes, IEEE Trans. Magn., 27 (1991), 4600–4605 [10] .

[177] F.S. Hillier, G.J. Lieberman, Introduction to Operations Research, Sev-
enth Edition, McGraw-Hill, Boston, Massachusetts, 2001 [14] .

[178] S. Hirasawa, M. Kasahara, Y. Sugiyama, T. Namekawa, Certain gen-
eralizations of concatenated codes—exponential error bounds and decoding
complexity, IEEE Trans. Inform. Theory, 26 (1980), 527–534 [5, 12] .

[179] S. Hirasawa, M. Kasahara, Y. Sugiyama, T. Namekawa, An improve-
ment of error exponents at low rates for the generalized version of concate-
nated codes, IEEE Trans. Inform. Theory, 27 (1981), 350–352 [5, 12] .

[180] S. Hirasawa, M. Kasahara, Y. Sugiyama, T. Namekawa, Modified
product codes, IEEE Trans. Inform. Theory, 30 (1984), 299–306 [5] .

[181] J.W.P. Hirschfeld, Projective Geometries over Finite Fields, Second Edi-
tion, Oxford University Press, Oxford, 1998 [11] .

[182] J.W.P. Hirschfeld, G. Korchmáros, On the embedding of an arc into
a conic in a finite plane, Finite Fields Appl., 2 (1996), 274–292 [11] .

[183] J.W.P. Hirschfeld, G. Korchmáros, On the number of rational points
on an algebraic curve over a finite field, Bull. Belg. Math. Soc. Simon Stevin,
5 (1998), 313–340 [11] .

[184] J.W.P. Hirschfeld, L. Storme, The packing problem in statistics, coding
theory, and finite projective spaces, J. Statist. Planning Infer., 72 (1998),
355–380 [11] .

Bibliography 539

[185] J.W.P. Hirschfeld, L. Storme, The packing problem in statistics, coding
theory and finite projective spaces: update 2001, in Finite Geometries: Proc.
4th Isle of Thorns Conference, Chelwood Gate, UK (2000), A. Blokhuis,
J.W.P. Hirschfeld, D. Jungnickel, J.A. Thas (Editors), Developments in
Mathematics, Volume 3, Kluwer, Dordrecht, 2001, pp. 201–246 [11] .

[186] J.W.P. Hirschfeld, J.A. Thas, General Galois Geometries, Oxford Uni-
versity Press, Oxford, 1991 [2, 11] .

[187] A. Hocquenghem, Codes correcteurs d’erreurs, Chiffres, 2 (1959), 147–156
[5] .

[188] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata
Theory, Languages, and Computation, Second Edition, Addison–Wesley,
Boston, Massachusetts, 2001 [14] .

[189] L.-K. Hua, Introduction to Number Theory, Springer, Berlin, 1982 [10] .

[190] M.N. Huxley, The Distribution of Prime Numbers, Oxford University
Press, London, 1972 [13] .

[191] I. Iizuka, M. Kasahara, T. Namekawa, Block codes capable of correcting
both additive and timing errors, IEEE Trans. Inform. Theory, 26 (1980),
393–400 [10] .

[192] K.A.S. Immink, Coding Techniques for Digital Recorders, Prentice-Hall,
New York, 1991 [5, 10] .

[193] K.A.S. Immink, Codes for Mass Data Storage Systems, Second Edition,
Shannon Foundation Publishers, Eindhoven, The Netherlands, 2004 [10] .

[194] K.A.S. Immink, G.F.M. Beenker, Binary transmission codes with higher
order spectral zeros at zero frequency, IEEE Trans. Inform. Theory, 33
(1987), 452–454 [10] .

[195] K. Ireland, M. Rosen, A Classical Introduction to Modern Number The-
ory, Second Edition, Springer, New York, 1990 [13] .

[196] F. Jelinek, Fast sequential decoding algorithm using a stack, IBM J. Res.
Develop., 13 (1969), 675–685 [14] .

[197] R. Johannesson, K.S. Zigangirov, Fundamentals of Convolutional Cod-
ing, IEEE Press, New York, 1999 [14] .

[198] S.M. Johnson, A new upper bound for error-correcting codes, IRE Trans.
Inform. Theory, 8 (1962), 203–207 [4] .

[199] J. Justesen, A class of constructive asymptotically good algebraic codes,
IEEE Trans. Inform. Theory, 18 (1972), 652–656 [12] .

[200] J. Justesen, On the complexity of decoding Reed–Solomon codes, IEEE
Trans. Inform. Theory, 22 (1976), 237–238 [6] .

540 Bibliography

[201] J. Justesen, T. Høholdt, Bounds on list decoding of MDS codes, IEEE
Trans. Inform. Theory, 47 (2001), 1604–1609 [9] .

[202] T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, New Jersey,
1980 [14] .

[203] M. Kaminski, D.G. Kirkpatrick, N.H. Bshouty, Addition requirements
for matrix and transposed matrix products, J. Algorithms, 9 (1988), 354–364
[6] .

[204] R. Karabed, P.H. Siegel, Matched spectral-null codes for partial-response
channels, IEEE Trans. Inform. Theory, 37 (1991), 818–855 [10] .

[205] M. Kasahara, Y. Sugiyama, S. Hirasawa, T. Namekawa, New classes
of binary codes constructed on the basis of concatenated codes and product
codes, IEEE Trans. Inform. Theory, 22 (1976), 462–468 [5, 12] .

[206] T. Kasami, An upper bound on k/n for affine-invariant codes with fixed
d/n, IEEE Trans. Inform. Theory, 15 (1969), 174–176 [12] .

[207] T. Kasami, S. Lin, W.W. Peterson, New generalizations of the Reed–
Muller codes—part I: primitive codes, IEEE Trans. Inform. Theory, 14
(1968), 189-199 [8] .

[208] G.L. Katsman, M.A. Tsfasman, S.G. Vlădut, Modular curves and codes
with a polynomial construction, IEEE Trans. Inform. Theory, 30 (1984),
353–355 [4] .

[209] A.M. Kerdock, A class of low-rate nonlinear codes, Inform. Control, 20
(1972), 182–187 [10] .

[210] O. Keren, S.N. Litsyn, A class of array codes correcting multiple column
erasures, IEEE Trans. Inform. Theory, 43 (1997), 1843–1851 [11] .

[211] O. Keren, S.N. Litsyn, Codes correcting phased burst erasures, IEEE
Trans. Inform. Theory, 44 (1998), 416–420 [11] .

[212] L. Khachiyan, On the complexity of approximating extremal determinants
in matrices, J. Complexity, 11 (1995), 138–153 [2, 5] .

[213] J.-H. Kim, H.-Y. Song, Trace representation of Legendre sequences, De-
signs Codes Cryptogr., 24 (2001), 343–348 [7] .

[214] J.F.C. Kingman, The exponential decay of Markov transition probabilities,
Proc. Lond. Math. Soc., 13 (1963), 337–358 [10] .

[215] D.E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical
Algorithms, Third Edition, Addison-Wesley, Reading, Massachusetts, 1998
[3] .

[216] R. Koetter, A. Vardy, Algebraic soft-decision decoding of Reed–Solomon
codes, IEEE Trans. Inform. Theory, 49 (2003), 2809–2825 [9] .

Bibliography 541

[217] Z. Kohavi, Switching and Finite Automata Theory, Second Edition, Mc-
Graw-Hill, New York, 1978 [14] .

[218] V.D. Kolesnik, E.T. Mironchikov, Cyclic Reed–Muller codes and their
decoding, Probl. Inform. Transm., 4 (1968), 15–19 [8] .

[219] M. Krawtchouk, Sur une généralisation des polynomes d’Hermite, Comp-
tes Rendus, 189 (1929), 620–622 [4] .

[220] A.V. Kuznetsov, A.J.H. Vinck, A coding scheme for single peak-shift
correction in (d, k)-constrained channels, IEEE Trans. Inform. Theory, 39
(1993), 1444–1450 [10] .

[221] H. Kwakernaak, R. Sivan, Modern Signals and Systems, Prentice-Hall,
Englewood Cliffs, New Jersey, 1991 [14] .

[222] C.Y. Lee, Some properties of nonbinary error-correcting codes, IRE Trans.
Inform. Theory, 4 (1958), 77–82 [10] .

[223] T. Lepistö, A modification of Elias-bound and nonexistence theorem for
perfect codes in the Lee-metric, Inform. Control, 49 (1981), 109–124 [10] .

[224] T. Lepistö, A note on perfect Lee-codes over small alphabets, Discrete Appl.
Math., 3 (1981), 73–74 [10] .

[225] V.I. Levenshtein, Binary codes capable of correcting deletions, insertions,
and reversals, Soviet Physics—Doklady, 10 (1966), 707–710 [10] .

[226] V.I. Levenshtein, One method of constructing quasilinear codes providing
synchronization in the presence of errors, Probl. Inform. Transm., 7 (1971),
215–222 [10] .

[227] V.I. Levenshtein, On perfect codes in deletion and insertion metric, Dis-
crete Math. Appl., 2 (1992), 241–258 [10] .

[228] V.I. Levenshtein, A.J.H. Vinck, Perfect (d, k)-codes capable of correcting
single peak-shifts, IEEE Trans. Inform. Theory, 39 (1993), 656–662 [10] .

[229] R. Lidl, H. Niederreiter, Finite Fields, Second Edition, Cambridge Uni-
versity Press, Cambridge, 1997 [3, 5, 7, 10] .

[230] S. Lin, D.J. Costello, Jr., Error Control Coding: Fundamentals and Ap-
plications, Prentice-Hall, Englewood Cliffs, New Jersey, 1983 [Prf., 4, 5, 14] .

[231] S. Lin, E.J. Weldon, Jr., Long BCH codes are bad, Inform. Control, 11
(1967), 445–451 [5, 8] .

[232] D. Lind, B. Marcus, An Introduction to Symbolic Dynamics and Coding,
Cambridge University Press, Cambridge, 1995 [14] .

[233] J.H. van Lint, A survey of perfect codes, Rocky Mountain J. Math., 5
(1975), 199–224 [4] .

542 Bibliography

[234] J.H. van Lint, Repeated-root cyclic codes, IEEE Trans. Inform. Theory,
37 (1991), 343–345 [8] .

[235] S. Litsyn, V. Shevelev, On ensembles of low-density parity-check codes:
asymptotic distance distributions, IEEE Trans. Inform. Theory, 48 (2002),
887–908 [13] .

[236] A. Lobstein, The hardness of solving subset sum with preprocessing, IEEE
Trans. Inform. Theory, 36 (1990), 943–946 [2] .

[237] E. Louidor, Lowest-density MDS codes over super-alphabets, M.Sc. disser-
tation, Computer Science Department, Technion, Haifa, Israel, 2004 [11] .

[238] E. Louidor, R.M. Roth, Lowest density MDS codes over extension alpha-
bets, IEEE Trans. Inform. Theory, 52 (2006), 3186–3197 [11] .

[239] L. Lovász, Spectra of graphs with transitive groups, Period. Math. Hungar.,
6 (1975), 191–195 [13] .

[240] A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan graphs, Combinator-
ica, 8 (1988), 261–277 [13] .

[241] M.G. Luby, M. Mitzenmacher, M.A. Shokrollahi, D.A. Spielman,
Improved low-density parity-check codes using irregular graphs, IEEE Trans.
Inform. Theory, 47 (2001), 585–598 [13] .

[242] D.G. Luenberger, Linear and Nonlinear Programming, Second Edition,
Addison-Wesley, Reading, Massachusetts, 1984 [4] .

[243] H. Lüneburg, Translation Planes, Springer, Berlin, 1980 [11] .

[244] X. Ma, X.-M. Wang, On the minimal interpolation problem and decoding
RS codes, IEEE Trans. Inform. Theory, 46 (2000), 1573–1580 [9] .

[245] D.J.C. MacKay, Good error-correcting codes based on very sparse matrices,
IEEE Trans. Inform. Theory, 45 (1999), 399–431 [13] .

[246] S. MacLane, G. Birkhoff, Algebra, Third Edition, Chelsea, New York,
1967 [3] .

[247] F.J. MacWilliams, Combinatorial problems of elementary group theory,
Ph.D. dissertation, Department of Mathematics, Harvard University, Cam-
bridge, Massachusetts, 1962 [4] .

[248] F.J. MacWilliams, A theorem on the distribution of weights in a systematic
code, Bell Syst. Tech. J., 42 (1963), 79–94 [4] .

[249] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting
Codes, North-Holland, Amsterdam, 1977 [Prf., 2, 3, 4, 5, 8, 11, 12] .

[250] S. Marcugini, A. Milani, F. Pambianco, NMDS codes of maximal length
over Fq, 8 ≤ q ≤ 11, IEEE Trans. Inform. Theory, 48 (2002), 963–966 [11] .

Bibliography 543

[251] B.H. Marcus, R.M. Roth, P.H. Siegel, Constrained systems and coding
for recording channels, in Handbook of Coding Theory, Volume II, V.S. Pless,
W.C. Huffman (Editors), North-Holland, Amsterdam, 1998, pp. 1635–1764
[14] .

[252] G.A. Margulis, Explicit group-theoretical constructions of combinatorial
schemes and their application to the design of expanders and concentrators,
Probl. Inform. Transm., 24 (1988), 39–46 [13] .

[253] J.L. Massey, Threshold Decoding, MIT Press, Cambridge, Massachusetts,
1963 [12] .

[254] J.L. Massey, Shift-register synthesis and BCH decoding, IEEE Trans. In-
form. Theory, 15 (1969), 122–127 [6] .

[255] J.L. Massey, D.J. Costello, Jr., J. Justesen, Polynomial weights and
code constructions, IEEE Trans. Inform. Theory, 19 (1973), 101–110 [8] .

[256] J.L. Massey, M.K. Sain, Inverses of linear sequential circuits, IEEE Trans.
Comput., 17 (1968), 330-337 [14] .

[257] L.E. Mazur, Codes correcting errors of large weight in Lee metric, Probl.
Inform. Transm., 9 (1973), 277–281 [10] .

[258] R.J. McEliece, The algebraic theory of convolutional codes, in Handbook
of Coding Theory, Volume I, V.S. Pless, W.C. Huffman (Editors), North-
Holland, Amsterdam, 1998, pp. 1067–1138 [14] .

[259] R.J. McEliece, The Theory of Information and Coding, Second Edition,
Cambridge University Press, Cambridge, 2002 [Prf., 1, 4, 14] .

[260] R.J. McEliece, E.R. Rodemich, H. Rumsey, Jr., L.R. Welch, New
upper bounds on the rate of a code via the Delsarte–MacWilliams inequalities,
IEEE Trans. Inform. Theory, 23 (1977), 157–166 [4] .

[261] G. Miller, D. Burshtein, Bounds on the maximum-likelihood decoding
error probability of low-density parity-check codes, IEEE Trans. Inform. The-
ory, 47 (2001), 2696–2710 [13] .

[262] W. Mills, Continued fractions and linear recurrences, Math. Comput., 29
(1975), 173–180 [6] .

[263] H. Minc, Nonnegative Matrices, Wiley, New York, 1988 [13] .

[264] C.M. Monti, G.L. Pierobon, Codes with a multiple spectral null at zero
frequency, IEEE Trans. Inform. Theory, 35 (1989), 463–472 [10] .

[265] D.E. Muller, Application of Boolean algebra to switching circuit design
and to error detection, IRE Trans. Comput., 3 (1954), 6–12 [2] .

[266] K. Nakamura, A class of error-correcting codes for DPSK channels, Conf.
Record 1979 IEEE Int’l Conf. Communications (ICC’1979), Boston, Mas-
sachusetts (1979), pp. 45.4.1–45.4.5 [10] .

544 Bibliography

[267] J. Naor, M. Naor, Small-bias probability spaces: efficient constructions
and applications, SIAM J. Comput., 22 (1993), 838–856 [13] .

[268] G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial Optimization,
Wiley, New York, 1988 [4] .

[269] R.R. Nielsen, T. Høholdt, Decoding Reed–Solomon codes beyond half
the minimum distance, in Coding Theory, Cryptography and Related Areas, J.
Buchmann, T. Høholdt, H. Stichtenoth, H. Tapia-Recillas (Editors), Springer,
Berlin, 2000, pp. 221–236 [9] .

[270] A.F. Nikiforov, S.K. Suslov, V.B. Uvarov, Classical Orthogonal Poly-
nomials of a Discrete Variable, Springer, Berlin, 1991 [4] .

[271] A. Nilli, On the second eigenvalue of a graph, Discrete Math., 91 (1991),
207–210 [13] .

[272] J.-S. No, H.-K. Lee, H. Chung, H.-Y. Song, K. Yang, Trace represen-
tation of Legendre sequences of Mersenne prime period, IEEE Trans. Inform.
Theory, 42 (1996), 2254–2255 [7] .

[273] A. Odlyzko, Discrete logarithms: the past and the future, Designs Codes
Cryptogr., 19 (2000), 129–145 [3] .

[274] H. O’Keeffe, P. Fitzpatrick, Gröbner basis solution of constrained in-
terpolation problems, Linear Algebra Appl., 351–352 (2002), 533–551 [9] .

[275] V. Olshevsky, M.A. Shokrollahi, A displacement approach to efficient
decoding of algebraic-geometric codes, Proc. 31st ACM Symp. Theory of
Computing (STOC’1999), Atlanta, Georgia (1999), ACM, New York, 1999,
pp. 235–244 [9] .

[276] A. Orlitsky, Interactive communication of balanced distributions and of
correlated files, SIAM J. Discrete Math., 6 (1993), 548–564 [10] .

[277] W.W. Peterson, Encoding and error-correction procedures for the Bose–
Chaudhuri codes, IRE Trans. Inform. Theory, 6 (1960), 459–470 [6] .

[278] W.W. Peterson, E.J. Weldon, Jr., Error-Correcting Codes, Second Edi-
tion, MIT Press, Cambridge, Massachusetts, 1972 [Prf., 2, 4] .

[279] E. Petrank, R.M. Roth, Is code equivalence easy to decide?, IEEE Trans.
Inform. Theory, 43 (1997), 1602–1604 [2] .

[280] V. Pless, Introduction to the Theory of Error Correcting Codes, Third Edi-
tion, Wiley, New York, 1998 [Prf., 4] .

[281] V.S. Pless, W.C. Huffman (Editors), Handbook of Coding Theory, Vol-
umes I–II, North-Holland, Amsterdam, 1998 [Prf.] .

[282] M. Plotkin, Binary codes with specified minimum distances, IRE Trans.
Inform. Theory, 6 (1960), 445–450 [4] .

Bibliography 545

[283] K.C. Pohlmann, The Compact Disc Handbook, Second Edition, A–R Edi-
tions, Madison, Wisconsin, 1992 [5] .

[284] K.A. Post, Nonexistence theorems on perfect Lee codes over large alpha-
bets, Inform. Control, 29 (1975), 369–380 [10] .

[285] F.P. Preparata, A class of optimum nonlinear double-error-correcting
codes, Inform. Control, 13 (1968), 378-400 [10] .

[286] M.O. Rabin, Probabilistic algorithms in finite fields, SIAM J. Comput., 9
(1980), 273–280 [3] .

[287] S.M. Reddy, J.P. Robinson, Random error and burst correction by iter-
ated codes, IEEE Trans. Inform. Theory, 18 (1972), 182-185 [12] .

[288] I.S. Reed, A class of multiple-error-correcting codes and the decoding
scheme, IRE Trans. Inform. Theory, 4 (1954), 38–49 [2] .

[289] I.S. Reed, G. Solomon, Polynomial codes over certain finite fields, J.
SIAM, 8 (1960), 300-304 [5] .

[290] J.A. Reeds, N.J.A. Sloane, Shift-register synthesis (modulo m), SIAM J.
Comput., 14 (1985), 505–513 [6] .

[291] O. Regev, Improved inapproximability of lattice and coding problems with
preprocessing, Proc. 18th Annual IEEE Conf. Computational Complexity
(CCC’2003), Århus, Denmark (2003), IEEE Computer Society Press, Los
Alamitos, California, 2003, pp. 363–370 [2] .

[292] S.H. Reiger, Codes for the correction of “clustered” errors, IRE Trans.
Inform. Theory, 6 (1960), 16–21 [4] .

[293] T.J. Richardson, M.A. Shokrollahi, R.L. Urbanke, Design of capac-
ity-approaching irregular low-density parity-check codes, IEEE Trans. In-
form. Theory, 47 (2001), 619–637 [13] .

[294] T.J. Richardson, R.L. Urbanke, The capacity of low-density parity-
check codes under message-passing decoding, IEEE Trans. Inform. Theory,
47 (2001), 599–618 [13] .

[295] A.I. Riihonen, A note on perfect Lee-code, Discrete Appl. Math., 2 (1980),
259–260 [10] .

[296] C. Roos, A new lower bound for the minimum distance of a cyclic code,
IEEE Trans. Inform. Theory, 29 (1983), 330–332 [8] .

[297] R.M. Roth, Maximum-rank array codes and their application to crisscross
error correction, IEEE Trans. Inform. Theory, 37 (1991), 328–336 [11] .

[298] R.M. Roth, Spectral-null codes and null spaces of Hadamard submatrices,
Designs Codes Cryptogr., 9 (1996), 177–191 [10] .

546 Bibliography

[299] R.M. Roth, Tensor codes for the rank metric, IEEE Trans. Inform. Theory,
42 (1996), 2146–2157 [11] .

[300] R.M. Roth, A. Lempel, A construction of non-Reed–Solomon type MDS
codes, IEEE Trans. Inform. Theory, 35 (1989), 655–657 [5] .

[301] R.M. Roth, A. Lempel, On MDS codes via Cauchy matrices, IEEE Trans.
Inform. Theory, 35 (1989), 1314–1319 [5, 11] .

[302] R.M. Roth, G. Ruckenstein, Efficient decoding of Reed–Solomon codes
beyond half the minimum distance, IEEE Trans. Inform. Theory, 46 (2000),
246–257 [6, 9] .

[303] R.M. Roth, G. Seroussi, On generator matrices of MDS codes, IEEE
Trans. Inform. Theory, 31 (1985), 826–830 [5] .

[304] R.M. Roth, G. Seroussi, On cyclic MDS codes of length q over GF(q),
IEEE Trans. Inform. Theory, 32 (1986), 284–285 [8] .

[305] R.M. Roth, G. Seroussi, Reduced-redundancy product codes for burst
error correction, IEEE Trans. Inform. Theory, 44 (1998), 1395–1406 [5] .

[306] R.M. Roth, P.H. Siegel, Lee-metric BCH codes and their application to
constrained and partial-response channels, IEEE Trans. Inform. Theory, 40
(1994), 1083–1096 [10] .

[307] R.M. Roth, P.H. Siegel, A. Vardy, High-order spectral-null codes—
constructions and bounds, IEEE Trans. Inform. Theory, 40 (1994), 1826–
1840 [10] .

[308] R.M. Roth, V. Skachek, Improved nearly-MDS expander codes, IEEE
Trans. Inform. Theory, 52 (2006), 3650–3661 [13] .

[309] G. Ruckenstein, Error decoding strategies for algebraic codes, Ph.D. dis-
sertation, Computer Science Department, Technion, Haifa, Israel, 2002 [9] .

[310] G. Ruckenstein, R.M. Roth, Bounds on the list-decoding radius of Reed–
Solomon codes, SIAM J. Discrete Math., 17 (2003), 171–195 [9] .

[311] G.E. Sacks, Multiple error correction by means of parity checks, IRE Trans.
Inform. Theory, 4 (1958), 145–147 [4] .

[312] Y. Saitoh, Theory and design of error-control codes for byte-organized/in-
put-restricted storage devices where unidirectional/peak-shift errors are pre-
dominant, Ph.D. dissertation, Division of Electrical and Computer Engineer-
ing, Yokohama National University, Yokohama, Japan, 1993 [10] .

[313] Y. Saitoh, T. Ohno, H. Imai, Construction techniques for error-control
runlength-limited block codes, IEICE Trans. Fundamentals, E76-A (1993),
453–458 [10] .

Bibliography 547

[314] S. Sakata, Finding a minimal set of linear recurring relations capable of
generating a given finite two-dimensional array, J. Symb. Comput., 5 (1988),
321–337 [6] .

[315] S. Sakata, Extension of the Berlekamp–Massey algorithm to N dimensions,
Inform. Comput., 1990 (84), 207–239 [6] .

[316] S. Sakata, Y. Numakami, M. Fujisawa, A fast interpolation method for
list decoding of RS and algebraic–geometric codes, Proc. 2000 IEEE Int’l
Symp. Inform. Theory (ISIT’2000), Sorrento, Italy (2000), p. 479 [9] .

[317] D.V. Sarwate, On the complexity of decoding Goppa codes, IEEE Trans.
Inform. Theory, 23 (1977), 515–516 [6] .

[318] I. Sason, R. Urbanke, Parity-check density versus performance of binary
linear block codes over memoryless symmetric channels, IEEE Trans. Inform.
Theory, 49 (2003), 1611–1635 [13] .

[319] C. Satyanarayana, Lee metric codes over integer residue rings, IEEE
Trans. Inform. Theory, 25 (1979), 250–254 [10] .

[320] O. Schirokauer, Discrete logarithms and local units, Philos. Trans. R. Soc.
Lond. A, 345 (1993), 409–423 [3] .

[321] O. Schirokauer, Using number fields to compute logarithms in finite fields,
Math. Comput., 69 (2000), 1267–1283 [3] .

[322] A. Schönhage, Schnelle Multiplikation von Polynomen über Körpern der
Charakteristik 2, Acta Informatica, 7 (1977), 395–398 [3] .

[323] A. Schönhage, V. Strassen, Schnelle Multiplikation grosser Zahlen, Com-
puting, 7 (1971), 281–292 [3] .

[324] A. Schrijver, Theory of Linear and Integer Programming, Wiley, New
York, 1986 [4] .

[325] B. Segre, Ovals in a finite projective plane, Canad. J. Math., 7 (1955),
414–416 [11] .

[326] B. Segre, Introduction to Galois Geometries, Atti Accad. Naz. Lincei Mem.,
8 (1967), 133–236 [11] .

[327] N. Sendrier, Finding the permutation between equivalent linear codes: the
support splitting algorithm, IEEE Trans. Inform. Theory, 46 (2000), 1193–
1203 [2] .

[328] E. Seneta, Non-negative Matrices and Markov Chains, Second Edition,
Springer, New York, 1980 [10, 13] .

[329] G. Seroussi, R.M. Roth, On MDS extensions of generalized Reed–Solomon
codes, IEEE Trans. Inform. Theory, 32 (1986), 349–354 [11] .

548 Bibliography

[330] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech.
J., 27 (1948), 379–423 and 623–656 [1, 4] .

[331] C.E. Shannon, R.G. Gallager, E.R. Berlekamp, Lower bounds to
error probability for coding on discrete memoryless channels, Inform. Control,
10 (1967), 65–103 and 522–552 [4] .

[332] B.D. Sharma, R.K. Khanna, On m-ary Gray codes, Inform. Sci., 15
(1978), 31–43 [10] .

[333] B.-Z. Shen, A Justesen construction of binary concatenated codes that
asymptotically meet the Zyablov bound for low rate, IEEE Trans. Inform.
Theory, 39 (1993), 239–242 [12] .

[334] V. Shoup, New algorithms for finding irreducible polynomials over finite
fields, Math. Comput., 54 (1990), 435–447 [3] .

[335] V. Shoup, Fast construction of irreducible polynomials over finite fields, J.
Symb. Comput., 17 (1994), 371–391 [3] .

[336] V. Shoup, A new polynomial factorization algorithm and its implementation,
J. Symb. Comput., 20 (1995), 363–397 [3] .

[337] N. Shulman, M. Feder, Improved error exponent for time-invariant and
periodically time-variant convolutional codes, IEEE Trans. Inform. Theory,
46 (2000), 97–103 [14] .

[338] K.W. Shum, I. Aleshnikov, P.V. Kumar, H. Stichtenoth, V. De-
olalikar, A low-complexity algorithm for the construction of algebraic-
geometric codes better than the Gilbert–Varshamov bound, IEEE Trans.
Inform. Theory, 47 (2001), 2225-2241 [4] .

[339] R.C. Singleton, Maximum distance q-nary codes, IEEE Trans. Inform.
Theory, 10 (1964), 116–118 [4] .

[340] M. Sipser, D.A. Spielman, Expander codes, IEEE Trans. Inform. Theory,
42 (1996), 1710–1722 [13] .

[341] V. Skachek, T. Etzion, R.M. Roth, Efficient encoding algorithm for
third-order spectral-null codes, IEEE Trans. Inform. Theory, 44 (1998), 846–
851 [10] .

[342] V. Skachek, R.M. Roth, Generalized minimum distance iterative decoding
of expander codes, Proc. IEEE Information Theory Workshop, Paris, France
(April 2003), pp. 245–248 [13] .

[343] D.A. Spielman, Linear-time encodable and decodable error-correcting
codes, IEEE Trans. Inform. Theory, 42 (1996), 1723–1731 [13] .

[344] L. Storme, J.A. Thas, Generalized Reed–Solomon codes and normal ratio-
nal curves: an improvement of results by Seroussi and Roth, in Advances in

Bibliography 549

Finite Geometries and Designs: Proc. 3rd Isle of Thorns Conference, Chel-
wood Gate, UK (1990), J.W.P. Hirschfeld, D.R. Hughes, J.A. Thas (Editors),
Oxford University Press, Oxford, 1991, pp. 369–389 [11] .

[345] L. Storme, J.A. Thas, M.D.S. codes and arcs in PG(n, q) with q even: an
improvement of the bounds of Bruen, Thas, and Blokhuis, J. Comb. Theory
A, 62 (1993), 139–154 [11] .

[346] M. Sudan, Decoding of Reed–Solomon codes beyond the error-correction
bound, J. Complexity, 13 (1997), 180–193 [9] .

[347] Y. Sugiyama, M. Kasahara, S. Hirasawa, T. Namekawa, A modifica-
tion of the constructive asymptotically good codes of Justesen for low rates,
Inform. Control, 25 (1974), 341–350 [12] .

[348] Y. Sugiyama, M. Kasahara, S. Hirasawa, T. Namekawa, A method for
solving key equation for decoding Goppa codes, Inform. Control, 27 (1975),
87–99 [6] .

[349] Y. Sugiyama, M. Kasahara, S. Hirasawa, T. Namekawa, A new class
of asymptotically good codes beyond the Zyablov bound, IEEE Trans. In-
form. Theory, 24 (1978), 198–204 [12] .

[350] Y. Sugiyama, M. Kasahara, S. Hirasawa, T. Namekawa, Superim-
posed concatenated codes, IEEE Trans. Inform. Theory, 26 (1980), 735–736
[5, 12] .

[351] G. Szegő, Orthogonal Polynomials, Fourth Edition, Amer. Math. Soc. Col-
loq. Publ., Volume 23, AMS, Providence, Rhode Island, 1975 [4] .

[352] I. Tal, List decoding of Lee metric codes, M.Sc. dissertation, Computer Sci-
ence Department, Technion, Haifa, Israel, 2003 [10] .

[353] I. Tal, R.M. Roth, On list decoding of alternant codes in the Hamming
and Lee metrics, Proc. 2003 IEEE Int’l Symp. Inform. Theory (ISIT’2003),
Yokohama, Japan (2003), p. 364 [9, 10] .

[354] L.G. Tallini, B. Bose, On efficient high-order spectral-null codes, IEEE
Trans. Inform. Theory, 45 (1999), 2594–2601 [10] .

[355] E. Tanaka, T. Kasai, Synchronization and substitution error-correcting
codes for the Levenshtein metric, IEEE Trans. Inform. Theory, 22 (1976),
156–162 [10] .

[356] R.M. Tanner, A recursive approach to low-complexity codes, IEEE Trans.
Inform. Theory, 27 (1981), 533–547 [13] .

[357] R.M. Tanner, Explicit concentrators from generalized N -gons, SIAM J.
Algebr. Discrete Methods, 5 (1984), 287–293 [13] .

[358] G.M. Tenengolts, Class of codes correcting bit loss and errors in the pre-
ceding bit, Autom. Remote Control, 37 (1976), 797–802 [10] .

550 Bibliography

[359] G. Tenengolts, Nonbinary codes, correcting single deletion or insertion,
IEEE Trans. Inform. Theory, 30 (1984), 766–769 [10] .

[360] J.A. Thas, Complete arcs and algebraic curves in PG(2, q), J. Algebra, 106
(1987), 451–464 [11] .

[361] J.A. Thas, Projective geometry over a finite field, in Handbook of Incidence
Geometry: Buildings and Foundations, F. Buekenhout (Editor), Elsevier Sci-
ence, Amsterdam, 1995, 295–347 [2, 11] .

[362] C. Thommesen, The existence of binary linear concatenated codes with
Reed–Solomon outer codes which asymptotically meet the Gilbert–Varsha-
mov bound, IEEE Trans. Inform. Theory, 29 (1983), 850–853 [12] .

[363] C. Thommesen, Error-correcting capabilities of concatenated codes with
MDS outer codes on memoryless channels with maximum-likelihood decod-
ing, IEEE Trans. Inform. Theory, 33 (1987), 632–640 [12] .

[364] A. Tietäväinen, On the nonexistence of perfect codes over finite fields,
SIAM J. Appl. Math., 24 (1973), 88–96 [4] .

[365] M.A. Tsfasman, S.G. Vlădut, T. Zink, Modular curves, Shimura curves,
and Goppa codes, better than Varshamov–Gilbert bound, Math. Nachr., 109
(1982), 21–28 [4] .

[366] J.D. Ullman, Near-optimal, single-synchronization-error-correcting code,
IEEE Trans. Inform. Theory, 12 (1966), 418–424 [10] .

[367] J.D. Ullman, On the capabilities of codes to correct synchronization errors,
IEEE Trans. Inform. Theory, 13 (1967), 95–105 [10] .

[368] W. Ulrich, Non-binary error correction codes, Bell Syst. Tech. J., 36 (1957),
1341–1387 [10] .

[369] T. Uyematsu, E. Okamoto, A construction of codes with exponential
error bounds on arbitrary discrete memoryless channels, IEEE Trans. Inform.
Theory, 43 (1997), 992–996 [12] .

[370] A. Vardy, The intractability of computing the minimum distance of a code,
IEEE Trans. Inform. Theory, 43 (1997), 1757–1766 [2, 5] .

[371] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New
Jersey, 1962 [13] .

[372] R.R. Varshamov, Estimate of the number of signals in error correcting
codes, Dokl. Akad. Nauk SSSR, 117 (1957), 739–741 [4] .

[373] A.J. Viterbi, Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm, IEEE Trans. Inform. Theory, 13 (1967), 260–
269 [14] .

Bibliography 551

[374] A.J. Viterbi, J.K. Omura, Principles of Digital Communication and Cod-
ing, McGraw-Hill, New York, 1979 [4, 14] .

[375] J.F. Voloch, Arcs in projective planes over prime fields, J. Geom., 38
(1990), 198–200 [11] .

[376] J.F. Voloch, Complete arcs in Galois planes of non-square order, in Ad-
vances in Finite Geometries and Designs: Proc. 3rd Isle of Thorns Confer-
ence, Chelwood Gate, UK (1990), J.W.P. Hirschfeld, D.R. Hughes, J.A. Thas
(Editors), Oxford University Press, Oxford, 1991, pp. 401–406 [11] .

[377] B.L. van der Waerden, Algebra, Volume 1, Seventh Edition, Ungar, New
York, 1970, and Springer, New York, 1991 [10] .

[378] W.D. Wallis, A.P. Street, J.S. Wallis, Combinatorics: Room Squares,
Sum-Free Sets, Hadamard Matrices, Lecture Notes in Mathematics, Volume
292, Springer, Berlin, 1972 [2] .

[379] A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. USA, 34 (1948),
204–207 [5] .

[380] L.R. Welch, E.R. Berlekamp, Error correction for algebraic block codes,
US Patent 4,633,470 (1986) [6, 9] .

[381] L.R. Welch, R.A. Scholtz, Continued fractions and Berlekamp’s algo-
rithm, IEEE Trans. Inform. Theory, 25 (1979), 19–27 [6] .

[382] E.J. Weldon, Jr., Decoding binary block codes on Q-ary output channels,
IEEE Trans. Inform. Theory, 17 (1971), 713–718 [12] .

[383] E.J. Weldon, Jr., Justesen’s construction—the low-rate case, IEEE Trans.
Inform. Theory, 19 (1973), 711–713 [12] .

[384] E.J. Weldon, Jr., Some results on the problem of constructing asymptot-
ically good error-correcting codes, IEEE Trans. Inform. Theory, 21 (1975),
412–417 [12] .

[385] D.B. West, Introduction to Graph Theory, Second Edition, Prentice-Hall,
Upper Saddle River, New Jersey, 2001 [13] .

[386] S. Winograd, Arithmetic Complexity of Computations, CBMS-NSF Re-
gional Conference Series in Applied Mathematics, Volume 33, SIAM, Phila-
delphia, Pennsylvania, 1980 [3] .

[387] J.M. Wozencraft, Sequential decoding for reliable communication, IRE
Nat. Conv. Rec., 5 (1957), 11–25 [14] .

[388] J.M. Wozencraft, B. Reiffen, Sequential Decoding, MIT Press and Wi-
ley, New York, 1961 [14] .

[389] A.D. Wyner, R.B. Ash, Analysis of recurrent codes, IEEE Trans. Inform.
Theory, 9 (1963), 143–156 [14] .

552 Bibliography

[390] A.D. Wyner, R.L. Graham, An upper bound on minimum distance for a
k-ary code, Inform. Control, 13 (1968), 46–52 [10] .

[391] R.K. Yarlagadda, J.E. Hershey, Hadamard Matrix Analysis and Syn-
thesis, with Applications to Communications and Signal/Image Processing,
Kluwer, Boston, Massachusetts, 1996 [2] .

[392] G.V. Zaitsev, V.A. Zinov’ev, N.V. Semakov, Minimum-check-density
codes for correcting bytes of errors, erasures, or defects, Probl. Inform.
Transm., 19 (1983), 197–204 [11] .

[393] E. Zehendner, A non-existence theorem for cyclic MDS-codes, Atti. Sem.
Mat. Fis. Univ. Modena, 32 (1983), 203–205 [8] .

[394] G. Zémor, On expander codes, IEEE Trans. Inform. Theory, 47 (2001),
835–837 [13] .

[395] K.S. Zigangirov, Some sequential decoding procedures, Probl. Inform.
Transm., 2 (1966), 1–10 [14] .

[396] K.S. Zigangirov, On the error probability of sequential decoding on the
BSC, IEEE Trans. Inform. Theory, 18 (1972), 199–202 [14] .

[397] V.A. Zinov’ev, Generalized cascade codes, Probl. Inform. Transm., 12
(1976), 2–9 [5, 12] .

[398] V.A. Zinov’ev, Generalized concatenated codes for channels with error
bursts and independent errors, Probl. Inform. Transm., 17 (1981), 254–260
[5, 12] .

[399] V.A. Zinov’ev, V.K. Leont’ev, The nonexistence of perfect codes over
Galois fields, Probl. Control Inform. Theory, 2 No. 2 (1973), English supple-
ment, 16–24 [4] .

[400] V.A. Zinov’ev, V.V. Zyablov, Decoding of nonlinear generalized cascade
codes, Probl. Inform. Transm., 14 (1978), 110–114 [5, 12] .

[401] V.A. Zinov’ev, V.V. Zyablov, Correction of error bursts and independent
errors using generalized cascaded codes, Probl. Inform. Transm., 15 (1979),
125–134 [5, 12] .

[402] V.A. Zinov’ev, V.V. Zyablov, Codes with unequal protection of informa-
tion symbols, Probl. Inform. Transm., 15 (1979), 197–205 [5, 12] .

[403] R. Zippel, Effective Polynomial Computation, Kluwer, Boston, Massachu-
setts, 1993 [3, 9] .

[404] V.V. Zyablov, An estimate of the complexity of constructing binary linear
cascade codes, Probl. Inform. Transm., 7 (1971), 3–10 [12] .

[405] V.V. Zyablov, Optimization of concatenated decoding algorithms, Probl.
Inform. Transm., 9 (1973), 19–24 [12] .

List of Symbols

(Most of the symbol descriptions include a reference to the page where the
symbol is defined.)

N set of natural numbers (including 0)
Z integer ring
Z+ set of positive integers (excluding 0)
Zq ring of integer residues modulo q
Q rational field
R real field
C complex field
GF(q) finite field of size q, 50
F, Φ, K common notation for a field

|S| size of a set S(
n
i

)
binomial coefficient

φ(n) Euler function, 522
μ(n) Möbius function, 523(
a
q

)
Legendre symbol of a modulo q, 80

χ additive character, 85
ψ multiplicative character, 78
�x largest integer not greater than the real x
�x� smallest integer not smaller than the real x
Re{·} real part of a complex number
O(f) expression that grows at most linearly with f
o(1) expression that goes to zero as the parameters go to infinity

x,y, z common notation for a word or a vector
0 all-zero word (or vector)
1 all-one word (or vector)
Fn set of all words (vectors) of length n over an alphabet (field) F , 3
Fm×n set of all m× n arrays (matrices) over an alphabet (field) F , 353
(A)i,j entry that is indexed by (i, j) in a matrix A
rank(A) rank of a matrix A
ker(A) (right) kernel of a matrix A

553

554 List of Symbols

det(A) determinant of a matrix A
Adj(A) adjoint of a matrix A
dim W dimension of a linear space W
AT ,xT transpose of a matrix A or a vector x
A∗,x∗ conjugate transpose of a complex matrix A or a vector x
Ac matrix consisting of the inverses of the entries of a matrix A, 169
〈x,y〉 scalar product of real vectors x and y, 400
‖x‖ norm of a real vector x, 400
A⊗B Kronecker product of matrices A and B, 45
I identity matrix
Hk Sylvester-type Hadamard matrix of order 2k × 2k, 45
SLn(q) n-dimensional special linear group over GF(q), 409
PSLn(q) n-dimensional projective special linear group over GF(q), 409

a(x) polynomial or a formal power series in the indeterminate x, 189
a′(x) formal derivative of a polynomial (or a formal power series) a(x),

65
a[�](x) �th Hasse derivative (hyper-derivative) of a polynomial a(x), 87
deg a(x),deg a degree of a polynomial a(x), 51
F [x] set of all polynomials over a field F , 51
Fn[x] set of all polynomials with degree < n over a field F , 52
F [x]/a(x) ring of polynomial residues modulo a polynomial a(x), 56
F [[x]] ring of formal power series over a field F , 189
F (x) field of rational functions over a field F , 268
F ((x)) field of Laurent series over a field F , 476
b(x, z) bivariate polynomial in the indeterminates x and z, 268
degμ,ν b(x, z) (μ, ν)-degree of a bivariate polynomial b(x, z), 268
F [x, z] set of all bivariate polynomials over a field F , 268
b[s,t](x, z) (s, t)th Hasse derivative of a bivariate polynomial b(x, z), 276
a | b a divides b (relation), 52
a ≡ b (mod c) a is congruent to b modulo c (relation), 52
a MOD b remainder of a when divided by b (binary operation), 242
gcd(a, b) greatest common divisor of a and b, 52

O(a) (multiplicative) order of an element a in a group or a field, 51
F ∗ multiplicative group of a field F , 51
〈α〉 smallest nonnegative integer m such that α = m·1, for an element

α in Zq, 298
c(F) characteristic of a field F , 62
[Φ : F] extension degree of a field Φ with respect to a subfield F , 57
Ω basis of an extension field, 58
TΦ:F (α) trace of an element α in a field Φ (with respect to a subfield F),

83
Cα conjugacy class of a field element α (with respect to a subfield),

219
Mα(x) minimal polynomial of a field element α (with respect to a sub-

field), 219

List of Symbols 555

I(n, q) number of monic irreducible polynomials of degree n over GF(q),
225

P(n, q) number of monic primitive polynomials of degree n over GF(q),
229

d(L)(x,y) Hamming (Lee) distance between words x and y, 6
w(L)(x) Hamming (Lee) weight of a word x, 6
|α| Lee weight of an element α in Zq, 299
χL(q) average Lee weight of the elements of Zq, 326
S sphere in a Hamming or Lee metric, 98
Vq(n, t) size of a Hamming sphere with radius t in Fn, where |F | = q, 95
VL|q(n, t) size of a Lee sphere with radius t in Zn

q , 317

C code, 5
C trellis code or a convolutional code, 461
n length of a code, 5
M size of a code, 5
d, d(L)(C) minimum Hamming (Lee) distance of a code C, 6
dfree(C) free distance of a trellis code or a convolutional code C, 463
(n,M, d) concise notation for the parameters of a code, 6
k dimension of a (linear) code, 5
[n, k, d], [n, k] concise notation for the parameters of a linear code, 26
R rate of a code, 3
δ relative minimum distance, 104
r covering radius, 123
(Wi)n

i=0 (Hamming) weight distribution, 99
WC(z) (Hamming) weight enumerator of a code C, 99
W h

C (x, z) homogeneous (Hamming) weight enumerator of a code C, 99
C⊥ dual code of a linear code, 30
G generator matrix of a linear code, 27
H parity-check matrix of a linear code, 29
G(x) generator matrix of a convolutional code, 477
g(x) generator polynomial of a cyclic code, 245
h(x) check polynomial of a cyclic code, 246

Cin, Cout inner code, outer code in a concatenated code, 154
C1 ∗ C2 product code of C1 and C2, 44
CGRS generalized Reed–Solomon (GRS) code, 148
CRS Reed–Solomon code, 151
Calt alternant code, 157
CBCH BCH code, 162
GGRS,HGRS canonical generator matrix and parity-check matrix of a GRS

code, 148
CRM Reed–Muller code, 41
WF (n, k) ensemble of [n, k] Wozencraft codes over F , 375

556 List of Symbols

S channel, 3
cap(S) capacity of a channel S, 10
F, Φ input alphabet and output alphabet of a channel, 3
? erasure symbol, 15
Prob{A} probability of an event A
E{X} expected value of a random variable X

Var{X} variance of a random variable X

c,y, e common notation for codeword, received word, and error word
(respectively)

D,DMLD decoder, maximum-likelihood decoder, 7
“e” error-detection indicator, 14
Perr,Pmis decoding error probability, decoding misdetection probability, 7
Λ(x) error locator polynomial, 185
Γ(x) error evaluator polynomial, 186
Λ(x) : V(x) error locator ratio, 307
S(x) syndrome polynomial, 185
ord(σ, ω) recurrence order of a polynomial pair (σ(x), ω(x)), 197

Hq(x) q-ary entropy function, 105
Dq(θ‖p) information divergence (Kullback–Leibler distance), 111
Eq(p, R) decoding error exponent, 117
J (M, θ, q) Johnson bound, 129
K�(y;n, q) Krawtchouk polynomial, 103
Δ�(C) largest decoding radius of any list-� decoder for a code C, 289
Θ�(R′) bound on the relative decoding radius of the Guruswami–Sudan

algorithm, 278
Θ�(R′, q) bound on the relative decoding radius of the Koetter–Vardy al-

gorithm, 283
Lq(k) largest length of any linear MDS code of dimension k over GF(q),

338
Γq(k) smallest n such that [n, k] MDS codes over GF(q) are all extended

GRS codes, 342
RZ(δ, q) Zyablov bound, 373

G = (V, E) graph (or hyper-graph) with vertex set V and (hyper-)edge set E,
396

G = (V, E,L) labeled digraph with state set V , edge set E, and labeling L, 453
u, v common notation for a vertex in a graph
s common notation for a state in a digraph
e common notation for an edge in a graph or a digraph
π common notation for a path in a digraph
ι(e), ι(π) initial state of an edge e or a path π in a digraph, 453
τ(e), τ(π) terminal state of an edge e or a path π in a digraph, 453
p period of an irreducible digraph, 455

List of Symbols 557

(V ′ : V ′′, E) bipartite graph with partition elements V ′ and V ′′ of the vertex
set, 398

GS induced subgraph of G on a set of vertices S, 397
G(Q,S) Cayley graph for a finite group Q and a subset S ⊆ Q, 406
GLPS(p, q) Lubotzky-Phillips-Sarnak (and also Margulis) Ramanujan graph,

410
degG(u) degree of a vertex u in a graph G, 396
N (u),N (S) neighborhood of a vertex u or a set of vertices S in a graph, 396
E(u) set of edges incident with a vertex u in a graph, 397
ES,T set of all edges with one endpoint in S and one endpoint in T ,

397
∂(S) edge cut associated with a set of vertices S, 397
dG(u, v) distance between vertices u and v in a graph G, 397
diam(G) diameter of a graph G, 397
AG adjacency matrix of a graph or a digraph G, 398
AG(z) generalized adjacency matrix of a labeled digraph G, 486
γG second largest eigenvalue divided by the degree of a regular

graph G, 402
XG transfer matrix of a bipartite graph G, 399
CG incidence matrix of a graph G, 399
L−
G , LG Laplace matrix of a graph G, 399

�G orientation on a graph G, 400
(G, C) graph code defined by a graph G and a code C, 412
C(G) sequence set of a labeled digraph G, 457
T(G) trellis diagram of a labeled digraph G, 458
(P, B,Q, D) matrix quadruple that defines a linear finite-state machine, 471
WG(x, z) length-weight enumerator of a linear finite-state machine G, 487

Index

adjacency matrix
of digraphs, 486
of graphs, 398
Lee, 325

alphabet, 3
alternant code, 70, 157, 179

decoding of, 197, 204
Lee-metric, 306
list, 280, 328

designed minimum distance of, 157,
250

dual code of, 175, 180
Lee-metric, 302
list decoding of, 280, 328
over Z, 328

aperiodic irreducible digraph, 455
aperiodic irreducible matrix, 445
arc (in projective geometry), 361

complete, 363
autocorrelation

of Legendre sequences, 80
of maximal-length sequences, 87

AWGN channel, 17

basis
complementary, 85
dual, 85
normal, 240

BCH bound, 253
BCH code, 162, 181, 244, 250

consecutive root sequence of, 163
decoding of, see alternant code, decod-

ing of
designed minimum distance of, 163,

250
excess root of, 251
root of, 163, 250

Berlekamp code, 314, 330
Berlekamp–Massey algorithm, 200, 217
Bhattacharyya bound, 21, 25, 493
bi-connection, 454
binary erasure channel, 15
binary symmetric channel (BSC), 4, 450
bipartite graph, 362, 398
bit-shift error, 327
Blahut’s algorithm, 217

block code, 5
Blokh–Zyablov bound, 393
bound

BCH, 253
Bhattacharyya, 21, 25, 493
Blokh–Zyablov, 393
Carlitz–Uchiyama, 179
Chernoff, 139
decoding-radius, 290
Elias, 108

Lee-metric, 332
Gilbert–Varshamov, 97, 137, 176, 181,

393
asymptotic, 107, 372
Lee-metric, 320, 330

Griesmer, 120, 136
Hamming, see bound, sphere-packing
Hartmann–Tzeng, 265
Johnson, 107, 128, 139, 289

Lee-metric, 330
linear programming, 103, 110, 138
MDS code length, 338
MRRW, 110
Plotkin, 37, 127, 131, 139, 294

Lee-metric, 326, 330
Reiger, 122
Roos, 265
Singleton, see Singleton bound
sphere-covering, 123
sphere-packing, 95, 122, 136

asymptotic, 107
Lee-metric, 318, 330

union, 137
Zyablov, 373, 392, 413, 422, 438, 440

burst, 45, 122, 137, 257

cap (in projective geometry), 47
capacity, 10, 16, 24, 110
Carlitz–Uchiyama bound, 179
catastrophic error propagation, 496
Cauchy matrix, 168, 336, 356, 362
Cayley graph, 406, 447
channel, 1

additive, 5
AWGN, 17
binary symmetric (BSC), 4, 450

559

560 Index

discrete memoryless (DMC), 19, 23, 46,
142, 466

erasure, 15, 25, 126, 134, 391, 514
Gaussian (AWGN), 17
non-symmetric, 20, 46
probabilistic, 3
symmetric, 4, 19, 24, 32, 110, 113, 117,

125, 133, 145, 378, 390, 394, 424,
450, 467, 490

character
of Abelian groups, 91, 447
additive, 85, 99, 447
multiplicative, 78
quadratic, 80
trivial, 79

characteristic (of fields), 62
check node, 449
check polynomial, 246
Chernoff bound, 139
Chien search, 186, 215, 285
circulant matrix, 325, 330, 356, 362
code, 5

algebraic-geometry, 138
almost-MDS (AMDS), 363
alternant, see alternant code
array, 353
BCH, see BCH code
Berlekamp, 314, 330
block, 5
concatenated, see concatenated code
constant-weight, 121, 139, 352
convolutional, see convolutional code
cyclic, see cyclic code
Delsarte–Goethals, 328
dimension, 5
double-error-correcting, 70, 161
dual, see dual code
equidistant, 128
equivalence, 29, 47
generalized Reed–Solomon, see GRS

code
Golay, 96, 136, 255
Goppa, 182, 389
graph, see graph code
Gray, 321, 328
group, 37, 299
Hamming, see Hamming code
inner (in concatenated codes), 154, 366
Justesen, 376
Kerdock, 328
LDPC, 362, 450
length, 5
lengthening of, 123
linear, see linear code
low-density parity-check, 362, 450
maximal, 123
maximum distance separable (MDS),

see MDS code
minimum distance, 6
near-MDS (NMDS), 363

negacyclic, 323, 330
outer (in concatenated codes), 154, 366
parity, 27
perfect, 96, 137, 256

Lee-metric, 319, 330
Preparata, 328
product, 44, 178
punctured, 36
rate, 5
redundancy, 27
Reed–Muller, see Reed–Muller code
Reed–Solomon, see RS code
repetition, 28
self-dual, 31
shortened, 40
simplex, 41, 120

weight distribution of, 99
size, 5
spectral-null, 329
Spielman, 451
trellis, 460

decoding of, 466
encoding of, 464
free distance of, 463

turbo, 519
Wozencraft, 375
Wyner–Ash, 512

codeword, 3, 460
communication system, 1
companion matrix, 73, 383, 510
complementary basis, 85
concatenated code, 154, 172, 178, 408, 420

decoding of, 178, 371, 396, 422
dual code of, 383
linearly-, 154, 367

concave function, 9, 23
conjugate element

in the complex field, 325
in cyclotomic extension fields, 241
in finite extension fields, 218

conjugate transpose (of complex matrices),
326

convex function, 9
convolutional code, 477

constraint length of encoders of, 483
decoding of, 485, 519
encoding of, 479
free distance of, 478, 512
generator matrix of, 477

coset
leader, 34
of linear codes, 34
of subgroups, 522

cover (of arrays), 354, 362
covering radius, 123, 137

of GRS codes, 166
of MDS codes, 166

crisscross error, 362
cycle (in graphs), 397

in digraphs, 454

Index 561

cyclic code, 242
dual code of, 247
encoding of, 245
Hamming, 244, 254, 264
of length q over GF(q), 257, 265
of length q+1 over GF(q), 262, 265
repeated-root, 265
root of, 248
shortened, 388

cyclotomic coset, 230
cyclotomic extension field, 240

dB, 18
decoding, 7

of alternant codes, see alternant code,
decoding of

of BCH codes, see alternant code, de-
coding of

complexity, 48
of concatenated codes, 178, 371, 396,

422
of convolutional codes, 485, 519
error probability, 7, 110, 132, 133, 471,

485, 491, 519
generalized minimum distance (GMD),

178, 371, 396, 422
of graph codes, 414
of GRS codes, see GRS decoding
of Hamming codes, 35
hard-decision, 18
iterative, 414, 451
of linear codes, 33
list, see list decoding

of GRS codes, see GRS list decoding
maximum a posteriori, 8
maximum-likelihood, 8, 32, 140, 466
misdetection probability, 22, 125, 132,

140, 440
nearest-codeword, 9, 33
sequential, 520
soft-decision, 18
standard array, 33
syndrome, 34
of trellis codes, 466

degree (of extension fields), 57
degree (of polynomials), 51

of bivariate polynomials, 268
degree (of vertices in graphs), 396
derivative, 65, 87, 194, 300, 322

Hasse (or hyper-), 87, 276, 310, 329
designed minimum distance, 157, 163, 250
diameter (of graphs), 397
digraph (and labeled digraph), 400, 453

adjacency matrix of, 486
anticipation of, 503
aperiodic irreducible, 455
controllable, 454, 519
deterministic, 456
induced, 453
irreducible, 454, 519

irreducible component of, 455, 501
irreducible sink of, 455, 501
lossless, 456
period of, 455, 502
primitive irreducible, 455
regular, 459
sequence set of, 457
strongly-connected, 454, 519
tag in, 459
trellis diagram of, 458

dimension (of codes), 5, 26
direct product (of matrices), 45, 428
directed graph, see digraph (and labeled di-

graph)
discrete logarithm, 59, 81, 91
discrete memoryless channel (DMC), 19, 23,

46, 142, 466
distance

cover, 354, 362
free, 463, 478, 512
in graphs, 397
Hamming, 6
Kullback–Leibler, 111
Lee, 299
rank, 19, 353, 361

divergence, 111
dual basis, 85
dual code, 30

of alternant codes, 175, 180
of concatenated codes, 383
of cyclic codes, 247
of extended GRS codes, 163
of GRS codes, 148
of Hamming codes, 41
of MDS codes, 119
of RS codes, 257
self-, 31
of subfield sub-codes, 175

dual linear programming problem, 138
dynamic programming, 519

edge (in graphs), 396
cut, 397
in digraphs, 453

Elias bound, 108
Lee-metric, 332

encoder, 3
entropy function

binary, 9
q-ary, 24, 105

erasure, 15
burst, 45, 257
channel, 15, 25, 126, 134, 391, 514

error, 12
bit-shift, 327
burst, 45, 122, 137, 257
correction, 12
crisscross, 362
detection, 13
evaluator polynomial, 186

562 Index

exponent, 143, 381, 393, 425
location, 5
locator polynomial, 185

Lee-metric, 307
locator ratio, 307
peak-shift, 327
synchronization, 327
value, 5
word, 5

error-evaluator polynomial, 186
error-locator polynomial, 185

Lee-metric, 307
error-locator ratio, 307
Euclid’s algorithm

for integers, 50, 501, 524
for polynomials, 52, 71, 90, 191, 215,

309
Euler–Fermat Theorem, 526
Euler function, 62, 229, 449, 522
expander (graph), 404
exponent (of polynomials), 206, 227, 247
extension field, 57, 218

arithmetic in, 59, 74, 90
conjugate element in, 218, 241
cyclotomic, 240

factorization of polynomials, 56, 90
Fano’s algorithm, 520
Fermat’s Little Theorem, 526
field, 522

characteristic of, 62
extension, see extension field
finite, see finite field
Galois, see finite field
prime, 50
of rational functions, 268, 476
splitting, 65

finite field, 50, 218, 240
characteristic of, 62
extension field of, see extension field
isomorphism, 227
prime, 50
product of elements in, 77
sum of powers of elements in, 77, 150

finite-state machine (FSM), 460
linear, see linear finite-state machine

(LFSM)
formal derivative, see derivative
formal power series, 189, 237, 300, 474

bivariate, 487
Forney’s algorithm, 195, 215
Fourier transform, 81, 92, 217
free distance, 463, 478, 512
Frobenius mapping, 64

Galois field, see finite field
Gaussian (AWGN) channel, 17
Gaussian elimination, 189, 274, 296
Gaussian noise, 17

generalized minimum distance (GMD) de-
coder, 178, 371, 396, 422

generalized Reed–Solomon code, see GRS
code

generator matrix (of convolutional codes),
477

catastrophic, 497
LFSM realization of, 510
systematic, 477, 517

generator matrix (of linear codes), 27
systematic, 29

generator polynomial
of cyclic codes, 245
of negacyclic codes, 323
of RS codes, 152

Gilbert–Varshamov bound, 97, 137, 176,
181, 393

asymptotic, 107, 372
Lee-metric, 320, 330

GMD decoder, 178, 371, 396, 422
Golay code, 96, 136, 255
Goppa code, 182, 389
graph

adjacency matrix of, 398
bipartite, 362, 398

transfer matrix of, 399
Cayley, 406, 447
code, see graph code
connected, 397
directed, see digraph (and labeled di-

graph)
edge cut in, 397
expander, 404
Hamming, 427
hyper-, 445
incidence matrix of, 399
induced, 397
isomorphism, 47
labeled directed, see digraph (and la-

beled digraph)
Laplace matrix of, 399
matching in, 362
oriented, 400
Ramanujan, 409, 447
regular, 401
undirected simple, 396

graph code, 412
approaching the Singleton bound, 421
decoding of, 414
error detection with, 440
generalized, 420

Gray code, 321, 328
Griesmer bound, 120, 136
group, 521

Abelian, 521
code, 37, 299
commutative, 521
cyclic, 521
factor, 525
projective special linear, 409

Index 563

quotient, 525
special linear, 409

GRS code, 148
canonical generator matrix of, 167
canonical parity-check matrix of, 148
code locator of, 148
decoding of, see GRS decoding
doubly-extended, 163, 335
dual code of, 148
encoding of, 152, 177, 216
extended, 150, 336

dual code of, 163
Lee-metric, 304
list decoding of, see GRS list decoding
narrow-sense, 150
normalized, 149
primitive, 149
singly-extended, 150, 335
systematic generator matrix of, 167
triply-extended, 165, 337

GRS decoding, 184
Berlekamp–Massey, 200, 217
bivariate interpolation, 269
Blahut’s time-domain, 217
Chien search in, 186, 215
erasure, 207, 216
with Euclid’s algorithm, 191, 215
extended, 210, 216
Forney’s algorithm for, 195, 215
key equation of, 186, 215

Lee-metric, 308
Lee-metric, 312
list, see GRS list decoding
Peterson–Gorenstein–Zierler, 189, 215
singly-extended, 210, 216
Sugiyama et al. (SKHN), 215
Welch–Berlekamp, 215, 217

equations of, 211, 215, 271, 291, 295
GRS list decoding, 271

Guruswami–Sudan, 278, 296
Koetter–Vardy, 282, 296
radius, 271
Sudan’s, 274, 296

Guruswami–Sudan algorithm, 278, 296

Hadamard matrix, 45, 49, 406, 436, 447
Hamming bound, see sphere-packing bound
Hamming code, 32, 47

binary, 32
cyclic, 244, 254, 264
decoding of, 35

list, 291
dual code of, 41
extended binary, 32
list decoding of, 291
weight distribution of, 101, 121

Hamming distance, 6
Hamming graph, 427
Hartmann–Tzeng bound, 265
Hasse derivative, 87, 310, 329

of bivariate polynomials, 276
hyper-derivative, see Hasse derivative
hyper-graph, 445

ideal, 522
incidence matrix, 399
infinite formal power series, 189, 237, 300,

474
bivariate, 487

integer (of fields), 63
integer programming, 103, 137
integral domain, 522
interleaver, 44
interpolation, 76

bivariate, 270
noisy, 151, 177
rational, 211

invertible element (in a ring), 190
irreducible matrix, 445
irreducible polynomial, 54, 90

enumeration of, 225

Jacobi’s Four Square Theorem, 410
Jensen’s inequality, 23
Johnson bound, 107, 128, 139, 289

Lee-metric, 330
Justesen code, 376

key equation, 186, 215
Lee-metric, 308

Koetter–Vardy algorithm, 282, 296
König’s Theorem, 362
Krawtchouk polynomial, 103, 124, 137
Kronecker product (of matrices), 45, 428
Kullback–Leibler distance, 111

labeled directed graph, see digraph (and la-
beled digraph)

Lagrange’s Theorem, 525
Laplace matrix, 399
Latin square, 351, 361
Laurent series, 476, 507
Law of Large Numbers, 11
Law of Quadratic Reciprocity, 411, 449
LDPC code, 362, 450
Lee

adjacency matrix, 325
distance, 299
weight, 299, 448

Legendre sequence, 80
autocorrelation of, 80
linear recurrence of, 239, 241

Legendre symbol, 80, 447
length (of codes), 5
likelihood ratio, 20
linear code, 26

decoding of, 33
encoding of, 28
over rings, 43, 299, 328, 478

linear-feedback shift register (LFSR), 198,
217

564 Index

maximal-length, 237
linear finite-state machine (LFSM), 472

catastrophic, 496, 516
deterministic, 517
irreducible, 473, 505
length–weight enumerator of, 487
lossless, 476, 508
observable, 496, 506, 519
reduced, 496, 506
response matrix of, 474, 519

linear programming, 137
bound, 103, 110, 138

linearized polynomial, 83, 353
list decoding, 267

of alternant codes, 280, 328
error probability, 267
of GRS codes, see GRS list decoding
of Hamming codes, 291
radius, 267

bound on, 290
log likelihood ratio, 20
low-density parity-check code, 362, 450

MacWilliams’ identities, 104, 124
matching (in graphs), 362
matrix

adjacency, 398, 486
aperiodic irreducible, 445
Cauchy, 168, 336, 356, 362
circulant, 325, 330, 356, 362
companion, 73, 383, 510
complex conjugate transpose of, 326
direct product of, 45, 428
generator, 27, 477
incidence, 399
irreducible, 445
Kronecker product of, 45, 428
Laplace, 399
Lee adjacency, 325
parity-check, 29
primitive irreducible, 445
super-regular, 335
Sylvester-type Hadamard, 45, 49, 406,

436, 447
transfer, 399
Vandermonde, 75

inverse of, 166
maximum-likelihood decoder, 8, 32, 140, 466
MDS code, 94, 119, 148, 164, 334

almost (AMDS), 363
bound on the length of, 338
conjecture, 342, 363
dual code of, 119
near (NMDS), 363
over polynomial rings, 355
uniqueness of, 347
weight distribution of, 104

MDS conjecture, 342, 363
Mersenne prime, 77
message node, 449

message-passing algorithm (MPA), 451
metric, 6

cover, 354, 362
Hamming, 6
Lee, 299
rank, 19, 353, 361

minimal polynomial, 219, 241
minimum distance, 6

computation complexity of, 48, 177
designed, 157, 163, 250
Lee, 299
relative, 104

Möbius function, 224, 523
MRRW bound, 110
multiplication circuit, 153
multiplicative order

in fields, 51
in groups, 521
in rings, 72, 206, 228

mutual information, 23

negacyclic code, 323, 330
Newton’s identities, 301, 328
node

check, 449
message, 449
variable, 449

normal basis, 240
normal rational curve, 362

order, see multiplicative order
orthogonal array, 334, 361

parity-check matrix, 29
parity code, 27
path (in graphs), 397

in digraphs, 453
peak-shift error, 327
perfect code, 96, 137, 256

Lee-metric, 319, 330
period (of irreducible digraphs), 455, 502
period (of sequences), 206, 237, 305
Perron–Frobenius Theorem, 445, 518
Peterson–Gorenstein–Zierler algorithm, 189,

215
phase-shift keying (PSK), 327
Plotkin bound, 37, 127, 131, 139, 294

Lee-metric, 326, 330
polynomial, 51

bivariate, 268
characteristic, 73
check, 246
degree, 51
error-evaluator, 186
error-locator, 185

Lee-metric, 307
evaluation, 177, 216
exponent of, 206, 227, 247
factorization, 56, 90
generator, 152, 245, 323
interpolation, 76, 151, 177, 211, 270

Index 565

irreducible, 54, 90
enumeration of, 225

Krawtchouk, 103, 124, 137
linearized, 83, 353
minimal, 219, 241
monic, 52
multivariate, 177, 295
primitive, 228

enumeration of, 229
quadratic, 78, 88
root of, 59
syndrome, 185

power series, 189, 237, 300, 474
bivariate, 487

Prime Number Theorem, 411, 449
primitive element, 51, 61, 91
primitive irreducible digraph, 455
primitive irreducible matrix, 445
primitive polynomial, 228

enumeration of, 229
product code, 44, 178
projective geometry, 47, 361
Prouhet–Tarry problem, 329

q-ary erasure channel, 15, 25, 126, 134, 391,
514

q-ary symmetric channel, 4, 19, 24, 32, 110,
113, 117, 125, 133, 145, 378, 390,
394, 424, 467, 490

quadratic polynomial, 78, 88
Quadratic Reciprocity Law, 411, 449
quadratic residue, 77, 239, 410, 447

Euler’s criterion for, 80, 448
Gauss’ criterion for, 448

random coding, 137
Gallager’s error exponent of, 143

rate, 5
of convolutional codes, 477
of trellis codes, 462

recurrence order, 197, 214
redundancy, 27
Reed–Muller code, 41, 48, 177, 260, 265

first-order, 41, 46, 120, 139, 327, 385,
408

Reed–Solomon code, see RS code
Reiger bound, 122
remaindering circuit, 73, 153
repetition code, 28
ring, 522
Roos bound, 265
root, 59

of BCH codes, 163, 250
of bivariate polynomials, 268
computation, 90, 284, 296
of cyclic codes, 248
multiplicity, 60, 76
of RS codes, 152, 163, 250

RS code
conventional, 151, 243

dual code of, 257
encoding of, 152, 178
extended, 152
generalized, see GRS code
generator polynomial of, 152
root of, 152, 163, 250

self-dual code, 31
sequence, 189

Legendre, 80
autocorrelation of, 80
linear recurrence of, 239, 241

linear-recurring, 198, 217, 237
M -, 237, 241
maximal-length, 237, 241

autocorrelation of, 87
periodic, 206, 305
trace, 236, 240

Shannon Coding Theorem, 139
for BSC, 10
with error detection, 132
for q-ary erasure channel, 135
for q-ary symmetric channel, 117

Shannon Converse Coding Theorem, 139
for BSC, 10
for q-ary erasure channel, 134
for q-ary symmetric channel, 113

shift register, 198, 217, 237
signal-to-noise ratio (SNR), 18
simplex code, 41, 120

weight distribution of, 99
Singleton bound, 94, 136, 332, 334

asymptotic, 105, 421, 451
cover-metric, 354, 362
rank-metric, 353, 361

size (of codes), 5
spectral-null code, 329
sphere, 12

Lee, 317
volume, 95

sphere-covering bound, 123
sphere-packing bound, 95, 122, 136

asymptotic, 107
Lee-metric, 318, 330

splitting field, 65
stack algorithm, 520
standard array decoding, 33
state (in digraphs), 453
subfield sub-code, 174
subgroup, 521

normal, 522
subring, 522
Sudan’s algorithm, 274, 296
Sugiyama et al. (SKHN) algorithm, 215
super-multiplicative sequence, 331
super-regular matrix, 335
Sylvester-type Hadamard matrix, 45, 49,

406, 436, 447
synchronization error, 327
syndrome, 34

566 Index

polynomial, 185

tag (of edges), 459
term rank (of arrays), 362
trace

of elements in a finite field, 83
of matrices, 331, 514
sequence, 236, 240

transfer matrix (of bipartite graphs), 399
trellis code, 460

decoding of, 466
encoding of, 464
free distance of, 463

triangle inequality, 6
turbo code, 519

union bound, 137
unit element (in a ring), 190
unity element, 521

variable node, 449
vertex (in graphs), 396

Viterbi’s algorithm, 468, 519
volume

of Hamming spheres, 95
of Lee spheres, 317

weight, 6
cover, 354, 362
distribution, see weight distribution
enumerator, 99, 486
Lee, 299, 448

weight distribution, 99
of cycles in LFSMs, 487
of Hamming codes, 101, 121
of MDS codes, 104
of simplex codes, 99

Weil’s Theorem, 179
Welch–Berlekamp

algorithm, 215, 217
equations, 211, 215, 271, 291, 295

Wyner–Ash code, 512

Zyablov bound, 373, 392, 413, 422, 438, 440

	Frontmatter
	Contents
	Preface
	1 - Introduction
	2 - Linear Codes
	3 - Introduction to Finite Fields
	4 - Bounds on the Parameters of Codes
	5 - Reedâ•ﬁSolomon and Related Codes
	6 - Decoding of Reedâ•ﬁSolomon Codes
	7 - Structure of Finite Fields
	8 - Cyclic Codes
	9 - List Decoding of Reedâ•ﬁSolomon Codes
	10 - Codes in the Lee Metric
	11 - MDS Codes
	12 - Concatenated Codes
	13 - Graph Codes
	14 - Trellis and Convolutional Codes
	Appendix: Basics in Modern Algebra
	Bibliography
	List of Symbols
	Index

